
RESEARCH ARTICLE

MiR-21 mediates the protection of kaempferol

against hypoxia/reoxygenation-induced

cardiomyocyte injury via promoting Notch1/

PTEN/AKT signaling pathway

Jinxi HuangID*, Zhenhui Qi

Department of Cardiology, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, P.R. China

* huangjinx01001@qq.com

Abstract

Kaempferol, a natural flavonoid compound, possesses potent myocardial protective prop-

erty in ischemia/reperfusion (I/R), but the underlying mechanism is not well understood. The

present study was aimed to explore whether miR-21 contributes to the cardioprotective

effect of kaempferol on hypoxia/reoxygenation (H/R)-induced H9c2 cell injury via regulating

Notch/phosphatase and tensin homologue (PTEN)/Akt signaling pathway. Results revealed

that kaempferol obviously attenuates H/R-induced the damages of H9c2 cells as evidence

by the up-regulation of cell viability, the down-regulation of lactate dehydrogenase (LDH)

activity, the reduction of apoptosis rate and pro-apoptotic protein (Bax) expression, and the

increases of anti-apoptotic protein (Bcl-2) expression. In addition, kaempferol enhanced

miR-21 level in H9c2 cells exposed to H/R, and inhibition of miR-21 induced by transfection

with miR-21 inhibitor significantly blocked the protection of kaempferol against H/R-induced

H9c2 cell injury. Furthermore, kaempferol eliminated H/R-induced oxidative stress and

inflammatory response as illustrated by the decreases in reactive oxygen species genera-

tion and malondialdehyde content, the increases in antioxidant enzyme superoxide dismut-

ase and glutathione peroxidase activities, the decreases in pro-inflammatory cytokines

interleukin (IL)-1β, IL-8 and tumor necrosis factor-alpha levels, and an increase in anti-

inflammatory cytokine IL-10 level, while these effects of kaempferol were all reversed by

miR-21 inhibitor. Moreover, results elicited that kaempferol remarkably blocks H/R-induced

the down-regulation of Notch1 expression, the up-regulation of PTEN expression, and the

reduction of P-Akt/Akt, indicating that kaempferol promotes Notch1/PTEN/AKT signaling

pathway, and knockdown of Notch1/PTEN/AKT signaling pathway induced by Notch1

siRNA also abolished the protection of kaempferol against H/R-induced the damage of

H9c2 cells. Notably, miR-21 inhibitor alleviated the promotion of kaempferol on Notch/

PTEN/Akt signaling pathways in H9c2 cells exposed to H/R. Taken together, these above

findings suggested thatmiR-21 mediates the protection of kaempferol against H/R-induced

H9c2 cell injuryvia promoting Notch/PTEN/Akt signaling pathway.
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Introduction

Myocardial ischemia/reperfusion (I/R) injury is a major complication of reperfusion therapy

for myocardial infarction, representing a great threat to human health [1, 2]. The underlying

molecular mechanisms of myocardial I/R injury are complex, including intracellular calcium

overload, acute oxygen stress injury, reduction of nitric oxide bioavailability, mitochondrial

damage, and inflammation [3–5]. Although several therapeutic strategies, such as remote

ischemic preconditioning and ischemic post-conditioning, have been revealed to attenuate

myocardial I/R injury, no effective efficacious therapy for protecting the heart against myocar-

dial I/R exists in clinical practice until now [6, 7]. Hence, it is urgent to discover or develop

novel pharmacological agents and therapeutic strategies for I/R-stimulated myocardial damage

and the underlying molecular mechanisms.

Kaempferol (3,5,7-trihydroxy-4’-methoxyflavone), a naturally occurring flavonoid, is isolated

from the roots of Alpinia officinarum which used as a classical tonic agent [8]. Previous studies

have revealed that kaempferol has a series of biological activities including anti-inflammatory,

anti-oxidant, anti-bacterial, anti-tumor, neuroprotective, and myocardial protective properties [9,

10]. Recent studies find that kaempferol is capable of suppressing myocardial I/R injury [11–13].

The study from Dong Wang et al. reveals that kaempferol improves I/R-induced cardiac dysfunc-

tion and myocardial injury involved in reducing myocardial infarct size, cardiomyocyte apoptosis,

oxidative stress, and inflammatory responses [11]. Another study also shows that kaempferol miti-

gates myocardial ischemic injury in isolated rat depending on it’s antioxidant activity and inhibi-

tion of GSK-3β activity [13]. However, little is known regarding the underlying molecular

mechanism of action of kaempferol as a therapeutic agent for treating myocardial I/R injury.

MicroRNAs (miRNAs) are endogenous small non-coding RNAs subgroup containing 18–

23 nucleotides [14], that functionally modulate specific messenger RNA targets involved in

extensive physiological and pathological processes [15, 16]. Increasing evidence reveals that

various miRNAs engage in the modulation of cardiovascular formation and function [17, 18],

and are the key molecular players in the diagnosis and prevention of myocardial I/R injury

[19, 20]. Particularly, miR-21 is highly expressed in cardiomyocytes and has also been shown

to regulate important processes such as cardiac fibroblasts, apoptosis, and inflammation in

myocardial I/R injury [21–24]. Research confirms that miR-21 expression is significantly

reduced after I/R, and miR-21 overexpression reduces myocardial infarct size and cardiomyo-

cytes apoptosis during chronic I/R injury [25, 26]. Recently, miR-21 is also available to involve

in a variety of myocardial protective drugs against I/R-induced heart damages in vivo and in
vitro experiments [27–29]. However, the role of miR-21 in the protection of kaempferol on

myocardial I/R injury has not been previously reported.

