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The fibromyalgia syndrome (FMS) is characterized by chronic widespread pain,
sleep disturbances, fatigue, and cognitive alterations. A limited efficacy of targeted
treatment and a high FMS prevalence (2–5% of the adult population) sums up to
high morbidity. Although, altered nociception has been explained with the central
sensitization hypothesis, which may occur after neuropathy, its molecular mechanism
is not understood. The marked female predominance among FMS patients is often
attributed to a psychosocial predisposition of the female gender, but here we will
focus on sex differences in neurobiological processes, specifically those of the immune
system, as various immunological biomarkers are altered in FMS. The activation of
innate immune sensors is compatible with a neuropathy or virus-induced autoimmune
diseases. Considering sex differences in the immune system and the clustering of FMS
with autoimmune diseases, we hypothesize that the female predominance in FMS is
due to a neuropathy-induced autoimmune pathophysiology. We invite the scientific
community to verify the autoimmune hypothesis for FMS.

Keywords: autoimmune disease, central nervous system sensitization, fibromyalgia, pathophysiology, sex
differences, widespread chronic pain

INTRODUCTION

As long as the pathophysiology of the FMS is not elucidated, the diagnosis (Wolfe et al.,
2016; Arnold et al., 2019) and the treatment (Macfarlane et al., 2017) will remain inadequate.
Many consider FMS to be psychosomatic (Lami et al., 2018) and there are still physicians
who do not recognize the disorder. Although the name indicates a fibromuscular affection
and the syndrome is classified as a rheumatic disorder, FMS is treated as a neurological
problem, in accordance with the currently most accepted hypothesis: central sensitization
(Staud et al., 2009). The history of FMS not only reveals the confusion (Inanici and Yunus,
2004) but also the importance of (1) inflammation, (2) a neuropathic type of pain, (3)
referred pain after irritation or damage of the paraspinal ligaments, (4) increased substance
P levels in cerebrospinal fluid (CSF), and (5) an etiology of trauma and/or infection
accompanied by mental stress, which are all consistent with neuroinflammation. Female
predominance and clustering with autoimmune diseases were recognized in the historical review

Abbreviations: AIRE, autoimmune regulator; CNS, central nervous system; CSF, cerebrospinal fluid; FMS, fibromyalgia
syndrome; HLA, human leukocyte antigen; MS, multiple sclerosis; NK, natural killer cell; SLE, systemic lupus erythematosus;
TCR, T cell receptor; TLR, Toll-like receptor; Th, helper T lymphocyte; Treg, suppressor T lymphocyte.
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(Inanici and Yunus, 2004), but suggestions of autoimmunity
markers were omitted (Jacobsen et al., 1990; Klein et al., 1992),
despite being actual at the time of the review. Still, it seems that
autoimmune susceptibility accompanies FMS. We propose that
FMS is a neuropathy-induced autoimmune disease directed to
nervous tissue. As autoimmunity is sex biased (Beeson, 1994),
the autoimmune hypothesis may explain the female prevalence
observed in FMS.

The focus of the paper is to present the biological data from
which this hypothesis emerges, followed by how it may explain
central sensitization and the sleep alteration that characterize
FMS. Next, we describe the mechanisms of immunological self-
tolerance and how it can be breached, as well as the well-
known sex differences in the immune system, which explains why
women are more susceptible to develop certain autoimmunity
disorders. We reflect on the complexities of proving the
hypothesis and offer suggestions to verify the hypothesis.

FIBROMYALGIA: INTRODUCING THE
AUTOIMMUNE HYPOTHESIS

Fibromyalgia syndrome is characterized by unexplained chronic
(>3 months) widespread pain accompanied by moderate to
severe sleep problems and/or fatigue (Arnold et al., 2019). Fatigue
upon awakening has been associated with altered sleep wave
patterns, especially a lack of slow-wave sleep (Roizenblatt et al.,
2001). A myriad of additional symptoms tends to accompany the
disease, amongst them cognitive difficulties, depression, irritable
bowel, irritable bladder, restless legs, dry mouth and eyes, and
altered sense perception (Arnold et al., 2019). Primary FMS
is not accompanied by another chronic pain disorder, whereas
secondary FMS develops as a co-morbidity of another dominant
chronic disease, commonly an autoimmune disease (Häuser et al.,
2015). FMS prevalence among the adult population ranges from
0.8–5% worldwide, depending on the geographical area, case
definition, and assessment method (Johnston et al., 2013; Jackson
et al., 2015). FMS occurs in the pediatric population, generally
beginning with the onset of puberty (Gedalia et al., 2000), but the
highest prevalence is among middle-aged women. The female-
to-male ratio ranges from 1:1 to 30:1, but a worldwide average
is about 3:1 in both the pediatric (Gedalia et al., 2000) and adult
populations (Queiroz, 2013).

Although FMS is classified as a musculoskeletal disease,
the currently most accepted hypothesis of pathogenesis,
central sensitization (Staud et al., 2009), is neurobiology-based
and supported by empirical and impartial evidence (Maestu
et al., 2013; Sluka and Clauw, 2016). As the etiology and
pathophysiology of FMS remain elusive, FMS treatment is
directed to symptom management, which includes inhibition of
an overreacting CNS (Macfarlane et al., 2017). In general, 30%
of the patients report a 30% improvement because of treatment
(Häuser et al., 2015). This modest efficacy suggests that the
pharmacological treatment does not target the cause.

We hypothesize that FMS is a neuropathy-induced
autoimmunity directed against nervous tissue. The autoimmune
hypothesis provides a mechanistic explanation for the central

sensitization hypothesis and thus the two hypotheses are
compatible. Considering sex differences in the immune system,
the autoimmune hypothesis may explain female predominance
among FMS patients.

