
1Scientific RepoRtS |         (2020) 10:4900  | https://doi.org/10.1038/s41598-020-61829-y

www.nature.com/scientificreports

Using the maximum clustering 
heterogeneous set-proportion to 
select the maximum window size 
for the spatial scan statistic
Wei Wang1,4, Tao Zhang1,4, Fei Yin1, Xiong Xiao1, Shiqi chen2, Xingyu Zhang3, Xiaosong Li1 & 
Yue Ma  1*

The spatial scan statistic has been widely used to detect spatial clusters that are of common interest in 
many health-related problems. However, in most situations, different scan parameters, especially the 
maximum window size (MWS), result in obtaining different detected clusters. Although performance 
measures can select an optimal scan parameter, most of them depend on historical prior or true cluster 
information, which is usually unavailable in practical datasets. Currently, the Gini coefficient and 
the maximum clustering set-proportion statistic (McS-p) are used to select appropriate parameters 
without any prior information. However, the Gini coefficient may be unstable and select inappropriate 
parameters, especially in complex practical datasets, while the MCS-P may have unsatisfactory 
performance in spatial datasets with heterogeneous clusters. Based on the MCS-P, we proposed a new 
indicator, the maximum clustering heterogeneous set-proportion (MCHS-P). A simulation study of 
selecting the optimal MWS confirmed that in spatial datasets with heterogeneous clusters, the MWSs 
selected using the MCHS-P have much better performance than those selected using the MCS-P; 
moreover, higher heterogeneity led to a larger advantage of the MCHS-P, with up to 538% and 69.5% 
improvement in the Youden's index and misclassification in specific scenarios, respectively. Meanwhile, 
the MCHS-P maintains similar performance to that of the MCS-P in spatial datasets with homogeneous 
clusters. Furthermore, the MCHS-P has significant improvements over the Gini coefficient and the 
default 50% MWS, especially in datasets with clusters that are not far from each other. Two practical 
studies showed similar results to those obtained in the simulation study. In the case where there is no 
prior information about the true clusters or the heterogeneity between the clusters, the MCHS-P is 
recommended to select the MWS in order to accurately identify spatial clusters.

With the development of geographic information systems, the global positioning system and remote sensing, a 
large number of health-related datasets with geographic locations are being collected. Accurately identifying the 
spatial variability, such as the difference in disease incidence between different locations, plays an important role 
in the elucidation of the potential causes of illnesses, allocation of limited health resources, formulation of rational 
public health policies and exploration of the characteristics of health-related problems. Kulldorff ’s spatial scan 
statistic (SSS)1 is one of the most commonly used methods2–5 for identifying such a difference, namely, the region 
that is significantly different from the other regions and is known as a cluster. However, even when employing the 
SSS for the same dataset, different scan parameters will usually result in different results with different accuracy. 
For instance, in Ribeiro’s simulation study6, different parameters led to highly different powers, sensitivity and 
positive predictive values in the same data, with the largest differences reaching 0.9404, 0.9369, and 0.825, respec-
tively. Tango’s simulation study7 showed that the difference in the power between different parameters reached 
0.596 (0.738 vs 0.142). In these scan parameters, the maximum spatial window size (MWS), commonly defined 
as a percentage of the maximum population in a single cluster, has very strong effect on the detected result6,8. The 
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MWS is set to the default value of 50% in most studies and in some cases this leads to detecting an overly large 
region falsely covering regions between several small real clusters. Smaller MWSs are also selected for practical 
reasons, including limited resources for intervention6, special terrain9, spatial location discontinuity10, and other 
reasons11–13. However, different MWSs lead to different sizes, locations and numbers of the detected clusters 
in the same data8,14–16. Therefore, selecting an appropriate MWS for the SSS is important for accurate cluster 
identification.

The indicators used to select the MWS mainly include the classic performance measures such as sensitivity, 
specificity, positive predictive value (PPV), Youden’s index (YDI), misclassification and the recently developed 
maximum clustering set-proportion (MCS-P) statistic17. However, due to the lack of historical prior or true clus-
ter information in practice, these classic performance measures usually cannot be calculated. The MCS-P depends 
only on the applied spatial data and provides a solution in practice without using any true cluster information 
or historical prior data. Although for datasets with homogeneous clusters, i.e., clusters having similar relative 
risks (RR), selecting the MWS with the MCS-P shows good performance compared to that obtained by using 
the default MWS values, the MCS-P does not perform well for datasets that include significantly heterogeneous 
clusters17. Furthermore, many researchers also use the Gini coefficient to select the maximum reported spa-
tial window size (MRWS) to avoid reporting an overly large cluster and increase the accuracy of the detected 
clusters18,19. The MRWS is the maximum reported population in clusters detected based on a pre-selected fixed 
MWS larger than the MRWS. Although the Gini coefficient is not used to select the MWS, it can achieve results 
similar to those obtained by selecting the MWS and it therefore has become a commonly used indicator due to its 
implementation in the SaTScan software. However, in our exploratory studies, we found that the Gini coefficient 
may be unstable, is still likely to detect clusters that are much larger than the real clusters, and will even obtain 
the same results as the 50% MWS, especially for datasets with clusters that are not far from each other, as will be 
described in detail in the methodology section. Therefore, considering the general existence of complex spatial 
distribution patterns in reality, especially in health-related datasets, a more efficient indicator is necessary for 
selecting the MWS.