Notch1 signaling pathway is an evolutionarily conserved pathway that is broadly involved

in regulating apoptosis, oxidative stress, and inflammatory responses in response to harmful

stimuli [30–32]. Previous studies have reported that the Notch1 signaling pathway is also

involved in the attenuation of myocardial I/R injury [33, 34]. Research bore out that Nothch1

participates in the inhibitory effect of myocardial protective drugs such as polydatin [35] and

Berberine [36] on myocardial I/R injury under diabetic condition by ameliorating oxidative

stress damage via activating PTEN/Akt signaling pathway. However, the role of Notch1/

PTEN/Akt signaling pathway in the cardioprotection of kaempferol has not been studied.

Notably, research from Cao J et al. demonstrates that miR-146a and miR-21 cooperate to

accelerate vascular smooth muscle cell proliferation via modulating the Notch signaling path-

way in atherosclerosis [37]. Hence, the present study further demonstrated whether Notch1/

PTEN/Akt signaling pathway participates in the contribution of miR-21 to kaempferol-

induced cardioprotection against H/R injury.
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Here, the results showed that miR-21 mediates kaempferol-induced the inhibition on H/R-

induced the damage of cardiomyocytes through reducing oxidative stress and inflammatory

response. In addition, miR-21 contributes to kaempferol-led to the enhancement of Notch1/

PTEN/Akt signaling pathway, and inhibition of Notch1/PTEN/Akt signaling pathway blocks

the cardioprotection of kaempferol under H/R condition, indicating that miR-21 mediates the

protective effect of kaempferol on myocardial I/R injury via promoting Notch1/PTEN/AKT

signaling pathways in vitro. These results potentially provide a new perspective on understand-

ing cardioprotective effect of kaempferol.

Materials and methods

Cell culture and H/R treatment

The rat heart-derived cardiac myoblast H9c2 cardiomyocytes were purchased from the Ameri-

can Type Culture Collection (ATCC; Manassas, VA, USA), and were cultured in Dulbecco’s

modified Eagle’s medium (DMEM; Sigma-Aldrich, St Louis, USA) supplemented with 10% (v/

v) fetal bovine serum (FBS), 100 U/mL penicillin and 100 μg/mL streptomycin (both from

GIBCO, Grand Island, NY, USA) in a humidified incubator with 95% air and 5% CO2 at 37˚C.

In order to establish an in vitro model of myocardial I/R injury, H9c2 cells were maintained in

a hypoxic chamber (95% N2 and 5% CO2) with serum- and glucose-free DMEM at 37˚C for 6

h, to induce hypoxia. After hypoxia, the cells were reoxygenated under normoxic conditions

(95% air/5% CO2) with DMEM containing 10% FBS for 12 h at 37˚C [38]. Cells cultured

under normal conditions in a humidified incubator with 95% air and 5% CO2 were served as

negative controls.

Experimental group

To determine the protection of kaempferol on H/R injury, cells were randomly allocated to

four groups: 1) Control group, no treatment; 2) H/R group, hypoxia (6 h)/reoxygenation (12

h); 3) kaempferol (Kae) + H/R group, pretreatment with different concentrations of kaemp-

ferol (5, 10, 20, or 30 μM) for 2 h prior to H (6 h)/R (12 h); and 4) kae alone group, pretreat-

ment with kaempferol (5, 10, 20, or 30 μM) for 20 h. To further explore the role of miR-21 in

the cardioprotection of kaempferol, cells were randomly allocated to six groups: 1) Control

group, no treatment; 2) H/R group, H(6 h)/R(12 h); 3) kae + H/R group, pretreatment with

kaempferol (20 μM) for 2 h prior to H (6 h)/R (12 h); 4) Kae + H/R + NC, transfection with

negative control (NC) followed by treatment with kaempferol (20 μM) for 2 h and then co-

treatment with H (6 h)/R (12 h); 5) Kae + H/R + miR-21 I, transfection with miR-21 inhibitor

(miR-21 I) followed by treatment with kaempferol (20 μM) for 2 h and then co-treatment with

H (6 h)/R (12 h); and 6) miR-21 I alone group. To demonstrate the role of Notch1/PTEN/Akt

signaling pathway in the cardioprotection of kaempferol, cells were randomly allocated to five

groups:1) Control group, no treatment; 2) H/R group, H (6 h)/R(12 h); 3) Kae + H/R group,

pretreatment with kaempferol (20μM) for 2 h prior to H (6 h)/R (12 h); 4) Kae + H/R + Control

siRNA, transfection with control siRNA followed by treatment with kaempferol (20 μM) for 2

h and then co-treatment with H (6 h)/R (12 h); and 5) Kae + H/R + Notch1 siRNA, transfec-

tion with Notch1 siRNA followed by treatment with kaempferol (20 μM) for 2 h and then co-

treatment with H (6 h)/R (12 h).

Cell Counting Kit (CCK)-8 assay

The cell viability was analyzed by a CCK-8 assay kit (Dojindo Molecular Technologies, Inc.,

Kumamoto, Japan) according to a standardized method. Briefly, after the corresponding
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administration, cells were incubated with 10 μL of CCK-8 solution at 37˚C for 3 h. The absor-

bance at 450 nm was measured using a microplate reader (Bio-Rad Benchmark, Hercules, CA,

USA).

Lactate dehydrogenase (LDH) assay

Cell damage was also reflected by the measurement of LDH activity in the culture supernatant

using an LDH detection kit (Shanghai Genmed Pharmaceutical Technology Co Ltd., Shanghai,

China) according to the manufacturer’s protocol. In brief, the culture medium was collected

and the adherent H9c2 cells were lysed according to the instructions. LDH activity was

assessed using a microplate reader (Biotek Corporation, VT, USA) at 490 nm.

