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Abstract: Prostate cancer (PCa) is one of the leading malignant tumors in US men. The lack of under-
standing of the molecular pathology on the risk of food supply chain exposures of environmental
phenol (EP) and paraben (PB) chemicals limits the prevention, diagnosis, and treatment options.
This research aims to utilize a risk assessment approach to demonstrate the association of EP and
PB exposures detected in the urine samples along with PCa in US men (NHANES data 2005–2015).
Further, we employ integrated bioinformatics to examine how EP and PB exposure influences the
molecular pathways associated with the progression of PCa. The odds ratio, multiple regression
model, and Pearson coefficients were used to evaluate goodness-of-fit analyses. The results demon-
strated associations of EPs, PBs, and their metabolites, qualitative and quantitative variables, with
PCa. The genes responsive to EP and PB exposures were identified using the Comparative Toxicoge-
nomic Database (CTD). DAVID.6.8, GO, and KEGG enrichment analyses were used to delineate their
roles in prostate carcinogenesis. The plug-in CytoHubba and MCODE completed identification of the
hub genes in Cytoscape software for their roles in the PCa prognosis. It was then validated by using
the UALCAN database by evaluating the expression levels and predictive values of the identified
hub genes in prostate cancer prognosis using TCGA data. We demonstrate a significant association
of higher levels of EPs and PBs in the urine samples, categorical and numerical confounders, with
self-reported PCa cases. The higher expression levels of the hub genes (BUB1B, TOP2A, UBE2C,
RRM2, and CENPF) in the aggressive stages (Gleason score > 8) of PCa tissues indicate their potential
role(s) in the carcinogenic pathways. Our results present an innovative approach to extrapolate and
validate hub genes responsive to the EPs and PBs, which may contribute to the severity of the disease
prognosis, especially in the older population of US men.

Keywords: environmental phenols; paraben; prostate cancer; gene ontology; NHANES; protein–
protein interaction

1. Introduction

The United States Food and Drug Administration (FDA) and the Environmental Pro-
tection Agency (EPA) estimate more than 10,000 chemicals are added directly or indirectly
to the human food supply chain [1,2]. These occurrences have led to investigations in-
volving the association of the toxic effects of these chemicals on cancer and other chronic
diseases [3,4]. The increasing concern regarding human exposure to endocrine disrupt-
ing chemicals (EDC) and their toxic effects on cancer and chronic diseases is evident by
the sheer number of scientific publications in the last two decades (Figures S1 and S2).
Concomitantly, endocrine-disrupting properties of environmental phenols (EP) and paraben
(PB) exposures to humans have also been suggested in laboratory research and animal
models [5].
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Prostate cancer (PCa) is the most prevalent hormone-dependent cancer and the
second leading cause of cancer deaths in US men. In 2021, there were an estimated
248,530 new cases (and 34,130 deaths) in the US men [6], an approximate 56,600 increase
from 191,930 cases reported in 2020 [7]. The highest number of PCa cases is diagnosed in
men >65 years and older and in non-Hispanic Blacks with 60% [6,8]. Studies indicate that
heritability and germline mutations of BRCA1 and BRCA2 may play a significant role in
developing PCa, contributing to approximately 57% of the cases [7,9,10]. Studies also show
that EDCs exposure in early life increases susceptibility to prostate cancer in rodent models
and the association of elevated urinary concentration with PCa in humans [11,12]. There is
widespread use of products containing EPs and PBs with endocrine disrupting properties;
therefore, their exposure is prevalent. The exposure can occur through ingestion, absorption
through the skin, or inhalation. Women and children tend to be more exposed than men
given the types of products in which these chemicals are used. We selected EPs (including
BPA) and PBs for our investigation because they are listed in the EPA’s existing Toxic
Substances Control Act (TSCA) to ascertain whether they present an extreme risk to hu-
man health and environmental contamination under the circumstances of their use [13,14].
In addition, The National Health and Nutrition Examination Survey (NHANES) datasets
have been intensively used to investigate the association between chemicals, metabolites,
and different chronic diseases and cancers [15–21]. Assuming the potentially toxic effects,
several studies, as well as samples collected by NHANES, monitored specific EP and PB and
their metabolite concentrations in the serum [22,23], urine [22,24], and breast milk [22,25].

Several EPs were considered in this study because of their suggested endocrine dis-
rupting roles in different cancers due to their estrogenic or androgenic action and a possible
connection with PCa [26,27]. BPA [(CH3)2 C(C6H4OH)2)] is an organic and synthetic com-
pound utilized in the production of polycarbonate plastics, epoxy, and phenolic resins [28].
Ingestion of BPA is recognized as the principal route of human exposure (>90%), which is
estimated at around 3 to 11 µg /kg/BW/daily [28,29], compared with dust at 0.03 to 0.3 µg
/daily (<5%) [30], thermal paper at 0.5 to 1.3 µg /daily (<5%) [31], and dental surgery at
0.2 µg /daily µg /daily (<5%) [32]. BPA mimics weak estradiol and binds to estrogen recep-
tors influencing cell proliferation and growth modifications to contribute to the spreading
and progressions of ovarian [33,34], cervical [35], breast [36], and prostate [37] cancers.
The induction of carcinogenesis by BPA in animal models has also been studied [38–41] to
show the incidence of prostate neoplasia and neoplasms. Benzophenone-3 [C14H12O3] is
an organic solvent found in products such as food packaging, lotion, and sunscreen with a
half-life between 5 and 10 h [42]; Triclosan [C12H7Cl3O2] is used as a germ-killing agent
with a half-life of nearly 10 to 15 h [43]; and 4-tert-Octyl phenol [C14H22O] is an alkylphenol
utilized to produce anionic surfactants. The PBs are organic and estrogenic chemicals with
suggested endocrine disrupting roles with a half-life of fewer than 24 h and are broadly
used in food and beverage processing, pharmaceutical products, and personal care prod-
ucts [5,23,44]. The most utilized PBs are Methylparaben [C8H8O3), Ethylparaben [C9H10O3],
Propylparaben [C10H12O3], and Butylparaben [C11H14O3]. The chemical structures of all
the EPs and PBs investigated in this study are presented in Figure S3. PB compounds
show higher estrogenic activity in a stably transfected transcriptional activation assay
(STTA) compared to the cell proliferation assay [45] and are detectable in human urine
samples [45]. These EPs and PBs were also continuously measured in the urine samples
during the five cycles of NHANES data (2005–2015).

Epidemiological and statistical association studies of EDCs or their metabolites with
various human cancers lack information on the underlying causality of the exposures.
The PSA is a prototypic androgen receptor that is utilized as one of the early diagnostic
biomarkers for scanning PCa. However, there remain uncertainties in screening for PCa
by PSA levels, which are influenced by various stimuli, ranging from inflammation to
sexual activity, leading to overdiagnosis and overtreatment of PCa [46,47]. Some stud-
ies have determined numerous differentially expressed genes (DEGs) and biomarkers
through microarrays analysis in the various biological processes and pathways of PCa
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progression [46,48–51]. The lack of understanding of the molecular pathology on the risk
of environmental phenol (EP) and paraben (PB) chemical exposures further limits the pre-
vention, diagnosis, and treatment options. Therefore, to strengthen the association of the
EPs and PBs with PCa, it is essential to investigate the molecular pathogenesis of prostate
carcinogenesis. The genes responsive to EP and PB exposures were analyzed using curated
databases of the Comparative Toxicogenomic Database (CTD) and DAVID.6.8, and GO and
KEGG enrichment analyses to delineate the roles of DEG in prostate carcinogenesis.

In this study, we: (1) applied a risk assessment approach to investigate the association
of PCa cases with the levels of EPs and PBs in the urine samples of US men and 17-
epidemiological covariates in the US men by comprehensibly utilizing the NHANES
(2005–2015) data, and (2) investigated various influenced pathways of EPs and PBs in
the etiology of PCa to discover hub genes for the development of robust diagnostics or
therapeutic molecular targets for US men.

2. Results
2.1. Descriptive Statistics for Male Population—NHANES Data (2005–2015)

There were 4592 men of ≥20 years of age included in this study for which EPs and
PBs NHANES data were publicly available for five cycles between the years 2005 and
2015. These individuals responded to the medical condition questionnaire. Among the
4592 male participants, 4440 (96.7%) did not report PCa incidence, while 152 (3.7%) reported
PCa diagnosis (Table 1) on their medical questionnaire. There were nine (0.2%), sixty-one
(1.4%), and eighty-one (1.7%) reported cases of PCa in the age groups of 20–49, 50–69,
and ≥70, respectively. There were more men of non-Hispanic White ethnicity among the
non-cases (46.1%) and in the PCa cases (1.7%) compared with the non-Hispanic Blacks and
others in the selected population for this study. The BMI records in the study population
were categorized as normal (<25 kg/m2), overweight (25 to 30 kg/m2), and obese (≥30)
for 39.2%, 30.6%, and 30.2%, respectively, of the selected population. The annual family
income was reported to be ≤$24,999 (28.1%) and $25,000 to $54,999 (32.2%) in the study
population, including cases and non-cases, and 54.9% of the population had ≤12th grade
of education only. The record showed that 68.9% of the population reported yes to alcohol
consumption, 74.7% were born in the US, 55.5% reported no physical activity, and 61.8%
stated that they did not eat frozen food. Approximately 50% of the respondents were
smokers. To consider the physiological conditions of the included subjects in this study, we
recorded that 96.7% had no incidence of liver disease, and 96.6% had no incidence of kidney
disease (Table 1). When the population filled out the questionnaire, the mean bodyweight
of the population with reported cancer cases was 86 Kg, and their mean age was 69 years
and over. The mean bodyweight of the subjects without PCa was 76 Kg, and their mean
age was found to be 50 years (Table 2). The mean serum concentrations of total cholesterol,
LDL, and triglycerides were measured to be higher in the men with PCa in groups (228,
199, 246 mg/dL, respectively) than the men who did not report PCa diagnosis (179, 106,
98 mg/dL, respectively), as shown in Table 2.