This study proposed a new indicator based on MCS-P, called the maximum clustering heterogeneous 
set-proportion (MCHS-P), for selecting an appropriate MWS for the SSS. The MCHS-P can identify potential 
heterogeneous clusters accurately and depends only on the detected clusters and the applied dataset without any 
historical prior or true cluster information. Section 2 gives the definition of the MCHS-P and a brief discussion 
about the limitations and uncertainty for the use of the Gini coefficient that is an alternative indicator for use in 
practical datasets. Section 3 presents a simulation study and a practical study for the comparison of the MCHS-P 
with the MCS-P in the selection of MWS for the SSS in different datasets with either homogeneous or hetero-
geneous clusters. The results obtained using the Gini coefficient and the default 50% MWS are also provided as 
reference data. Sections 4 and 5 provide a discussion of these results and the conclusion of the paper, respectively.

Methods
The SSS and the MCS-P. The SSS is used to identify the likely clusters in spatial datasets. First, it searches 
for a set of windows under a specified scan parameter. Then, for each window (z), under the alternative hypothesis 
(z is a cluster) and the null hypothesis (no cluster exists), the logarithm of the likelihood ratio LLR(z) is con-
structed under the Poisson distribution as follows:

=






















−
−













−

LLR ln
c
n

C c
C n

(z) ,z

z

c
z

z

C cz z

where C is the total number of the observed cases in the entire study area. nz and cz are the expected cases under 
the null hypothesis and the observed cases in z, respectively. Finally, the windows with an LLR(z) greater than the 
critical value obtained from Monte Carlo simulations are selected as the detected significant clusters. Usually, 
clusters with RR either larger or smaller than 1 are considered for different purposes.

Different MWSs lead to different sets of windows (z) and then different detected clusters. The MCS-P is 
designed to select the optimal result from the results obtained with different MWSs. First, the MCS-P merges 
all the detected clusters under a certain single parameter into a union cluster to construct the union LLR(z) that 
reflects the capability of the dataset to support the current result. To get a more stable average value in simulation 
datasets, the approximately maximal LLR based on the most clustering set (MCS) is used to adjust the union LLR 
to the MCS-P. The MCS is composed of all the units with RR either larger or smaller than 1 for the corresponding 
purpose. Thus, its corresponding LLR will be constant in a specified dataset and not necessary in practical appli-
cation. Such an LLR represents the approximately maximal value that the LLR can reach when the geographic 
positions of all the spatial units in the study region are ignored.
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where zij is the j th detected cluster under the ith MWS. zi0 is the union cluster, x is a spatial unit in the entire 
study area G, and px and qx are the probabilities of an event occurrence in x and out of x, respectively. zMCS is a 
window composed of all the units in the MCS. A larger MCS-P means that the corresponding detected clustering 
set is more supported by the applied dataset.

As observed from Eq. (1), the MCS-P assumes that all the detected clusters under a selected MWS have the 
same RR. However, in practical datasets such as chronic disease datasets, different clusters may have different RR 
due to the different environmental and socioeconomic factors. Therefore, the MCS-P may lead to unsatisfactory 
performance in such datasets, as has been reported in previous studies17.

An improved statistic based on the MCS-P. To improve the performance of the MCS-P in spatial data-
sets with heterogeneous clusters, the union of detected clusters is reconstructed to fit the potential heterogeneity 
between the clusters. A very easy approach is to assume that each cluster can have a different RR. However, with 
a small maximal window size, a single cluster may be detected as a set of small, spatially continuous clusters. 
Assuming such homogeneous clusters to have different RR may lead to overfitting. Therefore, a constraint is 
introduced to limit such overfitting. Based on the common knowledge that nonadjacent clusters are usually inde-
pendent for spatial isolation20, the detected clusters under a single certain selected parameter are reconstructed 
into a set of regions according to their spatial contiguity. Given that the number of detected clusters under the ith 
selected parameter is y; then, with only contiguous clusters merged into one clustering region, y detected clusters 
are merged into k k y( )≤  merged clusters. The k merged clusters comprise the detected potential heterogeneous 
clustering set S k( )i  under the i th selected parameter. The corresponding union LLR LLR S k( ( ))i  is calculated as:
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where zimj represents the jth merged cluster under the ith parameter. Such an LLR S k( ( ))i  takes into consideration 
both the potential heterogeneity among the detected nonadjacent clusters and the similarity among the spatial 
contiguous units, and it also limits the overfitting.

To get a more stable average value in simulation datasets, an approximately maximal LLR based on the most 
clustering heterogeneous set (MCHS) is adopted. Unlike for the MCS, the spatial units in the MCHS are permit-
ted to have different probabilities of event occurrence if they are not adjacent. Specifically, the MCS is separated 
into several subsets based on whether the spatial units are contiguous. The units in the same subset share the same 
estimated probability of event occurrence. Thus, the units in different subsets may have different probabilities. 
These heterogeneous subsets compose the MCHS. The corresponding union LLR of the MCHS is LLR(MCHS).
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where w is the number of subsets in the MCHS and zsubsetj represents the window composed of the spatial units in 
the jth subset. The denominator LLR(MCHS) represents the approximately maximal union LLR in the specified 
G with potential heterogeneous nonadjacent clusters, which is a constant in a specified dataset and not necessary 
in practical application. Then, the improved indicator MCHS-P is given as:
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The MCHS-P reflects the ratio of the union LLR between the detected potential heterogeneous clustering set 
and the most clustering heterogeneous set in G. With the detected clusters reconstructed into a potential heter-
ogeneous clustering set, the MCHS-P adapts to spatial datasets with homogeneous clusters and heterogeneous 
clusters and is still an approximate relative indicator that depends only on the detected clusters and the applied 
dataset rather than on any historical prior or true cluster information.