Cell transfection

MiR-21 inhibitor and negative control were synthesized by Biomics Biotechnologies (Nan-

tong, China). Control small interfering RNA (siRNA) and Notch1 siRNA were purchased

from Santa Cruz Biotechnology (Santa Cruz, CA, U.S.A.). The sequences were as following:

miR-21 inhibitor sense 50-UAGCUUAUCAGACUGAUGUUGA-30 and anti-sense 50-UCAACA
UCAGUCUGAUAAGCUA-30, negative control sense 5’-UUCUCCGAACGUGUCACGUTT-3’
and anti-sense 5’-ACGUGACACGUUCGGAGAATT-3’, Control siRNA forward 5’-CCUAC
GCCACCAAUUUCGU-3’ and anti-sense 5’-ACGAAAUUGGUGGCGUAGG-3’, and Notch1-

siRNA sense 5’-GCACGCGGAUUAAUUUGCA-3’ and anti-sense 5’-UGCAAAUUAAUCCG
CGUGC-3’. H9c2 cells were plated to reach 70–90% confluency and then were transfected

with miR-21 inhibitor, negative control, Control siRNA or Notch1 siRNA at a final concentra-

tion of 100 nM using Lipofectamine 3000 (Life technologies corporation, Gaithersburg, MD,

USA) in Opti-MEM medium (Gibco, Carlsbad, CA, USA) according to the manufacturer’s

instructions. Transfected cells were subjected to H/R after 48 h of transfection. The efficiency

of transfection was determined using reverse transcription-quantitative polymerase chain

reaction (RT-qPCR).

RT-qPCR assay

Total RNA was extracted from the cells with the TRIzol1 reagent (Invitrogen; Thermo Fisher

Scientific, Inc., Waltham, MA, USA) according to the manufacturer’s protocol. For mRNA

detection, RNA (1 μg) was reversed transcribed to cDNA using the RevertAid™ cDNA Synthe-

sis kit (Thermo Fisher Scientific, Inc.) according to the manufacturer’s instructions. Real-time

PCR amplification was performed on a CFX96 RT-PCR system (Biorad, Hemel Hempstead,

UK) using iTaq™ Universal SYBR1Green Supermix (Bio-Rad, USA) according to manufac-

turer’s specification. Reaction conditions were as follows: pre-denaturation at 96˚C for 5 min,

followed by 45 cycles of denaturation at 95˚C for 30 s and annealing at 56˚C for 45 s, and a

final extension at 72˚C for 60 s. β-actin served as an internal control. For miRNA detection,

One-step real-time qPCR was performed, and the expression of miR-21 was detected using the

EzOmics miRNA qPCR Detection Primer Set (Biomics, USA) and EzOmics One-Step qPCR

Kit (Biomics, USA). PCR was carried out at 42˚C for 45 min; 95˚C for 10 min, followed by 45

cycles of amplification. The primers used synthesized by Invitrogen (Shanghai, China) and as

follows: Notch-1, forward: 50-ATGACTGCCCAGGAAACAAC-30 and reverse: 5’-GTCCAG
CCATTGACACACAC-3’; β-actin, forward: 50-AGGGAAATCGTGCGTGAC-30 and reverse,

50-CGCTCATTGCCGATAGTG-30; miR-21, forward: 5’-GCACCGTCAAGGCTGAGAAC-3’
and reverse: 5’-CAGCCCATCGACTGGTG-3’; and U6, forward: 5’-CTCGCTTCGGCAGCA
CA-3’ and reverse: 5’-AACGCTTCACGAATTTGCGT-3’. U6 was used as an internal con-

trol. The relative expression was calculated using the 2–ΔΔCt method [39].
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Caspase-3 activity measurement

Caspase-3 activity was measured in lysates of cells using a FluorAce Apopain Assay kit

(BioRad, Hercules, CA, USA) following the manufacturer’s instructions. In brief, the lysates of

cells were incubated with DEVD-pNA substrate (200 μM, a substrate of caspase-3) at 37˚C for

4 h. The absorbance at 405 nm was measured by a microplate reader (Biotek Corporation, VT,

USA).

Cell apoptosis assay

Cell apoptosis was determined using an Annexin V-fluorescein isothiocyanate (FITC) apopto-

sis detection kit (BD Biosciences, San Diego, CA, USA) followed by flow cytometry. Briefly,

H9c2 cells were collected by 0.25% trypsin, washed twice with PBS, and centrifuged at 1,

000 × g for 5 min. The cells were then incubated with 5 μL of Annexin V-FITC and 10 μL of

propidium iodide (PI) for 20 min at room temperature in the dark. Apoptotic rate was ana-

lyzed by flow cytometry (FACSCalibur; BD Biosciences) with Cell Quest 3.3 software (BD Bio-

sciences, Franklin Lakes, NJ, USA).

Endogenous reactive oxygen species (ROS) production measurement

Endogenous ROS production was detected using 2’,7’-dichlorofluorescein diacetate

(DCFH-DA; Sigma-Aldrich, St Louis, USA) according to the manufacturer’s protocol. After

treatment with corresponding administration, H9c2 cells were collected and incubated with

DCFH-DA (25 μM) at 37˚C for 20 min in the dark and were washed twice times with PBS.

ROS generation was determined using a FACSCalibur flow cytometer with Cell Quest 3.3 soft-

ware (BD Biosciences, Franklin Lakes, NJ, USA) at an excitation wavelength of 488 nm and an

emission wavelength of 525 nm.