The autoimmune hypothesis emerged from the following
observations. First, the epidemiological profile of FMS is
similar to the one of autoimmunity as both peak among
middle-aged women (Beeson, 1994). Second, FMS co-occurs
with a cluster of autoimmune diseases e.g., sicca syndrome,
SLE, rheumatoid arthritis, irritable bowel syndrome, thyroiditis,
interstitial cystitis/painful bladder syndrome, and restless legs
syndrome co-occur. Autoantibodies ‘specific’ for aforementioned
autoimmune diseases tend to be shared rather than unique. When
they are detected in FMS, a corresponding autoimmunity is
diagnosed and FMS is redefined as secondary FMS (Hervier et al.,
2009). Still, secondary FMS reveals autoimmune susceptibility
(Buskila and Sarzi-Puttini, 2008; Giacomelli et al., 2013; Haliloglu
et al., 2017). Specific antibodies for FMS have been reported
(Supplementary Table 1), but they are neither consolidated
nor generally accepted (Werle et al., 2001; Giacomelli et al.,
2013). Third, there is overlap in the clinical profile of FMS and
certain autoimmune diseases, with respect to complex genetic
and environmental risk factors. The latter include infections
(Smatti et al., 2019) and stress due to traumatic experiences
(Sharif et al., 2018). Stress and certain personality characteristics
associate positively with autoimmune diseases, FMS, and other
chronic diseases in retrospective studies with selected controls
(Martin et al., 1996; Lami et al., 2018). But whereas stress and
personality are considered precipitating factors or consequences
in autoimmune diseases (Mitsonis et al., 2009; Hassett and Clauw,
2010), they are interpreted as the cause in FMS (Lami et al.,
2018) despite a lack of convincing evidence demonstrating a
causal relation (Häuser and Henningsen, 2014). Similarly, there
is no convincing evidence that a certain personality causes
pain (Naylor et al., 2017). Fourth, although routinely screened
inflammatory biomarkers in FMS samples (such as C-reactive
protein levels and erythrocyte sedimentation velocity) tend to
be within the normal clinical range, these and other immune
markers are significantly different from the ones of healthy
controls in a research setting (Kadetoff et al., 2012; Xiao et al.,
2013; Pernambuco et al., 2015; Mendieta et al., 2016; Bäckryd
et al., 2017; Ciregia et al., 2018). Although data on inflammatory
biomarkers are not consisted among studies, they correlate
weakly with clinical variables (Ernberg et al., 2018), or can
be explained by comorbid conditions, the general impression
is that chronic inflammation occurs in FMS (Ernberg et al.,
2018). Similarly, routine leukocyte counts are within the normal
range, but specific lymphocyte subgroups, not screened in clinical
routine studies, are altered in FMS patients. Compared to
age-matched healthy controls, female FMS patients had higher
proportions of CD57+ natural killer cells (NK) (17.1% vs.
11.3%) and CD5+ B cells (6.46% vs. 2.5%) (Russell et al.,
1999) but lower CD56+ NK (Landis et al., 2004). Case-control
observational whole-genome expression studies among women
revealed altered expression of immune pathways and markers
of tissue destruction (Lukkahatai et al., 2015; Jones et al., 2016).
These expression studies did not confirm gene polymorphisms
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FIGURE 1 | The autoimmune hypothesis for FMS. FMS complies with all
mentioned risk factors of autoimmune disease, as well as with research
biomarkers of an altered immune response. The missing pieces (indicated by
“?”) are the evidence of autoantibodies or autoreactive lymphocytes against
nervous tissue.

that had been identified in genome association studies (Park and
Lee, 2017). The gene association studies often had a selection
bias and did not clarify why the genetic susceptibility would
only lead to a disorder later in life. In this respect, the HLA
alleles (Branco et al., 1996; Yunus et al., 1999) form an exception,
as their impact depends on an interaction between genetic
and environmental factors. HLA genes have an essential role
in the immune system. Thus, the emerging picture is that
a combination of genetic predisposition, a precipitating event
(infections, trauma, autoimmune diseases or other reasons of
necrosis) (Jiao et al., 2015), and immune dysregulation due
to psychological stress (Takahashi et al., 2018) may convert
autotolerance or pre-existing occult autoimmunity into overt
autoimmunity, but the autoreactive component remains elusive
(Figure 1). Importantly, though the precipitation event may be
transitory, autoimmunity is a response of the adaptive immune
system and is chronic. The sex bias in the immune system may
explain the female preponderance of FMS.

WHY DOES CENTRAL SENSITIZATION
OCCUR?

Pain perception not only depends on the pain stimulus, but also
on the emotional and psychosocial state at a certain moment
(Rhudy et al., 2010; Finnern et al., 2018). Both human and
animal studies reveal greater pain sensitivity among females
than males for most pain modalities (Rhudy et al., 2010; Kisler
et al., 2016; Melchior et al., 2016; Aufiero et al., 2017; Kosek
et al., 2018). The gender/sex bias in pain perception in various
animal species denotes the importance of biological processes
and thus sex differences therein. Unfortunately, pain studies
aimed at other aspects than a sex or gender bias seldom report
outcome variables according to sex or gender and only mention

the proportion of males or females among study participants
(Supplementary Table 1). As a consequence, although the sex-
neutral neurophysiology of the pain pathway is well-described
in several reviews (Basbaum et al., 2009; Zeilhofer et al., 2012;
Peirs et al., 2015; Kendroud and Hanna, 2019) (Figure 2), little
is known about sex differences in pain processing, except for
modulation by sex-related hormones (Taleghany et al., 1999;
Vincent and Tracey, 2008; Artero-Morales et al., 2018). These
biological aspects are at least as important as the psychological
aspect (Foo et al., 2017). Though sex differences in functional
pain processing in itself are interesting, for FMS the focus is on
pathological pain processing, which has been explained with the
central sensitization hypothesis.

Central sensitization was originally described as an increased
electrophysiological activity in the dorsal horn in both a
polyarthritic (Menétrey and Besson, 1982) and a post-injury
male rat model (Woolf, 1983). Importantly, in both models a
peripheral tissue injury triggered off alterations in dorsal horn
neurons so that they augment pain signaling to normal input,
even from low-threshold Aβ mechanoreceptors (Woolf, 1991).
Besides, in animal models, sex differences in pain processing,
i.e., at a biological level, could only be detected after neuropathy
(Sorge et al., 2015) and involved the immune system.

Central sensitization has become the most accepted hypothesis
to explain FMS mainly because peripheral sensitization due
to autoimmunity is discarded because FMS does not comply
with the following criteria of inflammation: (a) the presence of
blood inflammatory biomarkers according to common clinical
criteria, (b) responsiveness to non-steroid anti-inflammatory
cyclooxygenase inhibitors. The former is debatable once research
findings on immunological biomarkers (as mentioned in the
previous section) are considered. The latter only indicates that
FMS is not cyclooxygenase dependent, but discredits neither
the involvement of other inflammatory and immune response
pathways, nor does it nullify the possibility of neurogenic
pain. Failure to comply with inflammatory criteria have not
prevented the recognition of Graves’ disease (Baruah and
Bhattacharya, 2012) and MS as autoimmune diseases (Luzzio
and Dangond, 2018). Furthermore, the need for inflammatory
biomarkers does not apply to secondary FMS because the
accompanying autoimmune disease will generate not only
inflammatory biomarkers but also a continuous nociceptive
input. In secondary FMS, the CNS changes appear to improve
when nociceptive input is removed (Sluka and Clauw, 2016).
The point is that the nociceptive input may also be present
in primary FMS, but we are ignorant of it. FMS pain is
said to be idiopathic, but the burning, nagging, excruciating
pain that is characteristic of FMS (Inanici and Yunus, 2004)
is consistent with neuropathy. Histopathological studies have
been performed on muscular and connective tissues (Inanici
and Yunus, 2004), but not on dorsal root ganglia and central
nervous tissue along the pain pathway. History teaches that
myasthenia gravis was considered an idiopathic paralysis. Only
after having established the involvement of the immune system
were pathological immune infiltrates observed in muscle tissue
(Hughes, 2005). There are indications that neuropathy is present
in FMS patients (Üçeyler et al., 2013; Ramírez et al., 2015;
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FIGURE 2 | Neuroanatomy and chemistry of the central modulation of pain. Blue projections, incoming signals from 1st order neurons; red projections, ascending
projections from 2nd order neurons toward thalamus (Thal) and cortical areas; yellow projections, projections for 3rd order neurons to cortical areas for awareness;
green projections, descending projections that modulate the pain pathway. I-X, Reddit layers within the gray matter of the spinal cord;↔, Integration of modulatory
ascending and descending information in the dorsal horn Reddit laminae I-V (DH LI-V). 5-HT, serotonin; Aα, Aβ, Aδ y C, incoming nerves with decreasing levels of
myelination; Amyg, amygdala; CC, cingulate cortex; CCKBR, cholecystokinin B receptor; CGRP, calcitonin gene-related peptide; DRG, dorsal root ganglia; Glu,
glutamate; Ins, insula; LC, locus ceruleus; Nav, voltage-gated sodium channels; NE, norepinephrine; NGF, nerve growth factor; PAG, periaqueductal gray; RN, raphe
nucleus; RVM, rostroventral medulla; S1, S, somatosensory areas 1 and 2; SP, substance P; TRP, transient receptor potential sensitive to nociceptive stimulus; µR,
µ-opioid receptor with high affinity for enkephalins and beta-endorphin. Image based on (Tracey and Mantyh, 2007; Allen Human Brain Atlas, 2010; Ossipov et al.,
2010).

