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Abstract

An interesting problem for the human saccadic eye-movement system is how to deal with

the degrees-of-freedom problem: the six extra-ocular muscles provide three rotational

degrees of freedom, while only two are needed to point gaze at any direction. Measure-

ments show that 3D eye orientations during head-fixed saccades in far-viewing conditions

lie in Listing’s plane (LP), in which the eye’s cyclotorsion is zero (Listing’s law, LL). More-

over, while saccades are executed as single-axis rotations around a stable eye-angular

velocity axis, they follow straight trajectories in LP. Another distinctive saccade property is

their nonlinear main-sequence dynamics: the affine relationship between saccade size and

movement duration, and the saturation of peak velocity with amplitude. To explain all these

properties, we developed a computational model, based on a simplified and upscaled

robotic prototype of an eye with 3 degrees of freedom, driven by three independent motor

commands, coupled to three antagonistic elastic muscle pairs. As the robotic prototype was

not intended to faithfully mimic the detailed biomechanics of the human eye, we did not

impose specific prior mechanical constraints on the ocular plant that could, by themselves,

generate Listing’s law and the main-sequence. Instead, our goal was to study how these

properties can emerge from the application of optimal control principles to simplified eye

models. We performed a numerical linearization of the nonlinear system dynamics around

the origin using system identification techniques, and developed open-loop controllers for

3D saccade generation. Applying optimal control to the simulated model, could reproduce

both Listing’s law and and the main-sequence. We verified the contribution of different terms

in the cost optimization functional to realistic 3D saccade behavior, and identified four

essential terms: total energy expenditure by the motors, movement duration, gaze accu-

racy, and the total static force exerted by the muscles during fixation. Our findings suggest

that Listing’s law, as well as the saccade dynamics and their trajectories, may all emerge

from the same common mechanism that aims to optimize speed-accuracy trade-off for sac-

cades, while minimizing the total muscle force during eccentric fixation.
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Author summary

Saccades are rapid eye movements that humans and other animals perform three to four

times per second to scan and perceive the environment around them. These movements

orient the eye in space with high precision and in a highly stereotyped fashion. Existing

studies on animal models advocate that both mechanical and neuronal functions play an

important role in the control of the saccades, but some facts are still not fully understood

due to difficulties in experimenting and measuring the variables in living animals. Instead,

robots are computational and physical models of reality that expose all its variables and

can be programmed in interpretable ways. We have built a robotic model of an artificial

eye containing the basic ingredients of human eyes: full 3D rotations, viscous friction and

6 muscle-like actuators connected to the eyeball in a geometry similar to the biological

system. By synthesizing robotic eye control systems we found that important characteris-

tics of the movements become similar to human saccades when the control relies on few

simple fundamental principles: the maximization of saccade accuracy and the minimiza-

tion of saccade duration, energy in control, and force in the muscles during fixation.

Introduction

This paper presents a computational model for the control of gaze in a simplified and scaled

3D mechanical eye model with tendon-driven actuation that approximates the extra-ocular

muscle geometry of the human eye (see Figs 1 and 2). We propose an optimal open-loop con-

trol scheme that, when appropriately configured with cost terms that consider the minimiza-

tion of accuracy, energy, saccade duration, and force in the muscles, generates the main

kinematic and dynamics properties of saccadic eye movements found in primates. Previous

studies either have focused on simpler 1D models (vertical/horizontal saccades) or analysed

the kinematics and dynamic of saccade behavior independently. Our proposal demonstrates

the explanatory power of unifying optimal control principles in both the kinematics and

dynamics of a mechanical eye model that executes 3D saccade trajectories.

Saccade control

In order to generate a goal-directed movement, the brain has to resort to sophisticated neural

control strategies that take into account the excess number of degrees of freedom, the non-

commutativity of rotational kinematics, and the complex dynamics of the end effectors. The

human oculomotor system is a well-studied example. The human eye has six extra-ocular mus-

cles that can each pull the eye in a different direction (Fig 1). Because the eye is fully encased

within its bony orbit, it cannot translate [1], thereby reducing the six degrees of freedom for

rigid-body motion to three rotational degrees of freedom. However, to direct the gaze-line at

any direction, only two coordinates need to be specified, e.g., the azimuth (θ) and elevation (φ)

angles, leaving the ocular rotation around the line of sight (cyclo-torsion, ψ) unspecified. If not

controlled, however, this poses a potential problem for eye movements, as mathematics holds

that sequences of rigid-body rotations in general do not commute. Thus, the order in which

the rotations are executed determines the final body orientation. In principle, this could lead

to an unwanted accumulation of ocular torsion and significant localization errors [2, 3]. It was

already recognized by Donders and Helmholtz that the eye restricts its torsional roll angle in a

unique way, depending only on the gaze direction, regardless the path taken by the eye to
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reach that orientation (e.g. [4–7]). This observation has been known as Donders’ law: ψ = f(θ,

φ). Thus, somehow the eye takes care of the noncommutativity problem.