Determination of NO level in the culture supernatant

NO production in culture medium was measured using the Nitrate/Nitrite Assay Kit (Beyo-

time Institute of Biotechnology, Nanjing, China; cat. number S0021M) according to the

instructions. Briefly, cell culture medium (50 μL) were collected, centrifuged at 1, 000 × g for

10 min and mixed with Griess Reagent I (50 μL) and Griess Reagent II (50 μL), both included

in the kit, in a 96-well microtiter plate for 10 min at 37˚C. The absorbance at 540 nm was read

using a microplate reader (Biotek Corporation, VT, USA).

Detection of MDA content, SOD and GSH-Px activities

The content of MDA (cat. number A003-1), the activities of SOD (cat. number A001-3) and

GSH-Px (cat. number A007-1-1) in treated H9c2 cells were measured by using corresponding

commercial kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, China) according to

the manufacturer’s instructions.

Enzyme-linked immunosorbent assay

The culture supernatant was collected and centrifuged at 10000 × g at 4˚C for 10 min. The con-

centrations of cytokines including IL-1β (cat. number H002), IL-6 (cat. number H007), TNF-α
(cat. number H052), IL-8 (cat. number H008), and IL-10 (cat. number H009), in the culture

supernatant, were detected by a commercial enzyme-linked immunosorbent assay (ELISA) kit

(Nanjing Jiancheng Bioengineering Institute) according to the manufacturer’s instructions,

respectively. Optical density was measured at 450 nm.
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Western blot analysis

After treatment, H9c2 cells were collected and lysed with RIPA lysis buffer (Beyotime Institute

of Biotechnology; cat. number P0013B) containing 0.5 mM of phenylmethanesulfonyl fluoride

(PMSF) (Beyotime Institute of Biotechnology; cat. number ST506). Protein concentration was

measured by BCA protein assay (Thermo Fisher Scientific, Grand Island, NY, USA; cat. num-

ber 23227) and equal amounts of protein (30 μg) were fractionated by 12% sodium dodecyl

sulfate-polyacrylamide gel and then transferred to polyvinylidene difluoride (PVDF) mem-

brane (Millipore, Billerica, MA, USA; cat. number C2035). After blocked with 5% nonfat milk

powder in Tris buffer containing 0.1% Tween-20 (TBST) for 2 h at room temperature, the

membranes were incubated with the appropriate following primary antibodies: anti-Bax (dilu-

tion of 1: 2000; cat. number #2772, Cell Signaling Technology, MA, USA), anti-Bcl-2 (dilution

of 1: 1000; cat. number ab32124, Abcam, Britain), anti-Notch1(dilution of 1: 2000; cat. number

#3608, Cell Signaling Technology), anti-PTEN (dilution of 1: 1000; cat. number #9188, Cell

Signaling Technology), anti-P-AKT (dilution of 1: 2000; cat. number #4060, Cell Signaling

Technology), anti-AKT (dilution of 1: 2000; cat. number #4691, Cell Signaling Technology),

and anti-GAPDH (dilution of 1: 2000; cat. number #5174, Cell Signaling Technology) over-

night at 4˚C. GAPDH was used as an internal control. After washing three times with TBST,

the membranes were incubated with horseradish peroxidase (HRP)-conjugated second anti-

bodies (dilution of 1: 2000, cat. number #7074, Cell Signaling Technology) for 2 h at room

temperature. Images were visualized with an enhanced BeyoECL Plus reagents (Beyotime

Institute of Biotechnology; cat. number P0018M) and analyzed by ImageJ 1.49 (National Insti-

tute of Health, Bethesda, MD).

Statistical analysis

Results are presented as the means ± standard deviation (SD) of at least three independent rep-

licates. Data comparisons between the two groups were analyzed using one-way ANOVA fol-

lowed by the Tukey multiple comparisons test. When the sample does not meet the normality

check, a nonparametric test was performed followed by the Dunnett’s T3 test. Data was ana-

lyzed by GraphPad Prism 5.0 software (GraphPad Software, Inc., La Jolla, CA, USA). P< 0.05

was considered to indicate a statistically significant difference.

Results

Kaempferol attenuates hypoxia/reoxygenation (H/R)-induced

cardiomyocyte injury and promotes miR-21 expression in H9c2 cells

To determine the protective effect of kaempferol on H/R injury, the functions of kaempferol

under H/R condition were conducted by detecting cell viability and LDH activity. As shown in

Fig 1, pretreatment with kaempferol (10, 20, and 30 μM) obviously increased cell viability (Fig

1A) and decreased LDH activity compared to H/R group (Fig 1B). Kaempferol (20 μM) signifi-

cantly led to an increase in cell viability and a decrease in LDH release (P< 0.01), and the

inhibitory efficiency of kaempferol (30 μM) was not significantly higher than that of kaemp-

ferol (20 μM) (P> 0.05). Therefore, kaempferol at a concentration of 20 μM were performed

in subsequent experiments. To further investigate the protection of kaempferol against H/R

injury, the impact of kaempferol on apoptosis were detected by Annexin V-FITC/PI staining

(Fig 1C). The results revealed that H/R results in a significant increase in apoptosis rate com-

pared with the control group, while kaempferol pretreatment led to the decrease in apoptosis

rate compared with H/R group (Fig 1D). Furthermore, western blot results (Fig 1E) revealed

that pretreatment with kaempferol also reverses H/R-induced the increase in the expression of
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pro-apoptotic protein (Bax) and the decrease in the expression of anti-apoptotic protein (Bcl-

2) in H9c2 cells (Fig 1F).