2.2. EP and PB Levels in the Urine Samples of PCa Subjects

Table 3 shows the statistical summary of EPs and PBs by PCa status. The means of
EPs and PBs levels were significantly higher for seven metabolites, except Propylparaben,
in the men who reported PCa diagnosis than males who reported no PCa diagnosis.
The mean levels of Eps, such as BPA, Benzophenone-3, 4-Tert-Octyl Phenol, and Triclosan,
were significantly higher in PCa cases compared with non-cases (8.0, 2.5 ng/mL), (21.2,
7.1 ng/mL), (0.34, 0.16 ng/mL), and (17, 9.5 ng/mL), respectively. The mean levels of
the three PBs, Ethylparaben, Methylparaben, and Butylparaben, were significantly higher
in PCa cases compared with non-cases (12.7, 2.3 ng/mL), (16.6, 9.4 ng/mL), and (15.7,
3.6 ng/mL), respectively (Table 3 and Figure 1). The maximum urine levels reported in
the PCa cases for EPs and PBs were Benzophenone-3 (29.0 ng/mL) and Methylparaben
(25.0 ng/mL).
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Table 1. Descriptive statistics (categorical variables) for PCa status and selected covariates among
men ≥ 20 years of age; NHANES 2005–2015.

Variables Male Population (n = 4592)

PCa Cases Non-Cases

Total Population (n, %) (152, 3.3%) (4440, 96.7%)

Age (years, %)

20–49 9 (0.2%) 2195 (47.8%)
50–69 61 (1.4%) 1481 (32.3%)
≥70 81 (1.7%) 764 (16.6%)

BMI (kg/m2, %)

≤25 35 (0.8%) 1763 (38.4%)
25 to 30 42 (0.9%) 1362 (29.7%)
≥30 75 (1.6%) 1315 (28.6%)

Race/ethnicity (n, %)

Non-Hispanic White 80 (1.7%) 2115 (46.1%)
Non-Hispanic Black 46 (1.0%) 1387 (30.2%)

Others 26 (0.6%) 938 (20.4%)

Income (Annual Family
Income) (n, %)

≤$24,999 47 (1.0%) 1243 (27.1%)
$25,000 to $ $54,999 56 (1.2%) 1423 (31.0%)
$55,000 to $74,999 22 (0.5%) 882 (19.2%)
≥$74,999 27 (0.6%) 892 (19.4%)

Education (n, %)

≤12th grade 78 (1.7%) 2444 (53.2%)
>12th grade 74 (1.6%) 1999 (43.5%)

Alcohol use (n, %)

Yes 115 (2.5%) 3050 (66.4%)
No 37 (0.8%) 1390 (30.3%)

Ever smoked (n, %)

Yes 99 (2.2%) 2218 (48.3%)
No 53 (1.1%) 2222 (48.4%)

US Birth (n, %)

Yes 124 (2.7%) 3307 (72.0%)
No 28 (0.6%) 1133 (24.7%)

Physical activity (n, %)

Yes 19 (0.4%) 2025 (44.1%)
No 133 (2.9%) 2415 (52.6%)

Eat frozen food (n, %)

Yes 131 (2.9%) 1624 (35.4%)
No 21 (0.5%) 2816 (61.3%)

Liver diseases (n, %)

Yes 0 (0.0%) 2 (0.04%)
No 152 (3.3%) 4438 (96.7%)

Kidney disease (n, %)

Yes 1 (0.02%) 3 (0.1%)
No 151 (3.28) 4437 (96.6%)
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Table 2. Descriptive statistics (numerical variables) PCa status and selected covariates among
men ≥ 20 years of age; NHANES 2005–2015.

Variables
Male Population (n = 4592)

PCa Non-Cases

Total Population (n, %) (152, 3.0%) (4440, 97.0%)
Age (years; mean ± se) 69.0 ± 0.9 50.0 ± 0.3

Bodyweight (kg; mean ± se) 86.0 ± 1.3 76.0 ± 0.3
Serum Total Cholesterol (mg/dL, mean ± se) 228.0 ± 6.0 179.0 ± 0.6

Serum HDL (mg/dL, mean ± se) 51.0 ± 1.2 50.0 ± 0.2
Serum LDL (mg/dL, mean ± se) 199.0 ± 7.0 106.0 ± 0.5

Serum Triglycerides (mg/dL, mean ± se) 246.0 ± 8.3 98.0 ± 0.7

Table 3. EPs and PBs levels (ng/mL) in the urine samples of men≥ 20 years of age with concentrations≥ LOD;
NHANES 2005–2015.

BPA

Number Mean Std Dev Std Err Minimum Maximum p-value

Non-cases 4440 2.5 2.4 0.04 0.28 16.3
<0.05

Cases 152 8.0 3.8 0.3 1.1 17.6

Benzophenone-3

Number Mean Std Dev Std Err Minimum Maximum p-value

Non-cases 4440 7.1 6.5 0.1 0.28 26.1
<0.05

Cases 152 21.2 3.7 0.3 12.0 29.0

4-Tert-Octyl Phenol

Number Mean Std Dev Std Err Minimum Maximum p-value

Non-cases 4440 0.16 0.13 0.001 0.14 3.8
<0.05

Cases 152 0.34 0.5 0.04 0.14 3.5

Triclosan

Number Mean Std Dev Std Err Minimum Maximum p-value

Non-cases 4440 5.9 4.5 0.01 1.6 20.8
<0.05

Cases 152 17.0 3.3 0.3 10.0 23.6

Butylparaben

Number Mean Std Dev Std Err Minimum Maximum p-value

Non-cases 4440 0.71 1.6 0.03 0.14 19.9
0.2645

Cases 152 0.60 0.9 0.07 0.14 3.8

Ethylparaben

Number Mean Std Dev Std Err Minimum Maximum p-value

Non-cases 4440 2.3 3.0 0.05 0.71 18.2
<0.05

Cases 152 12.7 4.2 0.3 6.00 19.5

Methylparaben

Number Mean Std Dev Std Err Minimum Maximum p-value

Non-cases 4440 9.4 4.3 0.07 0.71 22.6
<0.05

Cases 152 16.6 3.8 0.3 8.10 25.0
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Table 3. Cont.

Propylparaben

Number Mean Std Dev Std Err Minimum Maximum p-value

Non-cases 4440 3.6 3.9 0.05 0.14 17.8
<0.05

Cases 152 15.7 3.0 0.03 6.9 21.3
Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 6 of 32 
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Figure 1. EPs & PBs levels (mean, ng/mL) by PCa for men with concentrations ≥ LOD; NHANES
2005–2015. * p < 0.05. The four parts are (A) men with age ≥ 20 years, (B) men with age between
20–49 years, (C) men with age between 50–69 years, and (D) men with age ≥ 70 years).

2.3. Association of Metabolite Levels, Categorical Variables, and PCa

Tables S1–S6 show the arithmetic means of the urine levels of six EPs and PBs for PCa
cases and non-cases for chosen variables in the study population. The arithmetic means
of the six EP and PB metabolites were significantly higher in PCa cases than in non-cases,
particularly in groups 50–69 and ≥70years old. Table 4 presents the age, weight, and lipid
profile levels (mg/dL) in the male populations. The arithmetic means age (69 years old)
for the PCa cases was significantly higher compared with the mean age (50 years old) for
non-cases. The arithmetic means weight (86 Kg) for the PCa cases was significantly higher
than the mean age (76 Kg) for non-cases. For the lipid profiles, the total serum cholesterol
(228 mg/dL), serum LDL (199 mg/dL), and serum triglycerides (247 mg/dL) for the PCa
cases were significantly higher compared with the total serum cholesterol (179 mg/dL),
serum LDL (106 mg/dL), and serum triglycerides (98 mg/dL) for non-cases. However, the
serum HDL was not significantly different between PCa cases (51 mg/dL) and non-cases
(50 mg/dL) in the population.
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Table 4. Age, weight, and lipid profile levels (mg/dL) in the male population; NHANES 2005–2015.