The Gini coefficient for MRWS selection. To select the MRWS, the Gini coefficient measures the differ-
ence of the case distribution in the clusters and non-clusters based on the cumulative cases and expected cases in 
the clusters. First, the clusters detected under a certain MRWS are listed in descending order by RR. Second, the 
cumulative percentage of cases and the cumulative percentage of expected cases for each cluster point are com-
puted. For example, as shown in Fig. 1(a), points O and C are (0, 0) and (100, 100), respectively, so that the recip-
rocal of the slope of OC measures the expected RR, i.e., RR 1= . Two clusters (A1 and A2) are detected and the 
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reciprocal of the slope of OA1 is larger than A1A2, meaning that the RR of A1 is larger than A2. c1 and n1 are the 
observed and expected cases in cluster A1, respectively; c2 is the sum of the observed cases in A1 and A2 and n2 is 
the sum of the expected cases in A1 and A2. The Gini coefficient is equal to two times the area of OA1A2C, namely, 

= ×( )Gini SA A 21 2 OA A C1 2
. Finally, the MRWS with the largest Gini coefficient is selected as the optimal MRWS, 

as shown in detail by Han et al.18.
Although the Gini coefficient provides a better detected result for the SSS than the default MWS in many sit-

uations, in our exploratory studies, we found that the improvement may be unstable and insignificant, especially 
for datasets with homogeneous clusters that are not far from each other. A typical case is shown in Fig. 1(b), where 
the Gini coefficients for the two detected results are presented. The first detected result includes two real homoge-
neous small clusters (A1 and A2) and the other includes a large detected cluster A3 that is a superset of A1 and A2. 
When the incidence of these spatial units in A3 but out of A1 and A2 is equal to the expected RR, line A2 A3 is 
parallel to OC and the area of OA2A3 is equal to that of CA2A3, namely, Gini Gini(A A ) (A )1 2 3= . Thus, a small 
random fluctuation of RR in the spatial units in A3 but out of A1 and A2 will lead to a smaller slope of A2A3 than 
that of OC. As a result, Gini(A A )1 2  will be smaller than Gini(A )3  and A3 will be falsely detected as clusters.

Therefore, selection of the MRWS using the Gini coefficient may not obtain good results in the complex prac-
tical datasets. Nevertheless, this approach is still commonly used owing to its convenient implementation in the 
SaTScan software.

Result
Simulation study. To validate the capability of the MCHS-P to select an appropriate MWS for the SSS in 
datasets with heterogeneous clusters, we employed a series of simulation datasets with different heterogeneities 
among the clusters to compare the performance of the MCHS-P with that of the MCS-P. Additionally, to evalu-
ate the risk of the MCHS-P selecting worse parameters than the MCS-P because of overfitting in datasets with 
homogeneous clusters, we also used a series of simulation scenarios with different random fluctuations out of the 
homogeneous cluster, in which a higher random fluctuation is more likely to lead to a false detected cluster. The 
results with the default 50% MWS and Gini coefficient were also provided as reference data.

Simulation data. Simulation datasets are taken from Kulldorff ’s benchmark data21 that have been commonly 
used for the evaluation of SSS with different scan parameters22–24 and the validation of the MCS-P in selecting 
MWS17. These simulation datasets are based on a real dataset for breast cancer mortality during 1988–1992 that 
consists of the data for 29,535,210 women in 245 counties in the northeastern USA.

Two total case numbers, 600 and 6000, were considered. For each number, three different sets of concentric 
circle clusters were constructed that included women located in three different areas, such as rural, mixed, and 
urban areas. Each of these three sets contains clusters with different sizes, for example, 1, 2, 4, 8, or 16 counties. 
Based on these clusters, a total of 50 simulation scenarios were built. The details are shown in Table 1. For each 
scenario, 10,000 datasets were generated. All the datasets are available at the SaTScan website25.

These 50 scenarios include 10 simulation scenarios with two heterogeneous equal-sized clusters located in 
the rural and urban areas, respectively; 10 scenarios with three heterogeneous equal-sized clusters located in the 
rural, mixed and urban areas, respectively; and 30 scenarios with a single cluster that can be deemed as scenarios 
with homogeneous clusters, since there is no heterogeneity for a single cluster. For the heterogeneous cluster 
models, the scenarios with a smaller cluster size, two clusters and 600 cases are more heterogeneous than those 
with a larger cluster size, three clusters and 6,000 cases, respectively.

Figure 1. Illustration of the Gini coefficients. Subfigure (a) is for a cluster model with two clusters (A1 and A2). 
Subfigure (b) is a comparison between the two Gini coefficients of the two detected results. The first coefficient 
is for two homogeneous small clusters (A1 and A2), and the second is for a large cluster (A3).
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These scenarios are referred to as “total case numbers-cluster location-cluster size” for short. For example, 
6000-rural-1 refers to the scenario with a total case number of 6,000, one cluster located in the rural area, and one 
county for the cluster; 6000-two-4 refers to the scenario with a total case number of 6,000, two clusters located in 
the rural and urban areas, and four counties for each cluster.

In addition, as shown in Fig. 2(a), the three clusters with different centres in the above-described scenarios 
are so far away from each other, for example with the away region containing more than 50% of the total popu-
lation at risk, that even the 50% MWS could not cover any two clusters and therefore, the false positive rate will 
be underestimated in such datasets. Considering that the clusters that are not located so far apart are common in 
practical datasets, we built an additional scenario that is similar to the complex real datasets, called the complex 
scenario available from Supplementary File 1, in which the artificial clusters are not located far apart, as shown 
in Fig. 2(b). In the complex scenario, a total of 6,000 cases were included and the RR in these clusters were set to 
1.55.