Krumina et al., 2019). FMS pain may reflect a neuropathy of
a currently unknown etiology, which is compatible with the
central sensitization hypothesis. Latremoliere and Woolf (2009)
reviewed neuroplasticity at the molecular and cellular level
to explain central sensitization in pain hypersensitivity. They
underscore the fundamental contribution of an inflammatory or
neuropathic event to initiate the central sensitization.

Rat spinal cord slices exposed to pro-inflammatory cytokines
display patch-clamp recordings that are congruent with
the central sensitization hypothesis (Kawasaki et al., 2008),
suggesting that the immune system plays a role; but, as is the case

too often, proper controls were missing. A mouse study revealed
the essential role of the immune sensor TLR8 in the maintenance
of neuropathic pain. After nerve injury, TLR8 levels increased
in the small IB4+ neurons in the dorsal root ganglia and in the
ipsilateral dorsal horn. Subsequent intrathecal or intradermal
injection of TLR8 agonists (VTX-2337 and miR-21) induced
mechanical allodynia, and increased excitability of neurons
in the dorsal root ganglia, accompanied by the expression of
inflammatory mediators like interleukin 1 beta, interleukin 6, and
tumor necrosis factor alpha. These effects were absent or reduced
in TLR8 knock-out mice (Zhang et al., 2018). Aforementioned
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study did not report on sex differences, but in humans, TLR8 is an
X-linked gene that may escape X-inactivation leading to a dosage
difference between men and women (Umiker et al., 2014). TLR8
is especially important because of its pro-autoimmunity potential
(Peng et al., 2005). A recent study with BALB/c and C57BL/6
mice suggests that circulating immunoglobulin G (IgG)-type
immune complexes may directly mediate hyperalgesia at the
level of dorsal root ganglia (Bersellini Farinotti et al., 2019) where
macrophages and neurons have receptors for IgG1 and IgG2b
(Bersellini Farinotti et al., 2019). If this mechanism were to be
confirmed in humans, it would make women more vulnerable,
because women are more inclined to humoral adaptive immune
responses than men (see Section Sex Differences in the Immune
System). Another mouse study revealed sex differences in pain
processing. Intrathecal stimulation of the immune sensor of
danger TLR4 induced mechanical allodynia in male, but not
in female mice. At a cellular level, microglia in the spinal cord
proliferated in both sexes after peripheral nerve injury, but
only male microglia upregulate the immune sensor of danger,
P2RX4 (Mapplebeck et al., 2016). P2RX4 detects nucleotides,
mainly ATP, released after CNS stress or injury (Di Virgilio and
Sarti, 2018). Activation of P2RX4 receptors leads to release of
pro-inflammatory interleukin 1β and brain-derived neurotropic
factor, which promote pain hypersensitivity. The inhibition of
microglia in the spinal cord reversed allodynia only in male
rodents. The female pain process requires more investigation
(Sorge et al., 2015). As for humans, sex-biased pain because
of knee osteoarthritis could be explained by differences in
immune signaling molecules, interleukin 8 and monocyte-
chemoattractant protein-1 (Kosek et al., 2018). Interleukin
8 is one of the immunological biomarkers most consistently
associated with FMS (Kosek et al., 2015). Thus, sex differences
in pathological pain processing mainly involves immune
sensors and immune cells. And as we will see in Section “Sex
Differences in the Immune System,” the immune system presents
sex differences.

Besides, the sex bias of central sensitization remains to be
elucidated. We hypothesize that autoimmunity directed to the
CNS, either toxic or stimulatory, explains not only central
sensitization, but also the female predominance of FMS and the
lack of peripheral inflammatory biomarkers.

WHY IS SLOW-WAVE SLEEP MISSING?

The neurobiology of sleep and the regulation of the daily sleep-
wake cycle have been reviewed with a clinical perspective by
España and Scammell (2011). Gender and sex differences in sleep
health have been recognized but major gaps continue to exist is
areas of sleep regulation, the epidemiology of sleep problems,
diagnosis and treatment (Mallampalli and Carter, 2014). Two
sexually dimorphic areas, the preoptic area and suprachiasmatic
nucleus (Hofman and Swaab, 1989; Hofman et al., 1996) have
been associated with sleep problems (España and Scammell,
2011). However, it seems that the sexual dimorphic nucleus of
the preoptic area is dedicated to sexual and parental behavior
(Rosenblatt et al., 1996) rather than to sleep regulation. More

recently, another brain area, the anterior cingulate cortex, has
been involved in both primary insomnia (Yan et al., 2018)
and FMS (Jensen et al., 2009), but neither study analyzed sex
differences. Still, sleep differs between men and women and may
contribute to a sex-biased risk for sleep disorders (Mallampalli
and Carter, 2014) and, consequently, for FMS.

Polysomnography studies have revealed a variety of sleep
disturbances in FMS patients (Choy, 2015). Especially, the
phase of deep sleep is reduced and otherwise affected. Instead
of the synchronized and therefore high-amplitude slow waves
characteristic of the δ rhythm, desynchronized low-amplitude
high-frequency waves characteristic of the α rhythm interfere,
generating a pattern known as α-δ sleep (Choy, 2015). Deep
sleep is considered to be important for memory consolidation
and restoration processes. Abnormal deep sleep and other sleep
disturbances may contribute to the development of chronic pain
(Finan et al., 2013) and FMS (Mork and Nilsen, 2012).