Variables
Male Population (n = 4592)

PCa Cases Non-Cases p-Values

Total Population (n, %) (152, 3.7%) (4440, 96.3%)

Age (years; mean ± se) 69.0 ± 0.9 50.0 ± 0.27 <0.05

Bodyweight (kg; mean ± se) 86.0 ± 1.3 76.0 ± 0.3 <0.05

Serum Total Cholesterol (mg/dL, mean ± se) 228 ± 0.9 179 ± 0.6 <0.05

Serum HDL (mg/dL, mean ± se) 51 ± 1.0 50 ± 0.2 0.1928

Serum LDL (mg/dL, mean ± se) 199 ± 1.0 106 ± 0.5 <0.05

Serum Triglycerides (mg/dL, mean ± se) 247 ± 0.8 98 ± 0.7 <0.05

Statistical analysis included coefficient of determination (R2) to test a good-ness-of-fit
for linear regression models and Pearson correlation coefficients (rs) to examine the strength
and direction of the association between the eight EPs and PBs metabolites and numerical
variables, as described in the PCa cases (Table 5). Age showed a strong relationship in
the linear regression model and a very high positive correlation with BPA (R2 of 0.9; rs of
0.9), Triclosan (R2 of 0.9; rs of 0.9), Methylparaben, (R2 of 0.8; rs of 0.8), Benzophenone-3
(R2 of 0.7; rs of 0.8), and Propylparaben (R2 of 0.6; rs of 0.8). Bodyweight (BW) recorded
fitting for the linear regression model and a high positive correlation with BPA (R2 of 0.6;
rs of 0.8) and Ethylparaben (R2 of 0.5; rs of 0.7). Total cholesterol was determined higher
fitting for the linear regression model and a very high positive correlation with BPA (R2

of 0.9; rs of 0.9) and Triclosan (R2 of 0.7; rs of 0.8). Triglyceride was determined higher
fitting for the linear regression model and had a very high positive correlation with BPA
(R2 of 0.8; rs of 0.9) and Triclosan (R2 of 0.8; rs of 0.9), Benzophenone-3 (R2 of 0.7; rs of
0.8), Propylparaben (R2 of 0.7; rs of 0.8), and both Methylparaben and Ethylparaben (R2 of
0.6; rs of 0.8). LDL noted fitting for the linear regression model and a very high positive
correlation with BPA (R2 of 0.8; rs of 0.9) and Triclosan (R2 of 0.8; rs of 0.9), Benzophenone-3
(R2 of 0.7; rs of 0.9), and both Methylparaben and Ethylparaben (R2 of 0.7; rs of 0.9), and
Propylparaben (R2 of 0.6; rs of 0.8). HDL showed no fitting in the linear regression model
and a negligible correlation with all the metabolites. Butylparaben and 4-tert-octyl phenol
did not fit the linear regression model and had an insignificant correlation with all the
numeric variables (Table 5).

Table 5. Coefficient of determination (R2) and Pearson correlation coefficients (rs) between environ-
mental phenols and parabens and numeric variables for PCa cases population; NHANES 2005–2015.

Age Weight Total
Cholesterol HDL TRYGLY LDL

R2 rs R2 rs R2 rs R2 rs R2 rs R2 rs

Analyte

BPA 0.9 0.9 0.6 0.8 0.9 0.9 0.1 −0.2 0.8 0.9 0.8 0.9

4-tert-octyl phenol 0.003 0.01 0.01 0.01 0.02 0.2 0.006 −0.01 0.001 0.03 0.001 −0.03

Triclosan 0.9 0.9 0.4 0.6 0.7 0.8 0.03 −0.1 0.8 0.9 0.8 0.9

Benzophenone-3 0.7 0.8 0.4 0.6 0.6 0.8 0.001 0.01 0.7 0.8 0.7 0.9

Propyl paraben 0.6 0.8 0.3 0.6 0.5 0.7 0.003 −0.06 0.7 0.8 0.6 0.8

Butyl paraben 0.06 −0.3 0.001 −0.07 0.05 −0.2 0.001 0.03 0.03 −0.2 0.04 −0.2

Ethyl paraben 0.4 0.7 0.5 0.7 0.6 0.7 0.001 −0.07 0.6 0.8 0.7 0.9

Methyl paraben 0.8 0.8 0.4 0.6 0.5 0.7 0.01 −0.1 0.6 0.8 0.7 0.9
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This study selected the coefficient progression with Schwartz’s Bayesian criterion
(SBC) and SBC (or sometimes called Bayesian information criterion, BIC) criterion for
model selection. The BIC value increases as model complexity increases, and BIC decreases
with the likelihood increase. Therefore, a lower BIC is better. Seventeen variables were
examined by applying the stepwise regression procedure (forward and backward selection
combination). The final selected model is the equivalent to the forward and backward
methods until all the independent variables left in the model are significant or every
significant independent variable is added.

Figure 2 demonstrates that the selected quantitative and descriptive variables for the
models using Schwartz’s Bayesian criterion (SBC) showed significant association with
some EPs metabolites and PBs with PCa cases. BPA (along with higher values of total
cholesterol, age, LDL, weight, and BMI), Triclosan (along with higher age, LDL, BMI,
weight, and total cholesterol), Benzophenone-3 (along with more elevated LDL, age, and
BMI) associated significantly with PCa outcome. The selected variables for PCa cases
connected with environmental PBs metabolites are Ethylparaben (along with higher values
of LDL, triglyceride, weight, and age), Methylparaben (along with higher values of LDL,
age, BMI, weight, and total cholesterol), and Propylparaben (along with higher values of
triglyceride, age, LDL, physical activity, and total cholesterol). No association of variables
was observed in the case of 4-tert-octyl phenol and PCa.

For PCa cases, BPA, Benzophenone-3, and Triclosan showed more fitting for a lin-
ear regression model and a higher positive correlation with age, total cholesterol, LDL,
triglyceride, and weight. For PCa cases, Ethylparaben, Methylparaben, and Propylparaben
conferred more fitting for a linear regression model and a higher positive correlation with
LDL, triglyceride, total cholesterol, weight, and age. Further, 4-tert-octyl phenol and
Butylparaben did not fit the linear regression model and negatively correlated with all the
numerical variables.

The three EPs (BPA, Triclosan, and Benzophenone-3) showed higher fit in linear
regression models, higher linear relationship, and higher Pearson correlation coefficients of
strength and direction of the association with all the numerical variables (except with weight
and HDL) in the PCa cases than non-cases. The three PBs (Ethylparaben, Methylparaben,
and Propylparaben) showed higher fit in linear regression models, higher liner relationship,
and higher Pearson correlation coefficients strength and direction of the association with
all the numerical variables (except with weight and HDL) in the PCa cases than non-cases.
The six above metabolites showed higher fit in linear regression models, a higher linear
relationship, and higher Pearson correlation coefficients of strength and direction of the
association with a weight in PCa cases than in non-cases.

2.4. Odds Ratio and Confidence Intervals

The estimated odds ratios (OR) and 95% confidence intervals (OR, 95% CI) for the
risk of having PCa, and the eight EPs and PBs metabolites are presented in Table 6.
After adjusting for age, weight, total cholesterol, HDL, triglyceride, and LDL, BPA, Tri-
closan, Benzophenone-3, Propylparaben, Ethylparaben, and Methylparaben were observed
to be significantly associated with PCa. The strongest associations with PCa risk among the
metabolites were found for Propylparaben (OR of 1.7, 95% CI: 1.56–1.76), and BPA (OR of
1.5, 95% CI: 1.43–1.56).

2.5. Gene Enrichment Analysis, PPI Network, Hub Gene Identification, and Validation Analysis

Our CTD analysis showed that there were 993 differentially influenced (upregulated
or downregulated) genes aligned with PCa outcome. The Venn diagram in Figure 3 shows
the genes influenced separately by BPA (636 genes), EPs (242 genes), and PBs (115 genes).
The overlapping influenced genes between (BPA and EP), and (BPA and PB), and (EP
and PB) are (157 genes), and (33 genes), and (one gene), respectively. BPA was separated
from EP chemical groups because BPA influenced the highest number of genes separately
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(636 genes). Nonetheless, together, the EPs and PBs investigated in this study influenced
81 common genes that were associated with PCa.
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Figure 2. Coefficient progression with Schwartz’s Bayesian criterion (SBC) for PCa cases for the
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descriptive variables (total cholesterol LDL, triglycerides, age, BMI, weight, and physical activity).
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Table 6. Estimated odds ratios (95% CI) for risk of having PCa cases by the concentration of EP and
PB levels in the urine samples of men ≥ 20 years of age; NHANES 2005–2015.

Analytes
PCa Cases (n = 152)

Adjusted OR (95% CI) 1 Adjusted OR (95% CI) 2 Unadjusted OR (95% CI)

BPA 1.4 (1.33–1.53) a 1.3 (1.13–1.58) a 1.5 (1.43–1.56) a

4-tert-octyl phenol 0.9 (2.95–11.59) 0.8 (0.63- 1.99) 0.7 (0.53–1.57)

Triclosan 1.3 (1.26–1.40) a 1.4 (1.22–1.50) a 1.5 (1.41–1.55) a

Benzophenone-3 1.3 (1.21–1.33) a 1.2 (1.11–1.31) a 1.4 (1.36–1.50) a

Propyl paraben 1.5 (1.39–1.60) a 1.6 (1.38–1.71) a 1.7 (1.56–1.76) a

Butyl paraben 1.0 (0.87–1.21) 0.5 (0.33–0.73) a 0.97 (0.86–1.08)

Ethyl paraben 1.4 (1.34–1.49) a 1.3 (1.14–1.38) a 1.5 (1.44–1.56) a

Methyl paraben 1.3 (1.18–1.34) a 0.95 (0.84–1.08) 1.5 (1.44–1.60) a

1 Adjusted for age, weight, total cholesterol, HDL, TRYGLY, and LDL. 2 Adjusted for eight metabolites. a p < 0.05.
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Figure 3. Venn diagram generated from CTD analyses of genes that are influenced by the exposure of
BPA, EPs, and PBs separately or in combinations associated with the PCa outcomes. BPA was sepa-
rated from EP chemical groups because, separately, BPA influenced the highest number (636 genes).