Performance comparison. From 50 different MWSs in the range of 1–50% with an interval of 1% population at 
risk, the MCHS-P and the MCS-P were used to select their own optimal MWS under the most commonly used 
circle window. Only significant clusters with a P-value less than 0.05 and no geographic overlap with more likely 
clusters were considered; these parameters were also set for the detected result obtained from the Gini coefficient 
and the 50% MWS. The SaTScan9.4 free software was selected as the clustering detection tool.

Subsequently, MWSs with the largest the MCHS-P and the MCS-P were selected as their own optimal param-
eters, respectively. The SSS’s performance characteristics obtained using the MCHS-P, MCS-P, 50% MWS, and 

Location

Homogeneous clusters Heterogeneous clusters

Rural Mixed Urban Two clusters Three clusters

Cases Size POP RR P POP RR P POP RR P POP H POP H

600

1 2675 192.89 1.998 710196 2.85 1.946 786178 2.73 1.941 788853 190.16 1499049 190.16

2 22911 27.03 1.992 817050 2.70 1.943 1072181 2.43 1.932 1095092 24.6 1912142 24.6

4 132343 7.05 1.979 1108440 2.40 1.931 2953077 1.81 1.881 3085420 5.24 4193860 5.24

8 204829 5.35 1.971 1352284 2.24 1.923 5018909 1.63 1.836 5223738 3.72 6576022 3.72

16 360275 3.9 1.961 1684327 2.1 1.914 7627173 1.53 1.785 7987448 2.37 9671775 2.37

6000

1 2675 23.73 20.27 710196 1.45 20.09 786178 1.43 20.08 788853 22.3 1499049 22.3

2 22911 4.96 20.25 817050 1.42 20.09 1072181 1.36 20.05 1095092 3.6 1912142 3.6

4 132343 2.21 20.21 1108440 1.36 20.04 2953077 1.22 19.88 3085420 0.99 4193860 0.99

8 204829 1.92 20.18 1352284 1.32 20.02 5018909 1.17 19.73 5223738 0.75 6576022 0.75

16 360275 1.66 20.15 1684327 1.29 19.99 7627173 1.15 19.57 7987448 0.51 9671775 0.51

Table 1. Simulation scenarios with homogeneous/heterogeneous clusters. Note: POP is the total population 
in the clusters. RR is the relative risk of the clusters. P is the incidence (×10−5) out of the clusters. Because the 
case numbers follow a Poisson distribution under the null hypothesis, the incidence rate also reflects random 
fluctuation out of the clusters. H is the difference between the maximal RR and minimal RR that reflects the 
strength of the heterogeneity among the clusters. Heterogeneity among the clusters becomes lower as the cluster 
number, total case number and cluster size grow.

Figure 2. Positions of real clusters. Subfigure (a) is the position of real clusters with 16 counties for each in 
Kulldorff ’s benchmark datasets and the solid triangles are the centres for the three types of clusters such as those 
located in rural, mixed and urban areas. Subfigure (b) shows the positions of the real clusters in the additional 
scenario in which the clusters are not far away from each other.
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Gini coefficient were compared using the average values of 5 commonly used classic performance measures over 
replicas: sensitivity, specificity, positive predictive value (PPV), Youden’s index (YDI) and misclassification22,26–29. 
Additionally, we calculated the average values of the MCHS-P, the MCS-P and each classic performance measure 
for each MWS over replicas to evaluate the relationships of the MCHS-P and the MCS-P with the classic perfor-
mance measures.

Of these five classic performance measures, sensitivity reflects the capacity to correctly identify true clusters. 
Specificity and PPV reflect the capability to correctly identify the units out of clusters. YDI and misclassification 
reflect both aspects. Because the measures based on the population may be more robust22, the five classic perfor-
mance measures were calculated as follows:

a
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where a, b, c and d represent the total population in the four types of spatial units (units in true clusters and 
detected clusters, units in true clusters and not in detected clusters, units in detected clusters and not in true clus-
ters and units in neither detected clusters nor true clusters, respectively).

Comparison between the four methods. The average sensitivity, specificity, PPV, YDI and misclassification 
over replicas from the MCHS-P, MCS-P, 50% MWS, and Gini coefficient were compared, and the detail is seen 
in Supplementary File 2. Generally, in 50 types of benchmark datasets, the 50% MWS and the Gini coefficient 
performs well but slightly poorer than the MCHS-P, especially in the scenarios with multiple clusters or clusters 
covering large population. However, in the complex scenario, as shown in Figs. 3 and 4, the default 50% MWS 
performs poorly due to its high false positive rate. The Gini coefficient makes a mild and unstable improvement, 
while the MCHS-P still has a consistently good performance. The MCS-P exhibits the same performance as found 
in the previous study, that is to say its performance is good in scenarios with homogeneous clusters and is poor 
in scenarios with heterogeneous clusters, especially for the highly heterogeneous clusters such as 600-two-1, 
600-two-2, 600-three-1, 6000-two-1, and 6000-three-1. As expected, the MCHS-P has much improvements in 
the heterogeneous scenarios and maintains similar performance with the MCS-P in the homogeneous scenarios.