Several studies have proved the possible involvement of miR-21 in ischemia-reperfusion (I/

R) injury by regulating key signaling elements in cell survival and apoptosis [40]. The present

article further found that following kaempferol pretreatment, the expression of miR-21 was

obviously increased in comparison with the H/R group (Fig 1G). Taken together, these data

indicated that kaempferol prevents H9c2 cells against H/R injury and enhances miR-21 level

in H/R-exposed H9c2 cells.

Fig 1. Kaempferol protects cardiomyocyte injury and increases miR-21 expression in H9c2 cell-subjected with H/R. H9c2 cells were pretreated with kaempferol (5,

10, 20, and 30 μM) for 2 h and then co-treated with H (6 h)/R (12 h). (A) CCK-8 assay for cell viability. (B) LDH detection kit for LDH activity in cellular supernatant.

Data are presented as the means ± SD, n = 3. Compared with the control group, ##P< 0.001; compared with the H/R group, �P< 0.05, ��P< 0.01. H9c2 cells were

pretreated with kae (20 μM) for 2 h and then co-treated with H (6 h)/R (12 h). (C) Annexin V-FITC staining assay for apoptosis rates. (D) A statistical representation of

apoptosis rates. (E) Western blot analysis for Bax and Bcl-2 expression. (F) Quantitative analysis of Bax and Bcl-2 expressions normal to GAPDH. (G) RT-PCR for miR-

21 level. Data are presented as the means ± SD, n = 3. Compared with the control group, #P< 0.05, ##P< 0.001; compared with the H/R group, �P< 0.05, ��P< 0.01.

Kae, kaempferol; H/R, hypoxia/reoxygenation.

https://doi.org/10.1371/journal.pone.0241007.g001
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MiR-21 inhibitor reverses the protective effect of kaempferol on H/R injury

in H9c2 cells

To postulate whether miR-21 mediates the cardioprotection of kaempferol against H/R injury,

miR-21 inhibitor was utilized in kaempferol functional assays. RT-PCR results showed that

miR-21 inhibitor transfection has succeeded in reducing miR-21 expression compared with

negative control (NC) transfection (Fig 2A). Beside, miR-21 inhibitor transfection reversed

kaempferol-induced the upregulation of cell viability (Fig 2B) and the downregulation of LDH

activity (Fig 2C) compared with NC transfection in H/R-treated H9c2 cellsmiR-21 inhibitor

Fig. Additionally, miR-21 inhibitor exhibited an increased apoptosis rate when compared with

controls NC transfection (Fig 2D) in cotreated with kaempferol and H/R group. Caspase-3

plays a vital function in the intrinsic and extrinsic process of apoptosis [41]. The results further

presented that kaempferol inhibits H/R-induced the increase in caspase-3 activity, while this

effect was reversed by miR-21 inhibitor transfection (Fig 2E). Furthermore, western blot

results (Fig 2F) showed that kaempferol-resulted in a decrease in Bax expression and an

increase in Bcl-2 expression in H/R-exposed H9c2 cells are also blocked by miR-21 inhibitor

transfection (Fig 2G). These data indicated that miR-21 mediates the protective effect of

kaempferol on H/R injury partly by inhibiting mitochondrial-dependent apoptosis in H9c2

cells.

MiR-21 inhibitor eliminates kaempferol-induced the inhibition on

oxidative stress in H/R-treated H9c2 cells

Oxidative stress, defined as an imbalance between production and destruction of free radicals,

participates in apoptosis, mitochondrial dysfunction, and the pathogenesis and progression of

myocardial I/R injury [4]. Hence, the present further studied whether kaempferol regulates

reactive oxygen species (ROS) production and antioxidant defense under H/R condition and

whether miR-21 participates in this process. As illustrated in Fig 3, kaempferol mostly reduced

the endogenous ROS production (Fig 3A) and malondialdehyde (MDA) content (Fig 3B), the

latter of which is a measure of ROS-related lipid peroxidation. Consistently, these effects were

abolished by miR-21 inhibitor transfection. In addition, kaempferol markedly enhanced the

activities of antioxidant enzymes including superoxide dismutase (SOD) (Fig 3C) and glutathi-

one peroxidase (GSH-Px) (Fig 3D) compared with H/R group in H9c2 cells, which were both

reversed bymiR-21 inhibitor transfection. MiR-21 inhibitor alone transfection had no effects

on oxidative stress. These results revealed that miR-21 mediates the protection of kaempferol

against oxidative injury under the H/R condition in H9c2 cells.

MiR-21 inhibitor mitigates the protective effect of kaempferol on

inflammatory response under H/R injury in H9c2 cells

Considerable evidence has revealed a causative function of inflammatory response in I/R-

induced cardiac injury [42]. The present study further demonstrated that kaempferol signifi-

cantly reduces the concentrations of pro-inflammatory cytokines IL-1β (Fig 4A), IL-8 (Fig 4B)

and TNF-α (Fig 4C) and remarkably increases the concentration of anti-inflammatory cyto-

kine IL-10 (Fig 4D) as relative to H/R group. However, the protective effect of kaempferol on

inflammatory response was obviously attenuated by miR-21 inhibitor transfection. Nitric

oxide synthase (iNOS)/subsequent nitric oxide (NO) pathway is known to be involved in the

regulation of many physiological processes, such as inflammation and cardiomyocyte survival