The GO enrichment and KEGG pathway analysis were completed on the overlapping
genes utilizing the DAVID database, including the Gene Association Diseases Database
(GAD), BP, CC, MF, transcription factor binding sites (TFBS), and KEGG pathway. The sta-
tistically significant (p < 0.05) top ten terms of each enrichment analysis are assembled in
Tables S7 and S8. In Table S8, the gene ontology and pathway enrichment analysis were
significantly enriched in BP. They included their response to estradiol, positive regula-
tion of transcription from RNA polymerase II promoter, and their response to the drug.
These 81 overlapping genes were significantly enriched to suggest their presence in the var-
ious CCs of the protein complexes, nucleoplasm, and extracellular space. Moreover, these
81 genes were evaluated for their MF by enriching their significant transcription factor
binding, sequence-specific DNA binding, and steroid-binding. The KEGG signaling path-
way analysis showed that the genes were markedly enriched for the pathways in cancer,



Int. J. Mol. Sci. 2022, 23, 3679 11 of 31

PCa, Hepatitis B, colorectal cancer, and HIF-1 signaling. The transcription factor binding
sites enrichment analysis of these 81 genes in PCa by UCSC-TFBS showed the top five TFs
with the number of their target genes, as shown in Table 7.

Table 7. Transcription factor binding sites enrichment analysis of the EP and PB influenced 81 over-
lapping genes in PCa (UCSC-TFBS: University of California Santa Cruz (UCSC) Genome Browser—
Transcription factor binding sites). The highly significant-top five TF with the number of their target
genes is shown in this table.

TF Count p-Value Genes

1 TATA 52 7.29 × 10−4

FOXA1, TOP2A, GSK3B, CDKN1B, SERPINE1, BUB1B, FASLG,
NR3C1, SOX2, C CND1, PLAU, MYC, CASP3, DNMT3B, B2M,

ABCC4, SREBF1, UGT2B15, AR, ALDH1A2, IL1B, SELENOP, RARA,
CDH13, PPARA, MET, TP53, ATF3, PCNA, LHB, NR1I2, TWIST1,

CYP19A1, MAPK8, ERBB3, SULT1E1, HAO1, EGR1, PDHA1, PRRX1,
EGF, STAT3, IGF1, ESR1, ESR2, COL1A1, CENPF, CYP1A1, BCL2, SP5,

ID3, SHBG

2 CEBPB 51 7.29 × 10−4

FOXA1, GSK3B, CDKN1B, SERPINE1, BUB1B, FASLG, JADE2, HTR4,
NR3C1, CLU, SOX2, CDH1, MYC, DNMT3B, NCOA2, ABCC4,

SREBF1, AR, ALDH1A2, IL1B, SELENOP, RARA, CDH13, PPARA,
MET, ATF3, LHB, NR1I2, KLK3, KLK2, HSP90B1, CYP17A1, ERBB3,
HMOX1, HAO1, CD14, MAPK3, EGR1, PRRX1, NOS2, EGF, UBE2C,

IDH1, STAT3, IGF1, ESR1, ESR2, CENPF, CYP1A1, BCL2, SHBG

3 E2F 52 2.80 × 10−3

FOXA1, TOP2A, GSK3B, CDKN1A, CDKN1B, SERPINE1, BUB1B,
JADE2, NR3C1, CLU, SOX2, CCND1, MYC, STMN1, DNMT3B,

CYP1B1, NCOA2, ABCC4, SREBF1, AR, ALDH1A2, RARA, CDH13,
TP53, ATF3, PCNA, TWIST1, CYP19A1, HSP90B1, CYP17A1, ERBB3,

SULT1E1, HMOX1, HAO1, CD14, MUC4, MAPK3, EGR1, RRM2,
PRRX1, EGF, UBE2C, STAT3, IGF1, ESR1, ESR2, GNMT, CYP1A1,

BCL2, BAX, SP5, ID3

4 NFKAPPAB 36 3.06 × 10−3

TOP2A, CDKN1A, CDKN1B, TWIST1, FASLG, JADE2, NR3C1, HTR4,
CYP19A1, HSP90B1, CASP9, ERBB3, CCND1, PLAU, CDH1, MYC,

TNFSF10, DNMT3B, HMOX1, B2M, MAPK3, SREBF1, NCOA2, EGR1,
NOS2, EGF, STAT3, ESR1, AR, ALDH1A2, IL1B, BCL2, RARA, SP5,

CDH13, TP53

5 SRY 40 3.46 × 10−4

FOXA1, TOP2A, GSK3B, CDKN1B, NR1I2, SERPINE1, TWIST1,
BUB1B, JADE2, NR3C1, HTR4, CYP19A1, HSP90B1, CYP17A1, SOX2,

MYC, CYP1B1, MUC4, MAPK3, SREBF1, NCOA2, ABCC4, EGR1,
PRRX1, IDH1, STAT3, IGF1, ESR1, ESR2, VEGFA, AR, CENPF,

ALDH1A2, IL1B, SELENOP, BCL2, RARA, CDH13, PPARA, MET

1. TATA Box: p-Value = 7.29 × 10−4, connected with 51 genes
2. CEBPB: p-Value = 7.29 × 10−4, connected with 51 genes
3. E2F: p-Value = 2.80 × 10−3, connected with 52 genes.
4. NFKAPPAB: p-Value = 3.06 × 10−3, connected with 36 genes
5. SRY: p-Value 3.46 × 10−3, combined with 40 genes.

The GAD enrichment analysis of 81 overlapping common gene functions showed that
35 genes (CDKN1A, CDKN1B, LHB, SERPINE1, KLK3, KLK2, NR3C1, CYP19A1, CYP17A1,
CASP9, CCND1, PLAU, CDH1, MYC, DNMT3B, CYP1B1, CD14, NCOA2, NOS2, EGF,
UGT2B15, IGF1, ESR1, ESR2, GNMT, VEGFA, AR, IL1B, SELENOP, CYP1A1, BCL2, ID3,
PPARA, SHBG, TP53) have the highest significance value (1.54 × 10−27) in their association
with PCa.

The KEGG signaling pathway enrichment analysis for PCa for EP and PB influenced
81 overlapping genes and also showed that there are 25 genes (GSK3B, CDKN1A, CDKN1B,
KLK3, FASLG, HSP90B1, CASP9, MAPK8, CCND1, CDH1, MYC, CASP3, MAPK3, NOS2,
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EGF, STAT3, IGF1, VEGFA, AR, BCL2, RARA, BAX, BIRC5, MET, TP53) that were markedly
enriched with pathways in cancer (Table S8). In addition, there are 13 genes (BCL2, AR,
CASP9, CCND1, CDKN1A, CDKN1B, EGF, GSK3B, HSP90B1, IGF1, KLK3, MAPK3, and
TP53) that were markedly enriched for PCa pathways (Table S8). Moreover, in the KEGG
analysis, eight out of the 13 genes (BCL2, CASP9, CCND1, CDKN1A, EGF, HSP90B1,
MAPK3, and TP53) were identified and marked with the red star by the KEGG signal-
ing pathway for PCa (Figure 4). The analysis of the KEGG pathway of PCa aligned
key genes involved in carcinogen defenses (GSTP1), growth-factor-signaling pathways
(NKX3.1, PTEN, and p27), and androgen receptor (AR), which are critical determinants
of the PCa phenotype [46]. A protein–protein interactions (PPI) network was created
utilizing the STRING database tool. There were 81 nodes and 698 edges in the network,
with a local clustering coefficient of 0.37, average node degree 4.53, and PPI enrichment
p-value < 1.0 × 10−16, which demonstrated the PPI enrichment for the network was statis-
tically significant (Figure 5). Then, we used Cytoscape to identify hub genes among the
81 influenced EP and PB overlapping genes.
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Figure 4. The identification of key molecular alterations in PCa signaling KEGG pathway. Eight out
of 13 genes (BCL2, CASP9, CCND1, CDKN1A, EGF, HSP90B1, MAPK3, and TP53) were identified
and marked with the red star by KEGG signaling pathway for PCa.

The CytoHubba was utilized to explore important genes in the PPI network by im-
plementing DNMC and MCC to identify the hub genes of PCa. The results discovered
nine genes ranked as one (CCND1, VEGFA, EGF, MYC, CASP3, IGF1, STAT3, and TP53)
and two genes ranked as nine (ESR1 and CDH1) were considered as the most significant
(1.01 × 1012) hub genes in the network, as shown in Figure 6.
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Figure 5. STRING database analysis of the protein–protein interactions (PPI) networks for the
functional enrichment analysis yielded EPs and PBs influenced 81 overlapping genes (nodes) and the
number of 698 edges with degree > 7, and PPI enrichment p-value < 1.0 × 10−16.

We also compared our findings with another 11 studies, which have also used gene
datasets to identify the hub genes associated with the PCa. The following list summarizes
that only two genes (CDH1 and VEGFA) aligned with the previously published studies.