Taking together the difficulty to maintain slow-wave sleep
and the peak symptomology upon awakening, it seems as if the
regulation of the different sleep phases may be involved. The
well-known somnogenic adenosine seems to have a special role
in the regulation of the slow-wave sleep phase as revealed by
studies with male C57BL/6 mice (Oishi et al., 2017). Extracellular
adenosine accumulation activates the adenosine A1 receptor
which inhibit arousal and induces slow-wave sleep. Another
adenosine receptor, A2A receptor, can induce slow-wave sleep,
but can be overruled by a motivation stimulus, like hunger
or stress (Lazarus, et al. 2019). These receptors are found in
the nucleus accumbens. Thus, the nucleus accumbens, already
known for being part of the reward circuit, has a role in the
control of the slow-wave sleep phase via adenosine receptors.
A variety of enzymes and adenosine and nucleotide transporters
in both neurons and astroglia are important for extracellular
adenosine levels in the micro-environment of the nucleus
accumbens. Interestingly, the A2A receptor also regulates naive
T cell development in the thymus and its maintenance in
the periphery (Cekic et al., 2013). In summary, adenosine,
associated metabolites and involved enzymes and transporters
may be important in slow-wave sleep and FMS, but further
research is necessary.

AUTOIMMUNE DISEASES: A CONFUSED
IMMUNE SYSTEM

Activation and Tolerance in the Immune
System
The definition of autoimmune disease is relatively
straightforward: a “disease that results when the immune
system [..] mistakenly attacks the body’s own tissues” (Wein,
2013). In practice it is more complicated as non-symptomatic
healthy persons tend to have autoantibodies (Tan et al.,
1997), which are eliminated before doing harm (Nagele
et al., 2013). For a disease to be classified as autoimmune
there must be detectable autoantibodies or autoreactive
T-cells in amounts sufficiently higher than non-symptomatic
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controls and they must explain the symptoms or present a
strong epidemiological association with the symptoms. These
requirements are fulfilled for all recognized autoimmune
diseases, most often because of autoantibodies whether or
not in combination with immune infiltrates (Dornmair
et al., 2003). In autoimmune diseases that cluster with
FMS, such as rheumatoid arthritis, Sjögren’s syndrome,
and SLE, specific and diagnostic autoantibodies have
been identified. Autoantibodies against cryptic nuclear,
cytoplasmic and proteolipid protein antigens are shared in
various autoimmune diseases (Suurmond and Diamond, 2015;
Fayyaz et al., 2016).

Instead of being due to one specific cause, autoimmune
diseases develop when risk factors accumulate. Central to
autoimmune diseases is the loss of tolerance to autoantigens.
Tolerance of the immune system is the non-activation of the
immune response. Upon contact with a substance, particle
or pathogen our defense system must decide to attack or
to be tolerant. Essential for this decision is recognition,
which is different for the three levels of protection of
our defense system.

The first line of defense is a biophysicochemical barrier that
does not need activation nor recognition. The second level of
protection is provided by the innate immune system, a fast-
reacting system without memory. Memory is not required as
similar cell types or humoral factors share the same receptors
for dangers and will attack the same patterns of danger.
This in contrast with the third level of protection, provided
by T lymphocytes and B lymphocytes. Lymphocytes have
unique receptors, so that few will react upon a pathogenic
invasion. T lymphocytes are activated by antigen presenting
cells of the innate immune system, that provide instructions
according to the danger pattern that were encountered. When
selected and activated, lymphocytes generate a clone for
future memory and effector cells that are either cytotoxic
(Tc) or differentiate in a variety of mediators (helper T
cells, Th) that potentiate different components of the innate
and adaptive immune systems, while effector B lymphocytes
(B) become plasma cells (plasma) that produce antibodies.
If a tolerance response is erroneously converted into an
active immune response, the memory of the adaptive immune
response will respond with immune hypersensitivity upon
future challenges.

Activation and Tolerance in the Innate Immune
System
The tolerance mechanism of the innate immune system is
passive; i.e., the innate immune system is only activated upon
the detection of a limited number of non-self molecular patterns
associated with pathogens (PAMPs) or endogenous damage
(DAMPs). Hereto, innate immune cells share a limited set
of PAMP recognition receptors. Depending on the pattern
recognized, an appropriate action is initiated (Hoebe et al.,
2004). Everything that is not a PAMP or DAMP is automatically
tolerated by the innate immune system. In general, loss of
auto-tolerance is not due to breaches of tolerance of the
innate immune system.

Activation and Tolerance in the Adaptive Immune
System
Both recognition/activation and tolerance are more complex in
the adaptive immune system (Schwartz, 2012). The adaptive
immune system is able to recognize a huge number of structures
(known as antigenic determinants or epitopes) because of an
enormous variety of specific receptors, T-cell receptors (TCRs)
and B-cell receptors, that differ among lymphocytes. As a
consequence, when a noxious antigen invades the body, only
few specific lymphocytes will react. Clonal proliferation of a
triggered lymphocyte generates a specific ‘army’ composed of
effector lymphocytes (to eliminate current danger) and memory
lymphocytes to provide a faster and stronger immune response
for a future challenge with the same antigen.

As the specificity of the TCR and B-cell receptors is generated
at random, these receptors may recognize harmless xenoantigens
and autoantigens (Klein et al., 2014). To avoid allergies
and autoimmune diseases, the adaptive immune system has
three control mechanisms: (a) central tolerance, (b) peripheral
tolerance, and (c) major histocompatibility complex-restricted
activation of T cells, i.e., a T cell can only be activated when
its cognate antigen is presented by a major histocompatibility
complex molecule.

HLA Presents Protein-Associated Epitopes to the
Adaptive Immune System
In humans, the major histocompatibility complex is known as
HLA. The HLA genes of class I (A, B, and C) and II (DP,
DQ, and DR) are the most polymorphic genes of the human
genome and provide a molecular identity to an individual. All
nucleated cells of the human body express HLA-I, although
leukocytes express them in larger amounts, while HLA-II is
expressed by specialized antigen-presenting cells. HLA-I presents
antigens to CD8 + cytotoxic T cells, while HLA-II presents
antigens to CD4+ helper T cells (Th) (Hoebe et al., 2004).
As antigen presentation to T cells is HLA-restricted, only
body-own cells will be protected. The polymorphism of the
HLA molecules has an impact on the quality of the immune
response. Certain HLA-antigen complexes facilitate the immune
response of an individual and others not. Thus, the individuals
of a population differ in their protective capacity and their
susceptibility to autoimmune diseases. The antigen presentation
process is designed for large proteins, preferentially in a
particulate presentation. Therefore, electrolytes, sugars, lipids
(e.g., sex hormones), nucleic acids, peptides (e.g., neuropeptides),
and other small molecules (e.g., neurotransmitters) are passively
tolerated. On the other hand, tolerance to protein autoantigens is
an active, energy-consuming, and highly controlled process with
central and peripheral mechanisms.