[43, 44]. The results further confirmed that H/R-induced the excessive increases in iNOS activ-

ity (Fig 4E) and NO level (Fig 4F) in H9c2 cells were attenuated by kaempferol. However,
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Fig 2. MiR-21 inhibitor attenuates kaempferol-induced the inhibitory effects on H/R-induced cytotoxicity and apoptosis in H9c2 cells. H9c2 cells were transfected

with miR-21 inhibitor (miR-21 I) or negative control (NC). (A) RT-PCR for miR-21 level. Data are presented as the means ± SD, n = 3. Compared with the control

group, NSP> 0.05; compared with the NC transfection group, ��P< 0.01. H9c2 cells were transfected with miR-21 I or NC followed by treatment with kaempferol (20

μM) for 2 h and then co-treatment with H (6 h)/R (12 h). (B) CCK-8 assay for cell viability. (C) LDH detection kit for LDH activity in cellular supernatant. (D) Annexin
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V-FITC staining assay for apoptosis. (E) Determination of caspase-3 activity by commercial kit. (F) Western blot analysis for Bax and Bcl-2 expression. (G) Quantitative

analysis of Bax/Bcl-2 normal to GAPDH. Data are presented as the means ± SD, n = 3. Compared with the control group, #P< 0.05, ##P< 0.001; compared with the H/

R group, �P< 0.05, ��P< 0.01; compared with the Kae + H/R group, NSP> 0.05; compared with the Kae + H/R + NC group, $P< 0.05, $$P< 0.01. NS: No significance.

Kae, kaempferol; H/R, hypoxia/reoxygenation.

https://doi.org/10.1371/journal.pone.0241007.g002

Fig 3. MiR-21 inhibitor reverses kaempferol-induced inhibition on oxidative stress in H9c2 cells exposed to H/R. H9c2 cells were transfected with

miR-21 inhibitor (miR-21 I) or negative control (NC) followed by treatment with kaempferol (20 μM) for 2 h and then co-treatment with H (6 h)/R

(12 h). (A) ROS production was detected by 2’,7’-dichlorofluorescein diacetate (DCFH-DA). (B) Malondialdehyde (MDA) content, (C) superoxide

dismutase (SOD), and (D) glutathione peroxidase (GSH-Px) were measured by corresponding commercial kits. Data are presented as the means ± SD,

n = 3. Compared with the control group, #P< 0.05, ##P< 0.001; compared with the H/R group, �P< 0.05, ��P< 0.01; compared with the Kae + H/R

group, NSP> 0.05; compared with the Kae + H/R + NC group, $P< 0.05, $$P< 0.01.Kae, kaempferol; H/R, hypoxia/reoxygenation.

https://doi.org/10.1371/journal.pone.0241007.g003
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miR-21 inhibitor transfection reversed the inhibition of kaempferol on the iNOS/NO pathway

(Fig 4E and 4F). Overall, these results implied that miR-21 mediates kaempferol-alleviated H/

R-induced inflammatory response partially by inhibiting iNOS/NO pathway.

Kaempferol attenuates H/R injury via promoting Notch1/PTEN/Akt

signaling pathway in H9c2 cells

Recently, the Notch1 signaling pathway has attracted growing concerns for its myocardial pro-

tective actions [33, 34]. To explore whether the Notch1 signaling pathway plays a role in the

present circumstance, the effect of kaempferol on Notch 1 expression was investigated. West-

ern blot analysis results (Fig 5A) showed that H/R treatment decreases Notch1 protein expres-

sion, which was reversed by kaempferol (Fig 5B). It is reported that phosphatase and tensin

homolog deleted on chromosome ten (PTEN) can be negatively regulated by Notch 1 signal-

ing, and is the upstream and negative regulator of AKT pathway [36]. The effects of kaemp-

ferol on PTEN/Akt pathway were further investigated. Western blot results showed that

kaempferol obviously decreases PTEN expression (Fig 5C) and increases P-Akt/Akt ratio (Fig

5D) compared with H/R group. These results indicated the promotion of kaempferol on the

Notch1/PTEN/Akt signaling pathway under the H/R condition.

To confirm the function of the Notch1/PTEN/Akt signaling pathway, the loss of function

assay was carried out. Notch1 siRNA transfection significantly reduced the Notch1 protein

expression compared with the control siRNA transfection (Fig 5E). In addition, RT-PCR

results showed thatNotch1 siRNA transfection also blocked kaempferol-induced an increase

in Notch1 miRNA level and a decreases in PTEN miRNA level, and an increase in Akt miRNA

level in H/R-treated H9c2 cells (Fig 5F). These data indicated that Notch1 siRNA lead to

the blockage of kaempferol-induced the activation of Notch1/PTEN/Akt signaling pathway

under H/R condition. On these foundations, results further revealed that Notch1 siRNA

attenuates kaempferol-induced the up-regulation of cell viability and the down-regulation of

LDH activity in H9c2 cells exposed H/R. All in all, these data implied that Notch1/PTEN/Akt

signaling pathway mediates the cardioprotection of kaempferol against H/R injury in H9c2

cells.

MiR-21 contributes to kaempferol-led to the activation of Notch1/PTEN/

Akt signaling pathway in H9c2 cells exposed to H/R

To clarify the further molecular mechanism of miR-21-mediated the beneficial effects of

against H/R injury, the effects of miR-21 on the Notch1/PTEN/Akt signaling pathway were

investigated. Western blot results (Fig 6A) showed that compared with NC transfection, miR-

21 inhibitor transfection reversed kaempferol-induced an increase in Notch1 expression (Fig

6B), a decrease in PTEN (Fig 6C), and an increase in P-Akt/Akt (Fig 6D) in H/R-treated H9c2

cells. MiR-21 inhibitor alone transfection did not affect Notch1/PTEN/Akt signaling pathway.