1. IKZF1, PPM1A, FBP1, SMCHD1, ALPL, CASP5, PYHIN1, DAPK1, and CASP8 [52].
2. KLK3, CDH1, KLK2, FOXA1, and EPCAM [48]
3. RPS21, FOXO1, BIRC5, POLR2H, RPL22L1, and NPM1 [49]
4. EPCAM, TWIST1, CD38, and VEGFA [46].
5. LMNB1, TK1, RACGAP1, and ZWINT [53].
6. IGF2, GATA5, F10, CFI, AGTR1, FOXA1, BZRAP1-AS1, and KRT8 [54].
7. PIK3R1, BIRC5, ITGB4, RRM2, TOP2A, ANXA1, LPAR1, and ITGB8 [55].
8. CDH1, BMP2, NKX3-1, PPARG, and PRKAR2B [56].
9. CDCA8, CDCA5, UBE2C, and TK1 [57].
10. PPFIA2, PTPRT, PTPRR, PRR16, CHRM2, KRT23, CYP3A4, CYP3A7, and DPYS, and

DUOXA1 [58].
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11. TSPAN1, BMPR1B, FOXA1, STEAP1, RCAN3, S100P, LYZ, SCGB3A1, IL8, and DPT [47].
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Figure 6. Identified hub genes by CytoHubba among the 81 overlapping genes. The top eleven nodes
are shown with a color scheme from red (highly important) to orange (important), and the top eleven
genes in the PPI network were calculated by MCC.

The results from the MCODE analysis of 81 genes show two modules. With a score
of 21.36, Module-1 included 25 genes (nodes) and 175 edges, and Module-2, with a score
of 5, included five genes (nodes) and 11 edges. A PPI network was then created by using
five genes (nodes) and ten edges, which is displayed in Figure 7. The genes identified
in the Module-2 network (top five clusters) containing five clustered proteins (BUB1B,
TOP2A, UBE2C, RRM2, and CENPF) were represented as hub genes for the subsequent
analysis. The MCODE research for Module-2 of the top five clusters containing seed protein
is highlighted in the square node shape responsible for forming the clusters.

The UALCAN database was utilized to validate the transcript expression levels of
five hub genes in 549 samples derived from the TCGA project for PCa (the threshold was
set as |log2FC| = 1, p < 0.05). The statistical samples contained 497 PCa and 52 normal
samples. As indicated in Figure 8, there was an obvious statistical significance (p < 0.001) for
all the hub genes’ expression levels (BUB1B, TOP2A, UBE2C, RRM2, and CENPF) in PCa
compared to normal samples. Moreover, Figure 9 shows the positive correlations between
candidate hub genes and Gleason’s score of the PCa samples. High expression levels of the
five hub genes were associated with advanced stages (Gleason score ≥ 8) and recurrence,
and the hub genes were significantly higher in the most aggressive PCa tissues (Gleason
score = 10). All the hub genes were highly expressed, with the statistical significance
(p < 0.001) for Gleason score = 9 with the highest aggressiveness and the poorest prognosis.
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Figure 7. The two modules were generated from the PPI network. (A) Module-1: associated with a
score of 21.36 and includes 25 genes (nodes) and 175 edges. (B) Module-2: associated with a score of
5; consists of five genes (nodes) and 10 edges.
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Figure 9. Box whisker plots indicating the different Gleason scores (6, 7, 8, 9, and 10) in the PCa and
the normal tissues from the TCGA dataset. Significantly high levels of five hub genes in PCa samples
are shown in panels: (A) UBE2C; (B), TOP2A; (C) BUB1B; (D) RRM2; and (E) CENPF. Data are
mean ± SE. ** p < 0.05; *** p < 0.001.

3. Discussion

Numerous studies have suggested that EPs and PBs may have mixed or single effects
(agonists or antagonists) on sex hormones [59]. In animal models, exposures to specific EPs
and PBs are associated with the pathogenic effects in obesity [22], thyroid dysfunction [60],
breast cancer [61], and PCa [62]. It is suggested that the primary route of EP and PB exposure
is by ingestion via the food supply chain. For example, canned food is recognized as the
primary source of BPA exposure [29,63]. Despite the challenges associated with the half-life
and the measurements of the conjugated or free forms of EP [5,42,43,63] and PB [5,19,20,43],
urine is by far the most accepted biological sample to evaluate their exposure. Previous
studies have also reported EP [5,18,25] and PB [5,64] concentration in the urine samples as
indicators of daily exposures in male populations. The current research assessed the levels
of four EP and four PB metabolites in the urine samples of the male population accessed
from the NHANES data (2005 to 2015). This cross-sectional study of US men >20 years
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demonstrated higher urine levels of EP (BPA, Benzophenone-3, 4-Tert-Octyl Phenol, and
Triclosan) and PB (Propylparaben, Ethylparaben, and Methylparaben) were significantly
associated with an increased risk of PCa in the US men’s population. In our cross-sectional
study, the three EPs and four PBs also showed an increased association with the categorical
variables of age and individual body weights in the PCa cases. The fact that our study
shows the association of PCa cases with the higher levels of EP and PB found in the urine
samples of US men during the ten years (2005–2015—five cycles of NHANES data) is an
important finding, especially when it shows a significantly higher association in the higher
age group of the PCa cases. It is a consistent observation that, in the higher age group,
higher levels of EPs and PBs were found to be associated with the self-reported PCa cases
in all five cycles of NHANES data (2005–2015) analyzed in this study. The study also
alleviated the selection biases in the observation of the significant association of EPs and
PBs with PCa in higher age groups by bootstrapping the data (data not shown here) in
different age groups.

In the follow-up analysis, we considered specific co-variates that may have increased
the higher risks of EP and PB exposures in the PCa cases. Upon analysis of the NHANES
(2005–2015) questionnaires filled out by the subjects in this study, high BPA levels with PCa
were significantly associated with higher BMI and those who consumed canned and frozen
food frequently. This observation aligns with studies that have also shown that consump-
tion of fast food and canned food places the older population at a higher risk for weight
gain and cancers [17,63,65]. Differences between race/ethnicity can be associated with
variations in food habits in adults, especially men, utilizing unhealthy dietary behaviors.
Their food choices and consumption of unhealthy foods, such as processed foods, frozen
foods, canned foods, and soft drinks, are associated with higher BPA exposures [17,65].
Benzophenone-3 was significantly higher in the PCa cases when compared with non-cases.
Furthermore, it was noted in this study that Benzophenone-3, a chemical detected in the
plastic packaging and personal products (sunscreen and lotion), has the highest metabolite
level (21.2 ng/mL) present in the urine samples of the men reported having been diagnosed
with PCa. Another study has reported that Benzophenone-3 was detectable in most urine
specimens and in >30% of the blood samples of the populations reported to have been
diagnosed with cancers [5,42]. We found that Benzophenone-3 is present in significantly
higher levels in older age, non-Hispanic Whites than non-Hispanic Blacks, and those who
eat canned and frozen food regularly than those who do not eat canned and frozen food.
Other research findings suggest that regular personal care products are an important source
of exposure to phenols and diethyl phthalate in adults and provide data on children’s
exposure to selected phenols and phthalates [66].

High Triclosan concentrations in adipose tissue have been reported in the older sub-
jects, with higher BMI and overweight related to the consumption of unhealthy foods [26,60].
Still, these studies did not analyze any particular disease outcome. The urine level of Tri-
closan in our study was also significantly higher in the higher age group and higher BMI
associated with PCa cases. PB chemicals are extensively used in various food products
as antimicrobial preservatives and pharmaceuticals [5,20,24,43]. Therefore, we again as-
sumed ingestion as the primary route of exposure. PB metabolites were detectable more
commonly in the urine samples than in the serum and human milk [5]. An earlier study [5]
showed that Propylparaben and Methylparaben had the highest urine levels, with mean
values of 9.1 and 43.9 mg/dL, respectively. Moreover, Ethyl, Methyl, and Butylparaben
were inversely correlated with BMI ≥30 kg/m2 (obesity) and positively associated with
age. These results corroborate earlier studies [5,19,24]. Using NHANES data (2005–2015),
our investigation found that all the urine levels of evaluated PB, except Ethylparaben,
were significantly higher in the PCa cases than the non-cases. Besides, PB chemicals were
higher in the non-Hispanic White men than non-Hispanic Black men. Similar results were
obtained in the non-Hispanic White men and non-Hispanic Black men on the urinary PB
levels from exposure studies with NHANES (2005–2006 and 2013–2014) data cycles [19,67].
These studies did not conduct a disease association analysis. PB chemicals, however, act
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as EDCs, and the ability of parabens to enable multiple cancer hallmarks in human breast
epithelials have been documented [68].