Specifically, in the 20 scenarios with heterogeneous clusters (multiple clusters), as the heterogeneity increases, 
corresponding to the decrease in the cluster size, the total case number and cluster number, the MCHS-P become 
more advantageous compared to the MCS-P, and the largest improvements in sensitivity, YDI and misclassi-
fication reach 540%, 538% and 69.5% (0.9047 vs 0.1413, 0.9000 vs 0.1410 and 0.0071 vs 0.0232), respectively, 
in 600-two-1, whereas the specificity and PPV values decline slightly by 0.44% and 4.58% (0.9953 vs 0.9997 
and 0.9442 vs 0.9895), respectively. Although the 50% MWS and the Gini coefficient also show a good perfor-
mance for the large separation between clusters, they are still outperformed by the MCHS-P. An examination 
of the data presented in Table 2 shows that the MCHS-P achieves optimal aggregative indicators such as YDI 
and misclassification in all 20 scenarios. In the 30 scenarios with homogeneous clusters (a single cluster), the 

Figure 3. Comparison of the results between the MCHS-P, MCS-P, 50% MWS and Gini coefficient in the 
complex scenario. It is observed that the MCS-P and the MCS-P have more stable and better performance than 
the 50% MWS and the Gini coefficient.
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overall average values of the sensitivity, specificity, PPV, YDI and misclassification under the parameter selected 
using the MCHS-P show only a very slightly inferior values compared to the MCS-P (0.0002, 0.0005, 0.0068, and 
0.0007 smaller and 0.0005 larger, respectively). Although the disadvantage of the MCHS-P relative to the MCS-P 
increases as the total case number and cluster size decrease, the largest disadvantages in the sensitivity, specificity, 
PPV, YDI and misclassification found in 600-rural-1 are still very small (0.0000, −0.0024, −0.0524, −0.0024, and 
0.0024, respectively). Compared with the 50% MWS and the Gini coefficient, although the performance of the 
MCHS-P is poorer in several scenarios with a single high-RR and low-population cluster, the maximal difference 
is still very small, for example, 0.0007, for both YDI and misclassification found in 600-rural-1. In addition, as 
shown in Table 2, both the MCHS-P and the MCS-P obtain the optimal result for both YDI and misclassifica-
tion in more than 20 out of 30 scenarios, while the Gini coefficient obtains the optimal value for YDI in only 2 
scenarios.

In the complex scenario, the 50% MWS performs poorly for detecting an overly large cluster including several 
small real clusters, in agreement with the previous study6,17,30. As shown in Table 3, the Gini coefficient improves 
the performance, reaching the values of 0.0780, 0.0647, 0.2222, 0.1428, and 0.0665 for sensitivity, specificity, PPV, 
YDI, and misclassification, respectively. Compared with the MCS-P and the MCHS-P, which have similar per-
formance for the homogeneity between the clusters, the improvement due to the use of the Gini coefficient is still 
insufficient, e.g., on average, the MCHS-P and the MCS-P reduce 76.7% misclassification relative to the default 

Figure 4. Comparison between the MCHS-P, the MCS-P, the default MWS and the Gini coefficient in one of 
simulated datasets in the additional scenario with a complex cluster model. Subfigure (a) is the detected result 
under the 2% MWS selected by both the MCHS-P and the MCS-P. Subfigure (b) is the detected result under the 
50% MRWS selected by the Gini coefficient and the default 50% MWS.

Scenario type In 20 multi-cluster scenarios In 30 single-cluster scenarios

Measures MCHS-P MCS-P Default Gini MCHS-P MCS-P Default Gini

Sensitivity 19 0 1 0 26 28 4 4

Specificity 0 20 0 0 26 30 26 26

PPV 0 20 0 0 2 5 25 26

YDI 20 0 1 1 22 28 2 2

Misclassification 20 0 4 6 26 30 22 22

Table 2. Frequency of the MCHS-P, MCS-P, 50% MWS, and Gini coefficient obtaining the optimal result* 
in 20 multi-clusters scenarios and in 30 single-cluster scenarios for the five classic performance measures. 
*The optimal result is defined as the range that varies within 0.001 around the real optimal value of classic 
performance measure, such as the maximal sensitivity, specificity, PPV, YDI and the minimal misclassification. 
Therefore, in a given scenario, it is possible for more than one method to obtain the optimal result.

Measures MCHS-P MCS-P Default Gini

Sensitivity 0.8207 0.8173 0.7365 0.8145

Specificity 0.9944 0.9955 0.8989 0.9637

PPV 0.9611 0.9672 0.6059 0.8281

YDI 0.8151 0.8128 0.6354 0.7782

Misclassification 0.0287 0.0282 0.1226 0.0561

Table 3. Average classic performance measures over replicas from the MCHS-P, MCS-P, 50% MWS and Gini 
coefficient in the complex scenario.

https://doi.org/10.1038/s41598-020-61829-y


8Scientific RepoRtS |         (2020) 10:4900  | https://doi.org/10.1038/s41598-020-61829-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

MWS, while the reduction due to the Gini coefficient is 54.2%; additionally, the performance of the Gini coeffi-
cient method is much more unstable than those of the MCHS-P and the MCS-P, especially for misclassification, 
PPV and specificity, as shown in Fig. 3. A further examination of the simulated datasets shows that the Gini coef-
ficient selected 50% MRWS as optimal in some cases and leads to the same detected results as the default MWS, 
giving high false positive rates. Figure 4 shows one such dataset out of the 10,000 simulated datasets in which the 
detected large cluster does indeed include the non-cluster region between the several small real clusters, further 
supporting the discussion of the Gini coefficient in the methodology section above.

The relationship of the MCHS-P and the MCS-P with classic performance measures. In addition to the compar-
ison of optimal MWS selected using the MCHS-P, MCS-P, Gini coefficient and default MWS, the relationships 
between the MCHS-P, MCS-P and classic performance measures such as sensitivity, specificity, PPV, YDI and 
misclassification, were evaluated to validate whether the selection of MWS using the MCHS-P can generally lead 
to detected results with better spatial accuracy, seen in Supplementary File 3.