Mechanisms of Central Tolerance
Central tolerance is established in the primary lymphatic organs,
most importantly, in the thymus, where developing T cells or
thymocytes reorganize their genome at random to express a
unique TCR, either xenoreactive or autoreactive. The thymic
epithelial cells function as ‘teachers’ of the thymocytes. Hereto,
the thymic epithelial cells express “AIRE),” a transcription factor
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that facilitates the expression of organ-specific autoantigens in
the thymus. The autoantigens are presented in combination with
HLA to the thymocytes. To survive, thymocytes should recognize
HLA (positive selection) but not recognize autoantigens (negative
selection). Simplified, autoreactive thymocytes have two fates
(Klein et al., 2014): (1) they die by apoptosis, in case of a
strong and long antigen-TCR interaction, and (2) they become
regulatory T cells (nTreg), when the antigen-TCR interaction is
of intermediate strength and length (Azzam et al., 2001; Ohkura
et al., 2013). Thymocytes that do not react with autoantigens or
only shortly and with low-affinity are liberated as naïve Th or
cytotoxic T cells to protect against danger in the periphery.

As not all autoantigens are expressed in the thymus in
sufficient amounts, autoreactive naive T cells may circulate in the
periphery, a phenomenon known as ignorance.

Mechanisms of Peripheral Tolerance
Peripheral tolerance complements central tolerance by any of the
following mechanisms: (1) clonal deletion of autoreactive T cells
by apoptosis, (2) the peripheral induction of Treg (iTreg) under
the influence of transforming growth factor beta, (3) anergy, i.e., a
reversible inactive state of the T cell when the antigen presenting
cells do not provide a costimulatory signal (Mueller, 2010), and
(4) ignorance, i.e., the amount of auto-antigen is insufficient
to induce either tolerance or an immune response. The choice
for any of these tolerance options depends on the abundance,
strength and duration of the TCR-antigen interactions, but it
is conditioned by the absence of a danger signal. As the T
cell has no information about the type of danger recognized
by its at-random-generated TCR, this information is provided
by the antigen presenting cell. Depending on the type of PRR
activated the antigen presenting cell provides a costimulatory
signal and instructions about the desired type of response (Th1,
Th2, or Th17 response) via cytokines (Kaiko et al., 2008). Apart
from these major tolerance processes, immune responses are
fine-tuned by many stimulatory, inhibitory, and modulatory
molecules (e.g., CD5) (Sigal, 2012) and cells, e.g., NKT cells
(Dasgupta and Kumar, 2016) within the immune system, as well
as neuroendocrine peptides and hormones beyond the immune
system (Carniglia et al., 2017). In summary, the adaptive system
mainly attacks large protein (>10 kDa) antigens and tolerance to
large self-proteins is a complex and highly regulated process.

Loss of Tolerance and Development of
Autoimmune Diseases
Tolerance may be breached for any of the following reasons or a
combination of them. First of all, molecular mimicry between an
auto-antigen and a pathogenic antigen may confuse the immune
system. A well-known example is the Guillain-Barré syndrome
due to autoantibodies directed to peripheral nerves because of
cross-reaction between nerve autoantigens and certain pathogen
antigens, especially Campylobacter jejuni, Epstein-Barr virus,
cytomegalovirus (Jacobs et al., 1998).

Secondly, bystander autoantigens that are presented in
combination with danger signals due to concurrent infections
or physical trauma may overcome tolerance, which may play a
role in the development of autoimmune diseases (Gestermann

et al., 2018). The bystander mechanism may also explain
how a ‘founder’ or primary autoimmune disease may lead to
secondary autoimmune diseases. Cell lysis due to inflammation
of the primary autoimmune disease liberates multiple cryptic
autoantigens (mitochondrial antigens, phospholipid antigens,
ribonucleoproteins, and other cytoplasmic autoantigens) that
provide DAMPs. And the cycle repeats itself: novel autoantigens
in combination with danger signals may lead to multiple
autoreactive clones of lymphocytes. Cryptic autoantigens
liberated during necrosis are shared by different autoimmune
diseases (Suurmond and Diamond, 2015). Although the etiology
is not proven, latent viral infections associate with MS (Virtanen
et al., 2014). A reactivating latent viral infection may cause
not only minor damage to nervous tissue but also a breach in
tolerance either by molecular mimicry or the bystander effect.
Multiple cryptic autoantigens are liberated due to repeated
tissue damage, so that polyautoimmunity develops. In MS,
oligoclonals are directed against a mixture of autoantigens of
cellular debris (Brändle et al., 2016). Initially, MS can be more
or less controlled by interferon treatment (Multiple Sclerosis
Therapy Consensus Group, 2008), which has antiviral activity,
until the polyautoimmune disease has become autosustainable
and the relapsing-remitting MS patient turns into a secondary-
progressive MS patient. In MS, just as in FMS, inflammatory
biomarkers of the blood tend to be within the normal range
(Luzzio and Dangond, 2018) as the inflammatory process occurs
localized, i.e., behind the blood-brain barrier. Aforementioned
process probably plays a role in many autoimmune diseases but
have been recognized for only a few. The clinical importance
is high because antimicrobial treatment may resolve the initial
infection, once the autoimmune disease has developed it may be
too late (Mukherjee et al., 2018). Alternatively, it explains why
steroid anti-inflammatory treatment worsens (Clark et al., 1985)
rather than improves the symptoms.

Thirdly, there is a genetic predisposition for most
autoimmune diseases, especially in the HLA genes, probably
as a consequence of affinity issues between the HLA molecule
and the presented antigen (Bodis et al., 2018). HLA-DR2, DR3,
DR4, DQ6, and DQ8 are associated with SLE, sicca syndrome,
and rheumatoid arthritis (Mangalam et al., 2013). Furthermore,
gene polymorphisms in complement factors may diminish
autoantibody clearance (Macedo and Isaac, 2016).

Fourthly, CD5 expression fine-tunes the adaptive immune
response in a complex way (Sigal, 2012). CD5 on T or
B lymphocytes may either facilitate or inhibit an adaptive
immune response depending on avidity issues (Domingues
et al., 2016). In general, CD5+ B cells have been related
with increased susceptibility for autoimmune disease, while the
opposite applies to T cells (Tarakhovsky et al., 1995; Pers et al.,
1999; Hawiger et al., 2004).

Fifthly, stress dysregulates the immune system (Sharif et al.,
2018). Acute stress enhances catecholamines and circulating
leukocytes, which facilitates a stronger immune response.
Chronic stress, on the other hand, is immunosuppressive.
The stress hormone cortisol diminishes leukocyte numbers
and suppresses leukocyte function (Dhabhar, 2008). The
stress hormones epinephrine and cortisol induce a rapid
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leukocyte redistribution. Although the exact mechanisms of
this phenomenon remains to be elucidated, clinical and
epidemiological data convincingly and consistency reveal an
association between chronically stressed people and vulnerability
to and resurgence of infections and autoimmune diseases
(Reiche et al., 2004).