Observation of the associated higher levels of EP and PB in the PCa cases with higher
BMI and older age led us to investigate the total lipid profiles of the study population in
the NHANES data (2005–2015). In a meta-analysis of cross-sectional data from NHANES
(2003–2014), no associations were found between urinary BPA and the five different lipids
(low-density lipoprotein (LDL), high-density lipoprotein (HDL), total cholesterol (TC),
triglycerides (TG), and apolipoprotein B (ApoB)) variables when investigated in both
children (≤17 years old) and adults (≥18 years old) [16]. This study also did not conduct any
disease association analysis. However, in our study, except for HDL, we found that TC, LDL,
and TG were significantly higher (p < 0.0001) in PCa cases than non-cases in the subjects
with higher BMI and older age. Earlier studies have shown that LDL, TC, and TG were
positively associated with PCa, breast cancer, and colon cancer [69]. Furthermore, other
prospective research presented a positive association between the three lipid profiles and
PCa incidence [70]. Moreover, some prospective studies have proposed that high LDL and
total cholesterol may increase the risk of PCa [69], and cholesterol-lowering medications
have been associated with a decreased risk of advanced PCa in observational research [71].
Therefore, our inference that higher lipid levels in the US men population increase the
PCa cases corroborates the disease association studies. On the other hand, Propylparaben
concentration with a 40% and 95% CI: 3, 90, and Ethylparaben with 63% and 95% CI: 2,
86 were linked to the higher prevalence of metabolic syndrome among men and women,
respectively [72]. A study that did not include EP exposures presents similar results
observed in this study that total cholesterol concentration, LDL, and triglycerides were
positively linked with PCa in men [69]. The study was conducted on 1,189,719 Korean
adults (24,475 women and 53,944 men were diagnosed with cancers), which concluded that
high total cholesterol (>240 mg/dL) was strongly linked with PCa (HR, 1.24; 95% CI, 1.07
to 1.44). Possibly, a study mainly designed for longitudinal research combined with EPs
and PBs (free and conjugated) measurements will suggest any possible role of their (EPs
and PBs) existing body burden on the PCa outcome.

It is important to understand the influence of the combinations of the descriptive
and quantitative covariates along with the EPs and PBs association with PCa outcome.
As shown in Figure 2, we examined 17 variables by using the stepwise regression procedure
(forward and backward selection combination) for the coefficient progression (SBC or BIC)
criterion for model selection with EP and PB. The selection model number One showed that
total cholesterol, age, LDL, weight, and BMI were selected for three EPs (BPA, Triclosan, and
Benzophenone-3) associated with PCa cases. The selection model number Two showed that
total LDL, triglyceride, weight, age, and BMI were chosen for the last model of three PBs
(Propylparaben, Ethylparaben, and Methylparaben) for PCa cases (Figure 2). PB metabolites
are also known as alkyl esters of para-hydroxybenzoic acid, and they interact with lipids,
especially triglycerides in adipose tissue, and influence lipid metabolism. Earlier studies
suggest that urinary excretion of propylparaben and methylparaben are associated with a
lower concentration of triglycerides [19]. An experiment conducted in the model systems
showed that the formation of animal lipids might explain the impact of PB cytotoxic activity
in the cell membranes (phosphatidylcholine). It also depends on the type of lipid, solution
concentration, and chemical composition [73]. Therefore, the influence of PB on the model
systems comprised of human lipids may explain these cytotoxic activities. One research
noted a significant association between adipose tissue measures and PB biomarker concen-
trations among the US general population NHANES data between 2007 and 2014. The ORs
(95% CI) for obesity increase in methylparaben concentrations were 0.64 (95% CI: 0.55, 0.73)
for adults, and relationships were more noticeable among men [20]. In our research, the
highest concentration of BPA, Propylparaben, and Ethylparaben appeared to be the most
notable risk in men with PCa in adjusted logistic regression models for age, weight, total
cholesterol, HDL, triglyceride, and LDL and adjusted logistic regression models for eight
metabolites. However, 4-tert-octyl phenol and Propylparaben exhibited the most notable



Int. J. Mol. Sci. 2022, 23, 3679 20 of 31

risk in men with PCa in the unadjusted logistic regression model (Table 6). The urinary
BPA level is considered a prognostic biomarker in PCa samples, and low-dose BPA may
contribute to the prostate’s neoplastic transmutation. A study involving 60 PCa patients
found higher levels of urinary BPA (creatinine-adjusted) in PCa patients (5.74 mg/g [95%
CI; 2.63, 12.51]) than in controls (1.43 mg/g [95% CI; 0.70, 2.88]) (p = 0.012) [12].

The association of EP and PB with PCa then raises the question of how they (EP and
PB) may be contributing to the etiology of PCa. Conventionally, in vitro studies or animal
models can be employed to investigate the effects of different doses of EP and PB, alone
or in their combinations, to map the genetic pathways on the development and prognosis
of PCa. This method may allow extrapolating the EP and PB risk assessment results to
apply in humans, still with a degree of uncertainty. On the contrary, we used in silico
curated works of thousands of researchers who have investigated the effects of EP and PB
at the molecular level in mammalian cell cultures or mammalian models to compare and
describe the potential role of EP and PB in the PCa etiology, especially when our results
show more relevance to the older population. In addition, we have utilized numerous
available public databases and web-based bioinformatics that have separately mapped
the networks and pathways of carcinogenesis of different tissues, including PCa. It is
important because, despite the progress achieved in understanding the molecular processes
and the progression in PCa, it remains a high risk for morbidity and mortality in the male
population of the US [7]. With the new findings, it is becoming increasingly clear that PCa
is a complex disease, and many endogenous and exogenous risk factors may play a role in
the progression of PCa. EP and PB may be risk factors that may have additive effects on
the etiology of PCa in US men. Therefore, in the next step, the study included identifying
responsive genes to EP and PB exposures employing the CTD. We understand that a human
subject is simultaneously exposed to many chemicals in real time. While retaining all the
chemical exposure at a time is beyond the scope of this work, we have integrated BPA,
EP, and PB, which are the focus of our study to identify genes that are responsive to their
exposures. As presented earlier, our integrative approach determined genes with the
possibility of their interactions with EP and PB that may be essential to the development
of PCa. We identified 636, 242, and 115 genes associated with BPA, EPs, PBs exposure,
and connected with PCa, respectively, which were discovered using mammalian systems.
It was interesting that unique genes were influenced (overexpressed or under-expressed) by
BPA, EP, and PB separately. Still, 81 genes were commonly affected (Figure 3) and mapped
in the PCa prognosis on the CTD. Further, the available in silico curated public databases
have allowed us to investigate a network of genes to obtain a somewhat comprehensive
view of PCa etiology in response to EP and PB exposures in mammalian systems.

In the next step, our results illustrated that EP and PB gene ontology and pathway
enrichment analysis influenced 81 overlapping genes aligned with their curated function
in PCa for core genes that were increased in different categories of biological processes
(BP). They included a response to estradiol and positive regulation of transcription from
RNA polymerase II promoter, suggesting their role in the PCa progression via different BP.
The androgen receptor is the typical target for PCa detection and therapy, and estrogens
and their receptors have also been implicated in the development of PCa [46]. The RNA
polymerase II promoter is important for the transcription of DNA [49] and was identified
in various studies for being involved in BP enrichment analysis in different cancers, such
as breast cancer [74], ovarian cancer [75], and liver cancer [76]. Our results showed,
for the KEGG signaling pathway analysis: the genes markedly enriched cancer, PCa,
Hepatitis B, colorectal cancer, and the HIF-1 signaling pathway. Activated HIF-1 plays
a critical function in the adaptive reactions of the tumor cells to differences in oxygen
via transcriptional activation of 100 downstream genes, which control the essential BP
needed for tumor survival and progression [77]. The analysis of the GO terms, pathway
enrichment, and KEGG pathway demonstrate these 81 (different numbers for different BP;
please see Table S8) EP- and PB-influenced genes to be involved in the BP, which appear to
be directly or indirectly engaged in the development and progression of PCa.
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When this identified set of EPs and PBs that influenced 81 overlapping genes was
subjected to transcription factor binding sites enrichment analyses, specifically for the PCa
pathway, the most significant top five TFs were as follows:

1. TATA-box-binding protein (TBA)—which is a general TF that operates at the core
of the DNA-binding multiprotein factor and regulates the transcriptional activity of
RNA polymerase II [78].

2. CEBPB—an important TF that regulates the expression of genes involved in immune
and inflammatory responses [79].

3. E2F is a TF that binds with DNA for genes involved in the cell cycle and DNA
replication, which can mediate cell proliferation and TP53 mediated apoptosis [80].

4. SRY is a TF that regulates the genetic switch to male development and is affected by
various gene regulations, including promoter activation or repression [81].

5. NFKAPPAB (NF-kappa-B) is a TF that is found in almost all cell types and is af-
fected in multiple biological processes, such as immunity, cell growth, inflammation,
differentiation, apoptosis, and tumorigenesis [82].

However, the question remains as to how 81 EP- and PB-influenced genes may be work-
ing together in a PCa network. We used Cytoscape, a web-based bioinformatics software, to
visualize molecular interaction networks. The CytoHubba plugin screened for core genes
following a PCa prognosis analysis that was comparable to previous studies [46,48,74,83].
Through the CytoHubba and PPI network, CCND1, VEGFA, EGF, MYC, CASP3, IGF1,
STAT3, TP53, ESR1, and CDH1 were identified as hub genes and considered to be playing
an important role(s) in PCa progression. Interestingly, when the hub genes identified by the
11 eligible studies published were compared with those specified in the current study, only
two genes (CDH1 and VEGFA) were found to be common. The result then indicates that
the other eight genes, which are EP- and PB-responsive (CCND1, EGF, MYC, CASP3, IGF1,
STAT3, TP53, ESR1), are possibly unique to our studies contributing to the PCa prognosis.