Generally, as found previously, a larger MCS-P is related to better classic performance measures in scenarios 
with homogeneous and weakly heterogeneous clusters but is related to poorer performance in scenarios with 
heterogeneous clusters. By contrast, the MCHS-P is consistently positively related to the performance measures 
in all scenarios. Consistently high specificity and PPV were found in all scenarios similar to previous work17.

Several typical scenarios were selected for a detailed demonstration of the relationship of the MCHS-P and the 
MCS-P with classic performance measures and the difference between the MCHS-P and the MCS-P. In scenarios 
with homogeneous clusters, 6000-urban-16 was selected for a clear demonstration because its large population 
in clusters make the detected result sensitive to the MWS. Because PPV and YDI are almost equal to specificity 
and sensitivity in this scenario, respectively, only specificity, sensitivity and accuracy (1-misclassification) were 
presented. As shown in Fig. 5(a), both the MCHS-P and the MCS-P show positive relationships with sensitivity 
and accuracy, meaning that both the MCHS-P and the MCS-P will select the MWS with the optimal result when 
the clusters are homogeneous.

In scenarios with heterogeneous clusters, 600-two-1 was selected for its high heterogeneity between the 
clusters. Because the small population in the clusters makes it difficult to clearly present the relationship using 
a graphic plot, detailed values of the MCS-P, MCHS-P and performance measures were provided, shown in 
Supplementary File 2. the MWS with the largest the MCS-P has the lowest sensitivity, YDI and highest misclassi-
fication, whereas the MWS with the largest MCHS-P has the highest sensitivity, YDI and lowest misclassification. 
The specificity and PPV always stay at a rather high level and show little variation. On the other hand, because 
the benchmark datasets with large population in clusters have weak heterogeneity, for example 6000-three-3 and 
600-three-3 shown in Table 1, we built an additional simulation scenario, available from Supplementary File 4, 
including clusters with relatively high heterogeneity and larger population to present the detailed relationship 
more clearly using a graphic plot. In this scenario, the cluster model has the same artificial clustering regions, 
the population at risk and total case number as those of 6000-three-16. Differently, the heterogeneity among the 
clusters was increased by using RRs of 3.0, 2.0 and 1.2 for the clusters located in rural, mixed and urban areas. The 
differences in RR between the clusters are much smaller than those in scenarios with simulated heterogeneous 
clusters, for example 190.16 in 600-two-1 and 2.37 in 600-two-16. This new scenario is abbreviated as 6000-three-
16RR3.0-2.0-1.2. Similar to 6000-urban-16, PPV and YDI are also almost equal to the specificity and sensitivity, 

Figure 5. Relationship of the MCHS-P and the MCS-P with classical performance measures. Subfigure (a) is 
for a homogeneous scenario such as 6000-urban-16, and shows that both the MCHS-P and the MCS-P have 
a positive relationship with the classic performance measure. Subfigure (b) is for a heterogeneous scenario 
such as 6000-three-16RR3.0-2.0-1.2, and it shows that the MCHS-P has a positive relationship with the 
classic performance measures, whereas the MCS-P has a nearly negative relationship with these performance 
measures.
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respectively. As shown in Fig. 5(b), the relationship of the MCS-P and the MCHS-P with classical performance 
measures shows that in scenarios with high heterogeneity, the MCHS-P showed a positive association with sensi-
tivity and accuracy, whereas the MCS-P shows a negative association with these measures. This means that in the 
datasets with highly heterogeneous clusters, the MCHS-P still can select the optimal MWS while the MCS-P fails. 
Therefore, given the stable positive association to classic performance measures in both scenarios with homoge-
neous and heterogeneous clusters, a detected result with higher MCHS-P will also have better classic performance 
measures suggesting better spatial accuracy.

Practical study: comparison between the four methods. To provide examples of application of the MCHS-P, 
we employed two real datasets to compare the difference between the detected clusters obtained using the default 
parameters, selected by the MCHS-P, MCS-P, and Gini coefficient. The first data set is for female breast cancer 
which is a chronic disease and the second dataset is for measles which is an infectious disease that was used in a 
previous study17.

Female breast cancer mortality in the northeastern USA. The recent breast cancer dataset that is the same as 
those in the simulation study was obtained from the official website of the National Centre for Health Statistics 
and includes a total of 44,182 female deaths from breast cancer in 245 counties in the northeastern USA in 
2011–201531. The annual average total female population is 32,587,167. Unlike the artificial clusters in simulated 
datasets, the real dataset shows more complex spatial pattern that reflects the characteristics of the breast cancer 
which is a chronic disease.

For the more complex characteristics in this practical dataset, 500 MWSs in the 0.1–50% range with an inter-
val of 0.1% population at risk were set as the candidate parameters in order to obtain a more accurate result. Other 
settings are the same as those in the simulation study.

The 3.4% and 5.5% MWSs were selected using the MCS-P and the MCHS-P, respectively and the 30% MRWS 
was selected using the Gini coefficient. The detected results obtained using the MCHS-P, MCS-P, default MWS 
(50%) and Gini coefficient are shown in Fig. 6. The four detected results mainly differ in the southwestern region. 
With the default 50% MWS, the SSS detected a large cluster covering over 45% of the total female population. 
Large number of low-mortality counties were included and led to an average RR of 1.1. The Gini coefficient shows 
better performance but still detected large regions as clusters in which the proportion of the female population 
reach 38% and the average RR is 1.12. With limited public health resources, such a large detected cluster with flat 
RR may not provide accurate information for further interventions. The MCHS-P and the MCS-P tend to detect 
the clusters with smaller female populations, such as 22.6% and 20.0%, and higher RR, such as 1.20 and 1.22, 
respectively.