These results suggested that miR-21 mediates kaempferol-induced the enhancement of the

Notch1/PTEN/Akt signaling pathway along with myocardial protection.

Fig 4. MiR-21 inhibitor blocks kaempferol-induced the inhibition on inflammatory response in H9c2 cells exposed to H/R. H9c2

cells were transfected with miR-21 inhibitor (miR-21 I) or negative control (NC) followed by treatment with kaempferol (20 μM) for 2

h and then co-treatment with H (6 h)/R (12 h). The levels of IL-1β (A), IL-8 (B), TNF-α (C) and IL-10 (D), and the activity of iNOS

were determined by ELISA, respectively. (F) The content of NO was analyzed by the Nitrate/Nitrite Assay Kit. Data are presented as

the means ± SD, n = 3. Compared with the control group, #P< 0.05, ##P< 0.001; compared with the H/R group, �P< 0.05,
��P< 0.01; compared with the Kae + H/R group, NSP> 0.05; compared with the Kae + H/R + NC group, $P< 0.05, $$P< 0.01. Kae,

kaempferol; H/R, hypoxia/reoxygenation.

https://doi.org/10.1371/journal.pone.0241007.g004
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Fig 5. Kaempferol blocks H/R-induced the inhibition on Notch1/PTEN/Akt signaling pathway in H9c2 cells exposed to H/R. H9c2 cells were pretreated with

kaempferol (20 μM) for 2 h and then co-treated with H/R. (A) Protein expressions were measured by Western blot analysis. Quantitative analysis of Notch1 (B), PTEN

(C), and P-Akt/Akt (D) normal to GAPDH. Data are presented as the means ± SD, n = 3. Compared with the control group, ##P< 0.01; compared with the H/R group,
�P< 0.05, ��P< 0.01. H9c2 cells were transfected with control siRNA and Notch1 siRNA, respectively. (E) Western blot analysis for Notch1 normal to GAPDH. Data

are presented as the means ± SD, n = 3. Compared with the control group, NSP> 0.05; compared with the control siRNA group, ��P< 0.01. H9c2 cells were transfected

with control siRNA or Notch1 siRNA followed by treatment with kaempferol (20 μM) for 2 h and then co-treated with H/R. (F) RT-PCR for mRNA level and

Quantitative analysis. (G) CCK-8 assay for cell viability. (H) LDH detection kit for LDH activity in cellular supernatant. Data are presented as the means ± SD, n = 3.

Compared with the control group, ##P< 0.001; compared with the H/R group, ��P< 0.01; compared with the Kae + H/R + control siRNA group, $P< 0.05, $$P< 0.01.

Notch1, neurogenic locus notch homolog protein-1; PTEN, phosphatase and tensin homolog deleted on chromosome ten.

https://doi.org/10.1371/journal.pone.0241007.g005
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Discussion

In the present study, the underlying protective mechanisms of kaempferol on cardiac cell

injury in response to H/R challenge were investigated. We found that miR-21 mediates the

profound myocardial protective effect of kaempferol against H/R injury by reducing oxidative

stress and informatory response. Additionally, the Notch1/PTEN/Akt signaling pathway con-

tributed to the therapeutic effect of kaempferol on H/R injury. Furthermore,miR-21 was

Fig 6. MiR-21 inhibitor abolishes kaempferol-induced the activation of Notch1/PTEN/Akt signaling pathway in H9c2 cells exposed to H/R. H9c2

cells were transfected with miR-21 inhibitor (miR-21 I)or negative control (NC) followed by treatment with kaempferol (20 μM) for 2 h and then co-

treatment with H (6 h)/R (12 h). (A) Western blot analysis for protein expression. (B) Quantitative analysis of Notch1 expression (C), PTEN expression,

and (D) P-Akt/Akt. Data are presented as the means ± SD, n = 3. Compared with the control group, #P< 0.05, ##P< 0.001; compared with the H/R

group, �P< 0.05, ��P< 0.01; compared with the Kae + H/R group, NSP> 0.05; compared with the Kae + H/R + NC group, $P< 0.05, $$P< 0.01.

https://doi.org/10.1371/journal.pone.0241007.g006
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required for kaempferol-induced the activation of Notch1/PTEN/Akt signaling pathway H9c2

cells exposed to H/R. Taken together, these results identified a specific mechanism by which

kaempferol attenuates H/R injury in H9c2 cells via promoting Notch1/PTEN/Akt signaling

pathway in miR-21-dependent manner.

Studies have proved that many flavonoids possessed unique antioxidants and protection

against myocardial I/R injury [45–47]. Kaempferol, a naturally occurring flavonoid, also has a

very good antioxidant, anti-inflammatory, and cardioprotective properties in myocardial I/R

injury [11, 12]. Kaempferol mitigates myocardial ischemic injury by attenuating inflammation

and apoptosis in rats [12]. The study from Zhen Guo et al. also reveals that kaempferol protects

cardiomyocytes against anoxia/reoxygenation-induced injury through inhibiting mitochon-

dria-mediated apoptosis pathway [48]. Analogously, the present study confirmed that kaemp-

ferol pretreatment attenuates H/R-induced cytotoxicity and apoptosis in H9c2, indicating the

cardioprotection of kaempferol against H/R injury. However, the underlying mechanism of

kaempferol under H/R injury remains unclear.