Sixthly, the immune response is age dependent (Elisia et al.,
2017) and age has is a risk factor for loss of central tolerance.
In over 60% of autoimmune cases, the onset of symptoms was
in the fourth and fifth decade of life, with a median onset at
37.5 years of age (Euesden et al., 2017). A detection bias may
play a role in the age effect. Autoimmune disease may not be
apparent at the onset, because the progression is slow and their
biochemical, physiological or visual detection not obvious. For
example, Sjögren syndrome, an autoimmune disease affecting
the glands, becomes apparent in older individuals, because
destruction of the glands is slow and symptoms of dryness are
only experienced when most of the glands are destroyed (Hsu
and Mountz, 2003). Importantly, the most essential organ for
central tolerance, the thymus, undergoes profound age-associated
atrophy (Lynch et al., 2009). Thymic decline is clearly associated
with the presence of sex steroids (Heng et al., 2005).

And finally, being female is a risk factor for many autoimmune
diseases. A sex bias in the immune system is well-documented
and will be described in more detail in the next section.

The unfortunate co-occurrence of aforementioned risk factors
elicits an autoimmune disease. It is important to highlight that
the initial trigger may be transitory, but the induced autoimmune
response is chronic due to the memory of the adaptive immune
response. Aforementioned risk factors all apply to FMS (see
Section Fibromyalgia: Introducing the Autoimmune Hypothesis
and Figure 1).

SEX DIFFERENCES IN THE IMMUNE
SYSTEM

The burden of infectious diseases and the incidence of cancer,
allergies, and autoimmune disease differs between men and
women. Though this phenomenon can be partially explained by
a differential exposure of men and women to environmental risk
factors, sex differences in the immune system are evident and
well-known. The expression of many immune system-associated
proteins and activation of immune cells differs between the sexes
as have been reviewed elsewhere (Klein and Flanagan, 2016;
Rainville et al., 2018). Well-known is a Th1 bias in male and
a Th2 bias in female (Klein and Flanagan, 2016). The latter
facilitates the natural passive transfer of immunity from mother
to fetus, as immunoglobulins G are able to pass the placenta
to protect the fetus. Furthermore, as of adulthood, the number
of innate and adaptive leukocytes is higher in females than in
age-matched males (Urquhart et al., 2008), except for Treg and
innate lymphoid cells, including NK, which are more abundant
in males (Klein and Flanagan, 2016). NK have functions beyond
cytotoxicity including an important role in the regulation of
immune homeostasis and inflammation (Vitale et al., 2005).
During aging, the diverse NK population changes gradually; the

proportion of immunoregulatory CD56hi NK diminishes in favor
of highly differentiated cytotoxic CD57+ NK. This redistribution
may explain functional changes in NK cells with healthy aging
(Gayoso et al., 2011). The dysregulation of NK and NKT cells is
associated with allergies and autoimmune diseases (Nielsen et al.,
2013; Tahrali et al., 2018). Here, we highlight that the cellular
immune response tends to predominate in men and the humoral
immune response in women. Furthermore, adult men tend to
have more immunoregulatory cells than women.

Differential Effect of Sex Hormones on
Leukocyte Behavior
Sex hormones differentially influence the behavior of leukocytes.
There is a differential distribution of sex hormones receptors
among leukocytes. For example, CD4+ T cells have high levels
of the estrogen receptor alpha but low estrogen receptor β levels,
whereas the opposite applies for Treg. CD8+ Tc have low
expression levels for both types of estrogen receptors, whereas
NK express both receptors highly. In mice, high estrogen
levels signal via estrogen receptor α and induce antiviral
type 1 interferon and NK cells, as well as Treg. Signaling
via estrogen receptor β has opposing effect and results in
diminished Treg activation. Furthermore, the transmembrane
G protein-coupled estrogen receptor, which induces rapid
signaling is highly expressed by certain leukocytes (CD4+
Th, Treg, B cells, and macrophages) (Koenig et al., 2017).
Estrogen diminishes neutrophil infiltrates and protects against
the harmful effects of the innate response (Shimizu et al.,
2008; Ritzel et al., 2013). Progesterone and testosterone promote
monocyte recruitment and an androgen receptor antagonist
reduced monocyte recruitment (Toyoda et al., 2012; Sutti and
Tacke, 2018). On the other hand, testosterone treatment reduced
immunoglobulin M and immunoglobulin G production and as
such diminishes peripheral humoral adaptive immunity (Kanda
et al., 1996). The effects of sex hormones are complex because
of opposing effects depending on concentration (Hughes, 2012),
the variety in metabolic forms that modulate the immune
response, and relative concentrations of various sex hormones.
Our intention is not to unravel the intricate interactions
between the sex hormones and immune system, but to
highlight its existence. The area requires more investigation,
but it seems that testosterone procures central tolerance. Taken
together, testosterone and progesterone downregulate peripheral
(humoral) adaptive immunity, but facilitate peripheral innate
immunity (Hughes and Clark, 2007; Lai et al., 2012), whereas the
opposite applies for estrogen as it is associated with peripheral
innate immune suppression, stronger humoral responses, and
weaker central tolerance (Kovats, 2015).

Sex Differences in Immune Tolerance
As mentioned above, the thymus has an essential role in central
tolerance. Thymic involution is different between the sexes,
especially after the onset of puberty, with a more prominent
decline in males than in females, so that the adult female thymus
contains more thymocytes and has a higher thymic output than
the male thymus (Gui et al., 2012). However, the T cells liberated
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from the female thymus may have been less well ‘educated’ as
the female thymic epitheliocytes express less AIRE and fewer
autoantigens (mRNA and protein) than the male ones (Dragin
et al., 2016). Low expression levels of AIRE associate with
autoimmune disease (Sato et al., 2002; Liu et al., 2014).

The sex hormones, estrogen and dihydrotestosterone
(the main active metabolite of testosterone), regulate
AIRE expression in opposite directions. At physiological
doses, estrogen diminishes AIRE expression, whereas
dihydrotestosterone increases AIRE expression (Dragin et al.,
2016). Dihydrotestosterone treatment in an experimental animal
model of MS, upregulated AIRE and tissue-specific antigen
expression in the thymus, improved negative selection of
autoreactive T cells, and diminished the severity of autoimmune
disease (Zhu et al., 2016). A cross-sectional population-
based study revealed that a higher estradiol/testosterone ratio
associated significantly with autoimmune thyroid disease among
Chinese men (Chen et al., 2017). Interestingly, a clinical phase
I/II pilot study among 12 female FMS patients revealed that a
28-day treatment with testosterone gel significantly decreased
pain, stiffness, and fatigue (White et al., 2015). Altogether,
the efficacy of the thymus depends strongly on age and sex
hormones. Male sex hormones seem to compensate for thymic
involution with an increased AIRE expression, whereas female
sex hormones contribute to diminished tolerance and increased
vulnerability to autoimmune diseases.