Comparing the results of the MCS-P and the MCHS-P, a total of 50 and 58 counties were detected as clusters 
using the MWSs of 3.4% (Z3.4) and 5.5% (Z5.5), respectively. Of these counties, 44 are identical. Table 4 shows that 
six counties were detected using Z3.4 but were not detected using Z5.5, and three of these had RR values smaller 
than 1. Fourteen counties were detected using Z5.5 but were not detected using Z3.4, and only two of them had 
RR values smaller than 1. Figure 6 shows that the heterogeneity among the detected clusters is not high and the 
different counties detected as clusters using Z3.4 and Z5.5 are distributed around the identical counties. The eastern 
four counties labelled as B1 with relatively high mortality were not detected as clusters by Z3.5, even though all 
of their eastern neighbouring counties were detected as clusters, suggesting that possible clusters were omitted 
using Z3.5. By contrast, they were detected by Z5.5. The counties labelled B2 and B3 display a similar performance 
to that of B1. The regions labelled A1 and A4 with low mortality were detected as clusters by Z3.4, suggesting 
incorrectly reported low-mortality regions. By contrast, they were excluded by Z5.5. Although A2 and A3 with a 
relatively high mortality were omitted by Z5.5, A2 and A3 include only two counties, and the heterogeneity among 
the clusters is low.

Measles incidence in henan province, china. The measles incidence data in Henan Province, China in May 2009 
that was used to validate the MCS-P in selecting the MWS17 was obtained from the disease reporting system of 
China CDC. A total of 1,371 measles cases were reported in a population of 91,669,661. The four methods, i.e., 
the MCHS-P, MCS-P, default MWS and Gini coefficient, had the same parameter set as that in the female breast 
cancer mortality dataset discussed above. As shown in Fig. 7, the default MWS (50%) and the Gini coefficient 
obtained the same result and both detected a large region as clusters in which the proportion of the population 
to the total population reaches 34.7% but a low RR such as 1.96. the MCHS-P and the MCS-P selected the same 
MWS (1.6%) due to the weak heterogeneity between the clusters. They detected several small clusters with a 
12.0% proportion of population and a high RR of 3.26, obviously decreasing the false positive rate by excluding 
the counties with lower RR.

Discussion
Both the practical study and simulation study suggested that the detected result of the SSS is highly sensitive to 
the MWS. The commonly used default 50% MWS reports relatively accurate clusters in dataset with clusters far 
away from each other, but reports an overly large cluster in datasets with clusters that are not far away, leading to 
a high false positive rate so that it can hardly provide accurate results. Although without any prior information, 
the Gini coefficient can improve the detected result by selecting a MRWS, but it is still likely to report a cluster 
that is larger than the real cluster. In particular, in datasets with complex cluster distributions, the Gini coefficient 
even has the same poor result as the default MWS. Although the MCS-P can select an appropriate MWS to avoid 
reporting such large clusters and improves the accuracy of the results in practical datasets, heterogeneous clus-
ters in the applied spatial datasets may lead to unsatisfactory performance. In such cases, the modified MCHS-P 
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showed better performance than the MCS-P in both simulation and practical datasets with heterogeneous clus-
ters. Meanwhile, it showed no significant difference from the MCS-P by assuming a similar probability of event 
occurrence in contiguous clusters in order to limit overfitting. As the heterogeneity between clusters increases, 
the advantage of the MCHS-P over the MCS-P becomes even greater.

Similar to previous studies, in the scenarios with clusters very far away, specificity and PPV stay at high 
level6,17,27,32, so that the sensitivity and overall performance measures such as YDI and misclassification are of 

Figure 6. Detected clusters obtained using different parameters. The top four subfigures are for the default 
MWS (50%) and 30% MRWS selected by the Gini coefficient, the 3.4% MWS selected by the MCS-P and the 
5.5% MWS selected by the MCHS-P. The bottom subfigure shows the comparison between the results from the 
MCHS-P and the MCS-P.
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more interest in most studies. In all simulation scenarios with heterogeneous clusters, the values of sensitivity, 
YDI and misclassification under the parameter selected using the MCHS-P were greatly improved compared to 
those obtained using the MCS-P. Moreover, higher heterogeneity leads to greater improvement of up to 540.27%, 
537.92% and 69.40%, for sensitivity, YDI and misclassification, respectively. The correlation of the MCHS-P and 
the MCS-P with classical performance measures (Fig. 5) shows that in the datasets with little heterogeneity among 
the clusters, the results detected with a higher MCS-P and MCHS-P have better sensitivity, accuracy and YDI. 
Additionally, as the heterogeneity increases, the MCHS-P is still positively related to sensitivity, accuracy and 
YDI, whereas the relationship of the MCS-P with them becomes negative. Therefore, an appropriate parameter 
can be selected using the MCHS-P in spatial datasets with highly heterogeneous clusters for which the MCS-P 
will fail. In simulation datasets with homogeneous clusters, the performance of the MCHS-P is disadvantageous 
in some cases compared to the MCS-P because the MCHS-P may mistakenly identify high-risk regions caused by 
random fluctuation as a cluster for overfitting. However, the average disadvantage values for sensitivity, specificity, 
PPV, YDI, and misclassification are only 0.0002, 0.0005, 0.0068, 0.0007 and 0.0005, respectively. Although the 
disadvantage increases with the decrease in the total case and cluster size because false clusters can be more easily 
detected in datasets with small cluster sizes and total case number, the largest disadvantage remains very slight 
(0.0000, −0.0024, −0.0524, −0.0024, and 0.0024, respectively). These results suggest that assuming the similarity 