MCODE specified with Module-1 was associated with 26 genes, and Module-2 was as-
sociated with five genes and 11 edges. The analysis of the selected five genes from Module-2
(BUB1B, TOP2A, UBE2C, RRM2, and CENPF) was further validated by using PCa samples
and normal tissue from TCGA. A significant increase in the gene expression levels of all
five hub genes in PCa tumors compared to normal tissues suggests their role in the PCa.
BUB1B is a critical mitotic checkpoint kinase. BUB1B is identified as the top-scoring kinase
by RNA interaction. It is possible that a novel antimitotic target involves impaired spindle
checkpoint function in any form of cancer, including PCa [51,57]. DNA topoisomerase
II alpha (TOP2A) and ribonucleotide reductase regulatory subunit M2 (RRM2) were dis-
covered to be the most significant in PPI network analysis and survival analysis in liver
cancer and for PCa [76]. TOP2A is a critical nuclear enzyme for chromosome condensation,
DNA mitosis, and cell division. Moreover, TOP2A may be utilized as a biomarker that
indicates poor prognosis and may function as a treatment target for cervical cancer [83].
TOP2A has been suggested to directly interact with P53, a well-known tumor suppressor
protein. In Ref. [84], it was reported that UBE2C, TOP2A, and CCNB1 were associated with
PCa prognosis and higher expression in PCa samples than in normal tissues. RRM2 is asso-
ciated with poor overall survival of breast cancer patients and can become a useful target
for diagnosing and treating patients [74]. Ubiquitin-conjugating enzyme E2C (UBE2C) was
highly expressed in PCa compared with normal tissue in TCGA; the expression was also
more highly associated with the Gleason score (>7) of PCa, which plays as an independent
prognostic factor of PCa, and recreated a critical role in the pathway of PCa (WNT-β-catenin
signaling pathway and NOTCH signaling pathway) [84]. Moreover, UBE2C was reported
high in breast cancer, indicated to be an independent prognostic factor connected with
the recurrence and death, and associated with a shorter survival period of breast cancer
patients. Therefore, it is regarded as a possible therapeutic target for breast cancer [74].
Centromere protein F (CENPF) gene encodes a protein that associates with the nuclear
matrix component during the G2 phase, including cell growth and protein synthesis during
mitosis. CENPF is a potentially applicable candidate for diagnosing and treating cervical
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cancer [83]. CENPF was one of 41 hub genes closely connected with Gleason scores and the
“T” stage in PCa [85]. CENPF is involved with 20 candidate genes to be risk factors related
to aggressive PCa and overexpressed consistently in PCa samples’ carcinogenesis at the
TCGA [84]. The overall identified genes by different gene analysis tools for 81 overlapping
genes associated with PCa, EPs, and PBs were summarized in Table S7. The biological func-
tions of the five hub genes closely associated with the progression of PCa were summarized
in Table S9.

The observation of different Gleason scores (6, 7, 8, 9, and 10) and normal tissues in
the TCGA samples by expression of the hub genes depending on the Gleason score method
is illustrated in Figure 9. A low Gleason score (≤6) shows a low prognosis without the risk
of metastasis, whereas a high Gleason score (>8) is associated with an increased risk of
metastasis. These hub genes may be responsive to other exposures or cellular pathways
leading to cancer. Nonetheless, our study indicates that EP and PB exposures may be
working via these hub genes to contribute directly or indirectly to the progression of PCa.

Our study has limitations as it is a cross-sectional study with self-reported PCa data on
NHANES (2005–2015) without the information on the family history of hormonal cancers.
Only the men who reported no cancer diagnosis (non-cases group) or PCa diagnosis (cases
group) were covered in our research population. It is also highly challenging to establish the
food chain exposure as the primary route of human exposures of the selected EPs and PBs.
Nonetheless, using the available in silico information and integrated bioinformatic tools, we
identified a set of EP- and PB-responsive hub genes of the PCa pathway that can be further
investigated in the biological models for their use as diagnostic or therapeutic targets.

4. Materials and Methods
4.1. Study Design and Population

The NHANES is continuous cross-sectional population-based datasets. It is nationally
representative by collecting data and sampling from the noninstitutionalized U.S popula-
tion, confidential, voluntary participants, and civilian populations. NHANES considers
multistage datasets, complex, and probability of sampling and subgroups designs [86,87].
It is a health survey for the standard population, which approximately includes 5000 par-
ticipants. It is carried out in a two-year cycle. Participants also perform household ques-
tionnaires that involve demographic information, diet and nutrition data, medical and
health conditions, and collected biological samples (blood and urine), which are obtained
through mobile examinations center (MEC) [88]. The medical questionnaire has been
conducted yearly since 1999 by CDC/National Center for Health Statistics (NCHS) to
evaluate the U.S. population’s general health and nutritional situation. The NCHS institu-
tional review committee reviews and approves all NHANES protocols, and all participants
provided written, informed consent, and child permission before any data or sample collec-
tion [21,88]. We used sample weighting scheme data from 2005–2006, 2007–2008, 2009–2010,
2011–2012, and 2013–2014 study cycles. Our study samples are limited and included only
those males ≥20 years of age who completed demographic information, medical health
conditions questionnaires, and provided biological samples (urine samples) and examina-
tions measurements at the MEC. The specified data collection cycles are as follows (years,
PCa-cases, and non-ceases): (2005–2006, 25, 725), (2007–2008, 33, 855), (2009- 2010, 31, 939),
(2011–2012, 31, 1034) and (2013–2014, 32, 887) and are summarized in Figure S4.

4.2. Medical Health Questionnaire

Medical conditions (self-reported cancers) were collected utilizing the medical ques-
tionnaires in NHANES. The participants’ ≥20 years old responded to “Have you ever been
told by a doctor or other health professionals that you had cancer or malignancy of any
kind? Men who responded “yes” were consequently asked, “What kind of cancer was it?”
and “What was your age at diagnosis”? According to the questions, the person was required
to report physician-diagnosed cancers. There was no additional validation of the cancer
diagnosis in these data. Only men who reported no cancer diagnosis (non-cases group)
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or PCa diagnosis (cases group) were covered in our research population. Other kinds of
cancers were eliminated from this analysis. The authors of Refs. [86,88] have also used
PCa diagnosis (yes/no) as a categorical dependent variable. Data analyses investigated
the association of the concentration of urinary EPs and PBs metabolites (obtained from
laboratory data), demographic data, and self-reported health outcomes (gathered from
questionnaire data) of male participants ≥20 years of age.

4.3. EP and EB Exposure Assessment

We integrated three independent sources, the CPCat (Chemical and Product Cate-
gories), the EPA Toxicity Forecaster (ToxCast), and the FDA/Total Diet Study (TDS) through
the Center for Food Safety and Applied Nutrition (CFSAN), as shown in Figure S5, to
compile a list of chemicals used in the food supply in the United States. Urinary EP and PB
were measured on a randomly selected subsample covering one-third of NHANES partici-
pants aged six years and older. NHANES uses a sensitive technique for measuring EP and
PB that was developed in 2005 [88]. The procedure utilizes online solid-phase extraction
(SPE) linked to High-performance liquid chromatography (HPLC) and tandem mass spec-
trometry (HPLC–MS/MS). Applying isotopically labeled internal measures, the detection
limits in 100 µL of urine are 0.1–2.3 (ng/mL), sufficient for estimating urinary levels of EPs
and PBs in exposed subjects [88]. Urine specimens are prepared, stored, and shipped to
the Division of Laboratory Sciences, National Center for Environmental Health/CDC for
analysis. Vials are saved frozen at −20 ◦C until they are sent to the National Center for
Environmental Health for measurement [88]. The QA/AC protocols in NHANES satisfy the
1988 Clinical Laboratory Improvement Act. The NCHS and contract consultants conduct
QC measurements through unscheduled visits. Laboratory personnel work with qualified
persons for equipment calibration and specimen samples preparation. The employees go
through the annual training to assure that needed skill levels are maintained. We analyzed
recorded levels of EPs and PBs in the urine samples and self-reported PCa cases in the
participants ≥20 years of age during five NHANES survey cycles (2005–2015). The EPs and
PBs compounds and their metabolites that were analyzed in the urine samples of our study
are (1) Bisphenol A (URXBPH), (2) 2-Hydroxy-4-metoxybenzophenone (Benzophenone-3,
URXBP3), (3) 4-Tert-octylphenol (URX4TO), (4) 2,4,4′-Trichloro-2′-hydroxyphenyl ether
(Triclosan, URXTRS), (5) Butylparaben (URXBUP), (6) Ethylparaben (URXEPB), (7) Methyl-
paraben (URXMPB), and (8) Propylparaben (URXPPB).

4.4. Sample Measurements and Limits of Detection (LOD)

A detection limit variable is presented for all EPs and PBs in the datasets. For chemicals
measured in urine, LOD computations were conducted utilizing the chemical concentration
shown per urine volume. LOD values may change by survey year because of improvements
in analytical techniques, while most LODs were constant for all the analytes in the dataset.
Two variables are given for each of these analytes. The variables were identified by
(URDXXXLC), which shows whether the result was under the LOD, and (URXXXX), which
presents the analytic result for that analyte, which was above LOD. Therefore, there are
two values given (0) to indicate that the result was >LOD and (1) to suggest that the result
was <LOD. For metabolites with analytic effects less than the LOD, a claimed fill value
was assigned in the analyte results area and called a lower limit of detection (LLOD) and
(LLOD/

√
(2 & 2)).