Sex Chromosomes and
Immune-Associated Genes
The major genetic difference between men and women are the sex
chromosomes. Men are XY, whereas women are XX. To enable
the pairing of the X and Y chromosomes during male meiosis,
small pseudo-autosomal regions are present at the extremes of
both the X and Y chromosome. In the pseudo-autosomal regions,
the X and Y chromosomes encode the same genes (Mangs and
Morris, 2007). For non-pseudoautosomal region genes, males will
express the genes of the unique X chromosome, whereas female
cells perform at random X inactivation as a dosage compensation
mechanism. X inactivation is clonally maintained and generates
a functional mosaic organism for X chromosome-encoded genes
(Rubtsov et al., 2010). Importantly, X-chromosome inactivation
is not an all-or-non-phenomenon; about 10–15% of the X
chromosome-encoded genes escape X-inactivation in humans,
and a mouse model of accelerated aging revealed increased
reactivation with age (Berletch et al., 2011).

Although it has been stated that the X chromosome encodes
a disproportionally large number of immune-associated genes
(Bianchi et al., 2012), so far no scientifically sound supporting
evidence has been published. Still, the increased susceptibility for
immune hypersensitivities of men with Klinefelter’s syndrome
(XXY) or women with Turner syndrome (X-) reveals the
importance of dosage of X-linked immune system-associated
genes (Mortensen et al., 2009; Sawalha et al., 2009). An elegant
study that used the four genome model (XXSry+, XYSry+, XX,
XYSry

−) in two gonadectomized mouse models for autoimmune
disease demonstrated a dosage effect of the X chromosome
in SJL mice. Interestingly, the dosage effect was not observed

in C57BL/6 mice (Smith-Bouvier et al., 2008). The genetic
background of C57BL/6 mice contrast with the one of SJL
mice in terms of susceptibility for murine cytomegalovirus and
autoimmune disease. In contrast to SJL, C57BL/6 has a bias
toward a Th1 response and high NK activity (Sellers et al., 2012;
Song and Hwang, 2017). This cellular immune response protects
against viral infections.

Two X-linked genes are especially associated with humoral
autoimmune disease to cryptic antoantigens. TLR7 and TLR8
(both in band Xp22.2) encode endosomal immune sensors that
sense microbial and endogenous RNA (Umiker et al., 2014).
TLR7 expression displays a dosage disequilibrium in biallelic B
lymphocytes of women and men with Klinefelter’s syndrome.
These biallelic B lymphocytes switch more easily to IgG (Souyris
et al., 2018), which is consistent with SLE symptom severity in
TLR7 + as compared to TLR7-deficient C57BL/6 mice (Desnues
et al., 2014). In a 564Igi mouse model of SLE, a dosage difference
in TLR8 determined the sex bias in anti-RNA IgG antibodies,
which were higher in female than male mice (Umiker et al., 2014).
564Igi mice are especially susceptible to autoimmunity because of
diminished somatic hypermutation (McDonald et al., 2017). The
release of miR-21 due to neuropathy stimulates TLR8 signaling in
the dorsal root ganglia, which leads to hyperexcitability and pain
(Zhang et al., 2018). Importantly, TLR8 activation can reverse
tolerant Treg into aggressive forms (Peng et al., 2005). Thus,
X-linked RNA immune sensors may be activated in neuropathy
and favor autoimmunity rather than immune tolerance.

AUTOIMMUNITY TO THE NERVOUS
SYSTEM. WHAT TRIGGERS IT OFF?

The CNS used to be considered an immunoprivileged organ,
and therefore little susceptible to autoimmune issues. But this
viewpoint has changed over the last two decades upon the
detection of autoantibodies against a variety of nervous system
autoantigens. As expected, most autoantibodies are directed
against large, complex protein autoantigens (Table 1) rather than
against small non-protein molecules. Currently, among patients
with mental illnesses, the serum prevalence of autoantibodies
against nervous tissue antigens is 11–17%, which may be an
underestimation (Graus and Santamaría, 2017).

After neuropathy (due to infection or a lesion), intracellular
macromolecules that previously were encrypted autoantigens
may be exposed and targeted by autoantibodies (Totsch
and Sorge, 2017). The latter probably occurs in MS,
where oligoclonals target ubiquitous intracellular proteins
(Brändle et al., 2016). Oligoclonal bands are interpreted as
immunoglobulins that are produced intrathecally, i.e., inside
the CNS (Luzzio and Dangond, 2018). Oligoclonal bands
occur in 95% of MS patients (Halbgebauer et al., 2016).
Other targets of MS autoantibodies are myelin-associated
autoantigens (Link et al., 1990) and viral antigens (Virtanen
et al., 2014). Although no specific virus is considered to be the
causative agent of MS, viruses may be direct or indirect risk
factors. The latter via molecular mimicry and/or bystander
activation (Virtanen and Jacobsen, 2012) as described in

Frontiers in Neuroscience | www.frontiersin.org 9 January 2020 | Volume 13 | Article 1414

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01414 January 8, 2020 Time: 18:33 # 10

Meester et al. Immune Sex Bias in FM

TABLE 1 | Autoantibodies against nervous tissue autoantigens.

Autoantibody target Normal function Clinical anomaly

Membrane glycolipids

GM1, GQ1b Ganglioside, Schwann cell Miller-Fisher syndrome, Bickerstaff encephalitis,
Guillain-Barré syndrome (1)

MOG, GM, Non-defined Myelin Multiple sclerosis, myelin destruction; unmyelinated fibers
(2)

Neurotransmitter receptors

Presynaptic VGCC Voltage-gated calcium channels Lambert-Eaton syndrome; weak muscles (3)

Postsynaptic nAChR Nicotinic acetylcholine receptor Myastenia gravis (4)

AMPAR Ionotropic glutamate receptor Limbic encephalitis, seizure, psychosis (5)

GluA3/GluR3 Ionotropic AMPAR-type glutamate receptor Rasmussen encephalitis, unihemispheric brain atrophy (5,
6)

GluN1 Ionotropic NMDAR-type glutamate receptor Anti-NMDAR encephalitis (psychosis, seizure (5, 6))

mGluR1 Metabotropic glutamate receptor, increase [Ca2+]intracellular Paraneoplastic cerebellar ataxia (5, 6)

mGluR5 Metabotropic glutamate receptor,
release K+

Limbic encephalitis, Ophelia syndrome (5, 6)

GABAAR Ionotropic GABA receptor; fast-reacting Encephalitis, seizure (5)

GABABR Metabotropic GABA receptor; slow-reacting Limbic encephalitis (5)

GlyR Glycine receptor Progressive encephalomyelitis with rigidity and myoclonus
(PERM); stiff-person syndrome (5)

D2R Pre-synaptic modulatory or post-synaptic dopamine receptor Limbic encephalitis, seizure, psychosis (5)

Voltage-gated sodium channels

Na(x) Sodium-sensor and channel Hypernatremia, neoplasia associated
(7)