MicroRNA-21 (miR-21) is a highly specific miRNA in heart, which can be potential thera-

peutic targets for the treatment of cardiovascular-related diseases, such as heart failure [49],

atherosclerosis [50], and myocardial infarction [51]. More recently, the functions of miR-21

inhibitor in myocardial I/R injury have received significant attention. Y-Q Pan et al. report

that myocardial I/R injury leads to a significant decreased miR-21 expression, and miR-21

overexpression effectively inhibited myocardial apoptosis and inflammatory factors release in

myocardial I/R-administrated rats [26]. Other researches also reveal that miR-21 mediates a

variety of myocardial protective drugs against myocardial I/R injury [29, 52]. Interestingly, a

study confirms that kaempferol inhibits vascular smooth muscle cell migration by modulating

miR-21 expression [53]. However, the role of miR-21 in the protective effects of kaempferol on

myocardial I/R injury have not been reported. In the present study, the results firstly revealed

that kaempferol pretreatment remarkably increases miR-21 expression during H/R in H9c2

cells. And, loss-of-function experiments confirmed that down-regulation of miR-21 attenuates

the protective effects of kaempferol against H/R-induced cytotoxicity and apoptosis. These

data indicated that miR-21 mediates the cardioprotection of kaempferol against H/R injury.

However, the molecular mechanisms involved in the contribution of miR-21 to the cardiopro-

tection of kaempferol remain elusive.

More and more studies confirm that kaempferol protects against I/R injury by attenuating

oxidative stress, inflammation, and apoptosis [12, 13]. Consistent with these studies, our find-

ings showed that kaempferol decreases ROS generation and MDA content and increases SOD

and GSH-Px activities in H9c2 cells exposed to H/R. Additionally, kaempferol reduced pro-

inflammatory cytokinesIL-1β, IL-8, and TNF-α levels and promoted anti-inflammatory cyto-

kine IL-10 level as well as attenuating iNOS activity and NO level under H/R condition. These

results indicated that kaempferol elicited cardioprotection against I/R injury depending on it’s

anti-oxidant and anti-inflammatory activities. Hai-Xiang Xu et al. prove that miR-21 inhibitor

exacerbates oxidative stress and attenuates the antioxidative defense system induced by H/R

[27]. Another study reveals that miR-21 mediates the protective effects of hydrogen sulfide

against ischemia injury through attenuating inflammatory injury in cardiomyocytes [54]. Con-

sistent with these studies, the present showed that miR-21 inhibitor eliminates kaempferol-

induced anti-oxidant and anti-inflammatory activities in H/R-treated H9c2 cells. These results

suggested that miR-21 contributes to the anti-oxidant and anti-inflammatory activities of

kaempferol during H/R injury.

The Notch1 signaling pathway regulates a wide range of physiological processes, including

cell proliferation, apoptosis, transcriptional regulation, and ROS generation, playing important

regulatory functions during I/R process [33–35]. Previous studies reveal that pharmacological
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activation of the Notch1 signaling pathway attenuated myocardial oxidative stress and inflam-

mation and preserved heart function during I/R injury [55, 56], and knockdown of Notch1

exacerbated cardiac damage following I/R damage by promoting oxidative stress [57]. On the

other hand, Liming Yu et al. prove that Notch1/Hairy and enhancer of split (Hes)-mediated

activation of phosphatase and tensin homolog (PTEN)/Akt signaling plays a crucial role in

polydatin-induced protection against I/R injury by ameliorating oxidative/nitrative stress

damage [35]. However, there are few studies on the role of the Notch1 signaling pathway in

the biological function of kaempferol. Our results showed that kaempferol promotes Notch1

expression, inhibits PTEN expression, and enhances Akt phosphorylation in H9c2 cells

exposed to H/R, indicating the activation of Notch1/PTEN/Akt signaling pathway induced by

kaempferol during H/R. Besides, knockdown of Notch1 induced by Notch1 siRNA reversed

the protection of kaempferol against H/R injury. These results indicated that promoting

Notch1/PTEN/Akt signaling pathway contributes to the cardioprotection of kaempferol

against H/R injury.

The research draws out the crosstalk between miR-21 and the Notch1/PTEN pathway in

Human Colorectal Cancer [58]. Jian Cao et al. demonstrates that miR-21 cooperate to modu-

late the proliferation of vascular smooth muscle cell via regulating Notch2signaling pathway

[37]. Notably, during I/R and H/R, forced miR-21 expression promotes Akt signaling activity

via suppressing PTEN expression and further inhibited apoptosis and cardiocyte injury [59].

However, the effects of miR-21 on the Notch1/PTEN/Akt pathway under the cardioprotection

of kaempferol have not been explored. In the present study, our results further found that

miR-21 inhibitor reverses kaempferol-induced the activation of Notch1/PTEN/Akt signaling

pathway under H/R condition in H9c2 cells, indicating that kaempferol protects H9c2 cells

against H/R injury by promoting Notch1/PTEN/Akt signaling pathway in a miR-21-depen-

dent manner.

However, there is still more to explore behind these experimental results. Firstly, our study

is limited to in vitro cell experiment, it is of great necessity to perform the animal investigation.

Secondly, other study demonstrates that the Notch pathway controls miR-21 expression. Dur-

ing myocardial I/R injury, the possible interplay between miR-21 and the Notch1 signaling

pathway has not been further investigated. Thirdly, how miR-21 participates in the regulation

of kaempferol on Notch1/PTEN/Akt signaling pathway during myocardial I/R injury remains

to be further studied.

Taken together, the results showed that miR-21 mediates the protection of kaempferol

against H/R injury by inhibiting oxidative stress and inflammation via promoting Notch1/

PTEN/Akt signaling pathway in cardiomyocytes.
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