Found only in the 
MCS-P/MCHS-P Region Code Pop RR

MCS-P

A1 42113 3038 0.01

A2 42091 41794 1.116985

A3 34033 33325 1.306212

A4

36009 39828 0.888781

36013 66959 1.10174

42083 20874 0.953987

MCHS-P

B1

42005 34275 1.248418

42021 70657 1.284748

42033 38982 1.21123

42063 43982 1.09015

B2

34019 63792 1.005898

34021 189129 1.002259

34041 55027 1.139572

42011 210473 0.988145

42029 258927 1.074539

42077 183185 1.144406

42089 84994 0.910956

42095 152641 1.063357

42103 28268 1.148192

B3 42093 9582 1.30857

Table 4. Different counties detected using 3.4% and 5.5% MWSs selected using the MCS-P and the MCHS-P. 
Note: RR values less than 1 are highlighted in bold.

Figure 7. Detected clusters obtained using different parameters. The left subfigure is for the results obtained 
using 1.6% MWS selected by the MCHS-P and the MCS-P, and the right subfigure is for the results obtained 
using the default MWS (50%) and the MRWS (20–50%) selected by the Gini coefficient.
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of contiguous clusters effectively limited overfitting in the MCHS-P and obtained a similar result with the MCS-P 
in spatial datasets with fairly homogeneous clusters.

Compared to the commonly selected default 50% MWS and the Gini coefficient, the MCHS-P shows better 
performance in most scenarios. As the population in clusters and the number of clusters increase, meaning that 
the random fluctuation decreases, the advantage of the MCHS-P over the Gini coefficient and the default param-
eter increases, and especially in the additional simulation scenario with the complex spatial pattern, the average 
advantage values over the default MWS were 11.4%, 10.6%, 58.6%, 28.3%, 76.7% for sensitivity, specificity, PPV, 
YDI and misclassification, respectively, with the corresponding values of 0.7%, 3.1%, 16.1%, 4.7%, and 48.9% over 
the Gini coefficient. In addition, the improvement due to the use of the Gini coefficient was found to be unstable, 
especially for misclassification, PPV and specificity in complex datasets. Only in the scenarios with high-RR 
and low-population single cluster does the MCHS-P have a slightly worse performance, for instance with the 
maximal difference for both misclassification and YDI of only 0.0007 observed in rural-600-1 as presented in 
Supplementary File 2.

In the case study of female breast cancer mortality data, most counties in the clusters detected using MWSs 
selected by the MCS-P and the MCHS-P are identical. Although the heterogeneity among the clusters is not high, 
the SSS’s performance under the MWS selected using the MHCS-P is still better than that of the MCS-P. As the 
case result shows, the MCHS-P selected a larger MWS than the MCS-P did because the MCHS-P assumes that 
nonadjacent clusters are independent and each cluster can incorporate more neighbour counties for which the 
mortalities are closer to this cluster and are far away from other clusters. Therefore, more counties with a relatively 
high RR that are close to the clusters detected using the MCS-P are detected using the MCHS-P. In the two prac-
tical datasets, the Gini coefficient and the default MWS both reported clusters including many low-risk spatial 
units, which may provide poor information in fields with limited resources such as public health. Although the 
Gini coefficient led to some improvements in the first practical dataset, it made no improvements in the second 
practical dataset. Such unstable improvements of the Gini coefficient were also found in the complex scenario.

Besides, as we stated in the method section, since the denominator of MCS-P and MCHS-P is a constant 
regardless of the selected MWS, it is not necessary to calculate the denominator of MCS-P and MCHS-P when we 
use them to select the MWS in a practical dataset.

conclusion
Most practical datasets may contain multiple clusters that are not so far away from each other, and the SSS with 
default MWS is much more likely to detect overly large clusters with poor accuracy. In this case, selecting an 
appropriate MWS is critical for the accurate performance of the SSS. Although the Gini coefficient and the MCS-P 
can be used to select a more appropriate MRWS or MWS to improve the detected result, the Gini coefficient may 
be unstable and obtain insignificant improvements. The MCS-P will select an inappropriate MWS in the dataset 
with highly heterogeneous clusters. By contrast, the improved MCHS-P will have stable and good performance. 
Additionally, as found for the relationship between the MCHS-P and the classic performance measures, results 
detected with a higher MCHS-P will show good performance for sensitivity, specificity, PPV, YDI and misclas-
sification regardless of the homogeneity and heterogeneity between the clusters. Therefore, in the case without 
prior regarding true clusters or with the prior of heterogeneous clusters, the MCHS-P should be recommended 
for selecting an appropriate MWS for the SSS to obtain better accuracy. In the case with the prior that only homo-
geneous clusters exist, MCS-P should be employed to achieve best performance which has slight advantages over 
that using MCHS-P.

Data availability
• The simulation datasets used during this study are available on the website of SaTScan for the benchmark 
datasets: https://www.satscan.org/datasets/nebenchmark/index.html and the Supplementary Files 1 and 4 for the 
complex scenario and 6000-three-16RR3-2-1.2, respectively.
• The breast cancer dataset in the case study is available on the official website of the National Centre for Health 
Statistics: https://www.cdc.gov/cancer/uscs/dataviz/download_data.htm. And the measles incidence dataset is 
available from the corresponding author on reasonable request.
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