4.5. Statistical Analysis

Our analyses used male participants ≥20 years of age only with available data for
EP and PB levels, demographics, and medical health data for all five NHANES survey
cycles. All urinary compounds and metabolites for EP and PB were log-transformed and
creatinine corrected to satisfy normality assumptions. According to the NCHS guidelines,
all measures were weighted to provide accurate national estimates [88]. Chi-square and
t-test statistics (depending on the variables) were conducted to compare the means and
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distribution of covariates by PCa status. Logistic regression models were applied to estimate
the association and investigate the risk between PCa occurrence, urinary levels of EPs and
PBs, and the selected covariables by calculating ORs and their 95% CIs. All statistical
analyses were performed using SAS Studio for Windows (SAS version 9.4 software), and
p-values < 0.05 were recognized statistically significant (we used a 5% significance level).

4.6. Covariates

The potential covariates were obtained from the questionnaire interviews (self-reported)
or collected as laboratory measurements. The possible variables were inputted as numerical
variables and as categorical variables. At the assessment time, age is the only variable
entered as numerical (years) and categorical (three groups of age). The study also alleviated
the selection biases in the observation of the significant association of EPs and PBs with
PCa in higher age groups by bootstrapping the data (data not shown here) for different
age groups. Body mass index (BMI) was calculated for participants as weight (kg)/height
meters squared (m2) and then rounded one decimal place (dp). Participants reported
race/ethnicity, family income, education level, birth in the US, physical activity, eating
frozen food in the past 30 days, alcohol use, smoking status, and liver diseases, including
cancer and kidney disease. The categorical variables are described with questions provided
to participants and divided into groups in Table S10. Serum samples were collected from
participants at the mobile examinations center (MEC) to analyze blood lipid levels. On the
MEC, total cholesterol (BXTC), low-density lipoprotein (LDL), high-density lipoprotein
(HDL), and triglycerides (TRIGLY) were analyzed by enzymatic assay. LDL levels on MEC
were calculated from determined amounts of BXTC, TRIGLY, and HDL depending on the
equation ([LDL] = [BXTC] − [HDL] − [TRIGLY/5]), which is efficient for individuals with
BXTC concentration < 400 mg/dL (Table S11). The research strategy’s flowchart for the
selection process of outcome, years, chemicals, and variables from the NHANES dataset
was summarized in Figure S6.

4.7. Genes Associated with PCa Progression

The next step included identifying genes that are influenced (underexpression or
overexpression) by EP and PB exposures using the Comparative Toxicogenomic Database
(CTD). Biocurators at CTD manually curate gene–disease connections, chemical–disease
relationships, and chemical–gene interactions from the literature [89]. Our search criteria
included: Disease: PCa, Chemicals (EPs, BPA, 4-tert-Octyl phenol, 2,4,4′-Trichloro-2′-
hydroxyphenyl ether (Triclosan), 2-Hydroxy-4-metoxybenzophenone (Benzophenone-3),
PBs, methylparaben, Ethylparaben, Propylparaben, and Butylparaben). For the gene query,
we looked for the genes associated with PCa, EPs, and PBs. For Chemical–Gene Interaction
Query, we searched for EPs and PBs associated with PCa. Data showing curated association
with the PCa, EPs, and PBs were downloaded, filtered, sorted with only human samples,
and were cross-referenced on PubMed database. We conducted a functional and pathway
enrichment analysis by using Database for Annotation, Visualization, and Integrated
Discovery (DAVID.6.8). DAVID (https://david.ncifcrf.gov/, accessed on 18 December
2021) is a functional enrichment tool that provides biological descriptions of gene datasets
and proteomic research from high-throughput sequencing [90].

We also used Kyoto Encyclopedia of Genes and Genomes (KEGG), which is a database
used for high-level functions of the biological system, molecular-level data generated by
genome sequencing, and other high-throughput experimental technologies (https://www.
genome.jp/kegg/, accessed on 31 December 2021) [91]. The gene ontology (GO) was
used to align biological process (BP), molecular function (MF), and cellular component
(CC) analysis (http://www.geneontology.org, accessed on 31 December 2021) [92] of the
identified genes with the criterion for significance for p-value of < 0.05. Together, the GO
and KEGG pathway analysis was used to associate genes with their potential biological
functions and their roles in PCa pathways.

https://david.ncifcrf.gov/
https://www.genome.jp/kegg/
https://www.genome.jp/kegg/
http://www.geneontology.org
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We implemented the Search Tool for the Retrieval of Interacting Genes (STRING) to
build direct and indirect protein–protein interaction networks analysis. STRING is an
online database tool (http://string-db.org/, accessed on 31 December 2021) that func-
tions as an access point for the more reasonable interpretation of relationships between
various proteins on a genome-wide scale. It is helpful to understand the protein func-
tions [93]. We combined our analysis criteria under the following conditions: average node
degree 17.2, local clustering coefficient 0.644, PPI enrichment p-value < 1.0 × 10−16, the
minimum required interaction score of 0.4, active interaction, human species, experiments,
and gene fusion databases, and co-recurrence.

The Molecular Complex Detection (MCODE) plug-in in Cytoscape (version 3.9.0) soft-
ware was utilized to examine the significant modules and determine potential functional
modules in the protein–protein interaction (PPI) network with the following parameters
(MCODE scores > 7, degree cutoff = 2, node score cutoff = 0.1, Max depth = 100 and
k-score = 2) [94]. The hub genes were then estimated by various methods with CytoHubba
plug-in in Cytoscape (version 3.9.0) software. The CytoHubba is widely used to study
the most important node (genes) in various biological networks. It is used to investigate
the most significant node in various biological networks. CytoHubba contained eleven
topological analysis procedures, while, in this study, we utilized ((MCC: Maximal Clique
Centrality) and (DNMC: Degree, Density of Maximum Neighborhood Component)) to de-
terminate candidate hub gene of PCa [95]. We collected our results on Radiality, Closeness,
Degree, EcCentricity, Edge, Percolated Component, Bottleneck, Maximum Neighborhood
Component (MNC), Maximal Clique Centrality (MCC), Clustering Coefficient (CC), Stress
and Betweenness (SB), Density of Maximum Neighborhood Component (DMNC).

The relative expression of hub genes between PCa and normal samples and Glea-
son grade and recurrence situation was examined using the online UALCAN database.
The analysis of relative expression of the hub genes in PCa was conducted utilizing UAL-
CAN (http://ualcan.path.uab.edu, accessed on 19 December 2021) [96]. UALCAN is an
interactive web resource that is user-friendly and comprehensive for investigating can-
cer OMICS data. UALCAN is developed to access cancer OMICS data (TCGA, MET500,
CPTAC, and CBTTC), and it allows the users to identify biomarkers or conduct in silico
validation of potential genes of interest. Once we identified the hub genes, we validated
their differential expressions by using TCGA samples of PCa tumors and normal samples.

5. Conclusions

To the best of our knowledge, this is the first research that has comprehensively used
NHANES human data collected between 2005 and 2015 (five cycles of data collection) to
associate EPs and PBs, assumed to be mostly present in the food supply chain, as risk
factors for PCa in the US men population. We selected these chemicals monitored by the
EPA and FDA in the food products and NHANES (CDC) in the human urine samples for
over a decade. They are also on the priority list of the US national toxicology program [21].
We demonstrate a significant association of higher levels of EPs and PBs monitored in
the urine samples of the US men with reported prostate cancer cases. We also report that
higher levels of EP and PB in the urine samples are consistent with the increase in the
severity, especially in the older population of 65 years and older, with higher BMI and
high lipid concentrations in the blood. The association of EP and PB and PCa effect was
correlated with some selected variables, such as age, weight, BMI, and lipids concentration,
as supported by previous studies [43,97–101], enhancing the PCa risks in the subjects.
In this risk assessment approach, we innovatively used the curated in silico information on
differential gene expressions, pathways, and genetic networks of PCa on various databases:
TCGA, GO, GEO, KEGG, DAVID, CTD, Cytoscape, and UALCAN. We validated the hub
genes’ expression from 81 identified genes using TCGA data from PCa cases to strengthen
the observations on overlapping DEG in response to EP and PB by CTD analysis. In this
study, these identified hub genes, BUB1B, TOP2A, UBE2C, RRM2, and CENPF, shed light on
the underlying molecular mechanisms triggered by EP and PB exposures, which may have
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additive effects on the PCa etiology. This approach offers an alternative to using animals
and cellular studies to generate hypotheses and narrow down the focus to elevate this
vital area of research to the next level. Environmental health risk assessment prevents and
mitigates public exposures to hazards [102]. We believe that this research presents a strong
case demonstrating the association of EP and PB, a group of endocrine-disrupting chemicals
that may have additive effects on prostate cancer prognosis in US men. The association
of EP and PB exposures with PCa shown in this study and the gene networks generated
indicates that prostate carcinogenesis is not a linear pathology, and the hub genes potentially
accommodate exposures of risk factors, including metabolic, co-morbidity, age, or lifestyle,
to exacerbate the severity of the disease. Concomitantly, we suggest that the severity of
the disease may be affected by the triggering of these hub genes during the prostate cancer
etiology. The study demonstrates the EP and PB exposure, alone or in combination, as risk
factors for PCa in US men (sampled in the five cycles of NHANES survey data), and it has
shown an innovative approach to identify hub genes in the PCa etiology. These findings
open intervention channels to reduce and replace the use of EPs and PBs in the food supply
to mitigate their exposure(s) and help develop robust molecular diagnostics or therapeutic
targets for PCa.
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