Transmembrane proteins or associated protein

AQP4 Aquaporin-4, water channel abundant in astrocytes Neuromyelitis optica (8)

CASPR2 Contactin-associated protein-like 2, transmembrane on axons - (Limbic) encephalitis,
- neuromyotonia, muscle spasms and pain, excessive
sweating and disordered sleep
- Morvan syndrome
- Isaac syndrome, acquired neuromyotonia
- fasciobrachial dystonic seizures
(3, 5)

VGKC Voltage-gated potassium channel

LGI1 Leucine-rich glioma

DNER Delta and Notch-like epidermal growth factor-related receptor; Paraneoplastic cerebellar degeneration (5)

DPPX Dipeptidyl-peptidase-like protein 6 Encephalitis with diarrhea (5)

DCC Netrin receptor; involved in axon guidance Neuromyotonia (5)

IgLON5 Neural cell adhesion molecule Non-rapid-eye movement and rapid-eye movement
parasomnia with abnormal movements and sleep
breathing disorder (5, 9)

Neurexin Presynaptic synapse-facilitating transmembrane protein Encephalitis (5)

Cytosolic protein

GAD65 Glutamate decarboxylase 65 kD isoform; conversion Glutamate
to GABA

Associated with limbic encephalitis, schizophrenia, stiff-man
syndrome, diabetes type 1, autoimmune thyroidits,
pernicious anemia (3)

GFAP Glial fibrillary acid protein Diabetes type 1 (10)

49 kD pituitary cytosolic protein Autoimmune hypophysitis (11)

1, Koga et al., 1998; 2, Link et al., 1990; Raddassi et al., 2011; Virtanen et al., 2014; Brändle et al., 2016; 3, Kruse et al., 2015; 4, Noridomi et al., 2017; 5, Fukata et al.,
2018; 6, Levite and Ganor, 2008; 7, Hiyama et al., 2010; 8, Jarius and Wildemann, 2013; 9, Sabater et al., 2014; 10, Pang et al., 2017; 11, Caturegli et al., 2005.

Section “Loss of Tolerance and Development of Autoimmune
Diseases.” Various psychiatric diseases are considered to be
caused by either an autoimmune process or an infection
(Singh and Trevick, 2016; Dubey et al., 2018). We propose
that in many cases both occur; the infection would be the
initiation event and autoimmunity a consequence. Still

they may occur simultaneously, especially when involving
opportunistic pathogens. A variety of herpes viruses are
opportunistic, pandemic, and neurotropic. Depending on the
geographic location, 40–100% of the adult population is infected.
A primary infection establishes a lifelong latent infection, which
reactivates intermittently without obvious disease symptoms,
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except for immunocompromised persons. Stress may be a
trigger for ‘asymptomatic’ reactivation. Among herpes viruses,
cytomegalovirus seems especially apt to alter the immune
response into autoimmunity (Andersen and Andersen, 1978;
Varani and Landini, 2011; Halenius and Hengel, 2014), while
Epstein-Barr virus-transformed lymphocytes tend to produce
autoantibodies (Garzelli et al., 1984). In case FMS etiology
involves neuropathy by reactivating latent pathogens, the
unresponsiveness to corticosteroid treatment is understood.
Considering the heterogeneity of FMS patients, other infections
or neuropathic events should not be ruled out as possible triggers
of autoimmunity.

THE MISSING PIECE: EVIDENCE OF
AUTOIMMUNE COMPONENTS SPECIFIC
FOR FMS

Autoantibodies against intracellular antigen, nervous
and muscle tissue have been reported in FMS patients
(Supplementary Table 1), but their role in FMS pathogenesis
is controversial. We suggest to screen nervous tissue involved
in the pain pathway, both CNS (including the pituitary and
pineal glands) and peripheral nervous tissue (dorsal root ganglia)
with patient samples (blood and CSF), to complete the missing
evidence (Figure 1). A variety of conceptual and technical issues
may complicate the detection of autoantibodies. The lack of tissue
lesions should not be interpreted as the absence of autoimmunity,
as autoantibodies may be stimulatory as in Graves’ disease (Yeung
and Habra, 2018). Screening of autoantibodies should not be
limited to blood, as autoantibodies or oligoclonals may be limited
to CSF when neuropathic symptoms predominate (Luzzio and
Dangond). Furthermore, pleocytosis of leukocytes in CSF should
be evaluated. Autoantibody screening on certain tissues may
yield false negatives when the autoantibodies are directed against
other tissues than the ones that are screened. Screening on animal
tissues may yield false negatives when the human autoantigens
are sufficiently different from the animal forms. Screening on
fixed tissues may yield false negatives because the appropriate
antigen retrieval method was not applied. Also, the autoimmune
response may be cellular rather than humoral. A conceptual
or interpretation issue are prodromal autoantibodies; tissue
destruction mediated by prodromal autoantibodies remains
asymptomatic until the overcapacity of the targeted organ
has been lost (Arbuckle et al., 2003; Hayashi et al., 2008;
Haller-Kikkatalo et al., 2017). During the prodromal period,
autoantibodies run the risk to be interpreted as false positives.
Longitudinal follow-up studies of patients with prodromal
autoantibodies would be interesting. And finally, because of
the heterogeneity among FMS patients, a certain etiology or
pathogenesis may be limited to a subgroup of FMS patients
(Jacobsen et al., 1990; Purnamawati et al., 2018). The worst
scenario would be that the detected pathogenesis is discarded
because it does not apply to a sufficiently high proportion of
FMS patients. To avoid this situation, stratification or clustering
of FMS patients is recommendable. Despite the aforementioned,
the challenge is not impossible; the detection of anti-IgLON5

is exemplary (Sabater et al., 2014). We recommend a similar
screening technique to verify whether an autoimmune process is
involved in the pathogenesis of FMS.

CONCLUSION

The clinical profile of FMS displays a strong overlap with
certain autoimmune diseases. In fibromyalgia, physical or mental
stress may constitute a precipitating factor or a consequence
rather than a cause, similar to the situation in autoimmune
diseases. Stress may debilitate the immune system and allow
for reactivation of a latent (viral) infection, which may cause
neuroinflammation or neuropathy and facilitate autoimmune
phenomena. However, different from most autoimmune diseases,
common clinical serum markers of inflammation are within the
normal range in FMS. Still, altered immunological biomarkers,
especially CD57 and IL-8 levels, are compatible with a viral
infection or autoimmune mechanism. Sex differences in the
immune system would explain a sex bias in FMS prevalence. If
convincing evidence for an autoimmune process were detected
for FMS, diagnostic tests and effective therapies could be
developed. Blood and CSF should be screened for autoantibodies
and/or autoreactive lymphocytes. Screening for autoantibodies
directed to peripheral nervous tissues and CNS should include
dorsal root ganglia, the spinal cord, pituitary gland and pineal
gland, should be screened as possible targets for autoantibodies
and autoreactive lymphocytes.
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