The saccade control problem has also been studied in Robotics. Gaze has been found to

play an important role in social interaction, for instance in signalling attitudes, affects, and

emotions, and in complementing speech with emphasis and synchronization [8]. This fact has

Fig 1. Left: Frontal view of the extra-ocular muscles of the right human eye, rotated by about 20 deg leftward from the

primary (+x) direction—MR (Medial Rectus), LR (Lateral Rectus), SR (Superior Rectus), IR (Inferior Rectus), SO

(Superior Oblique), IO (Inferior Oblique). Right: Schematic of the muscle rotation axes, when starting from the

primary direction. Right-hand (x, y, z) convention. The ML/LR muscles mainly rotate the eye horizontally (Z-

direction). The IR/SR, and the IO/SO muscle pairs induce both vertical (y) and cyclotorsional (x) rotation

components. The superior and inferior obliques (SO/IO) divert their pulling trajectories medially: the IO is attached to

the medial side of the orbit, while the SO is diverted through a medial pulley, called the trochlea.

https://doi.org/10.1371/journal.pcbi.1008975.g001

Fig 2. Mechanical robotic system that serves as a biomimetic prototype for the human eye in Fig 1. The scaled eye

represented by the spherical segment (7 cm radius) with a camera in the front is driven by elastic tendons (in red) that

correspond to the six extra-ocular muscles shown in Fig 1. Each pair of muscles are connected to attachment points on

metal rods fixed to the motors(U1-U3), with the rotation axes shown by the green dotted lines. The SO,IO,IR and SR

muscles pass through fixed pulleys between the attachment points on the eye and the motor rods to adjust their pulling

directions.

https://doi.org/10.1371/journal.pcbi.1008975.g002
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spawned numerous studies of gaze behaviour during human-robot interaction (see [9], for a

review; [10]), not only for letting robots understand human gaze signals, but also (and more

important for the present paper) to allow robots to display legible gaze behavior for a human

interlocutor. One line of research tries to generate human-like behaviors in robots by record-

ing human motions in the execution of particular tasks [11–13]. Another line of research tries

to replicate the observed properties of human gaze behavior by directly programming the the-

oretical control laws into the robots [14, 15].

While learning the gaze kinematics from humans, or directly programming the theoretical

neuroscientific findings in robots are both viable approaches for designing working systems,

they are limited in two aspects. First, the underlying principles that rule their emergence are

left uncovered. Second, existing models address only very simplified settings.

The present paper considers the generation of saccades with fully unconstrained kinemat-

ics and develops a methodology to generate control systems that both satisfy mechanical

optimality criteria (energy and stress), and performance criteria (duration and accuracy),

while mimicking the kinematics and transient properties observed in natural gaze behavior.

To validate our approach we have built a scaled up robotic prototype driven by three motors

attached to elastic tendons, schematically shown in Fig 2. The tendons are attached to an arti-

ficial eye ball in a way that, although not matching its biological counterpart, shares a similar

geometry. The other end of the tendons are connected in pairs to symmetric points on rods

that are fixed to each motor. Unlike the biological muscles, these elastic tendons can only

apply force when stretched so they are actuated in pairs by the rotation of the motor rods.

The tendons for vertical and torsional muscles pass through fixed routing points to adjust

their pulling directions to provide enough ocular range. We built a simulation model of the

system in order to study the role of optimal control methods in the emergence of relevant

oculomotor behaviors.

The proposed approach may lead to more energy efficient and more durable robots, with

more flexibility in replicating the complex repertoire of oculomotor behaviors exhibited by

humans. Building humanoid-representative oculomotor robots may also be useful for ground-

truth benchmarking of many eye tracking systems.

3D kinematics

As will be described in more detail below, a 3D eye orientation is most efficiently described by

a single-axis rotation of the eye from the primary position. Thus, eye orientations can be

parametrized by the direction of the rotation axis, n̂, kn̂k ¼ 1, and the amount of rotation, ρ,

around that axis needed to attain the orientation: f ðn̂; rÞ ¼ rn̂ ¼ e ¼ ðex; ey; ezÞ, the so-called

Euler vector, with (x, y, z) a head-fixed, right-handed Cartesian reference frame (x = torsion, y
= vertical, z = horizontal rotation). Due to a closer relationship to quaternions, it is convenient

to adopt the equivalent half-radian rotation vector representation [16]:

r ¼ ðrx; ry; rzÞ ¼ tan ðr=2Þn̂.

With the head upright and not moving, and gaze directed at infinity, Donders’ law is further

constrained by stating that the rotation axes describing all eye orientations are restricted to a

plane (Listing’s law (LL); [4–6, 17]). Fig 3 shows an example of more than 3500 rotation axes,

computed during fixations and saccades made by a monkey in the lab (head-restrained, spon-

taneous eye movements in the light). It can be appreciated from this figure that LL is obeyed

with remarkable precision, as the standard deviation of the torsional component of monkey

eye orientations is typically less than one deg (torsional range in [-2.0, +2.0] deg; Fig 3C),
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whereas the oculomotor range for the horizontal and vertical gaze directions runs between

±30–40 deg.

The literature has heavily debated the question whether these behavioural rules are due to a

neural control strategy in the brain (e.g. [19–23]), or whether they are fully determined by the

mechanical properties of the eye plant (e.g., [24–26]). For example, the pulling directions of

the muscles, which eventually determine the eye’s equilibrium orientation, could change in a

particular way with the gaze direction, and automatically comply with Listing’s law [24–26].

Certain filaments attached to the globe and surrounding the muscular tissue would function as

pulleys [25], which not only prevent the muscles from excessive side-slip along the globe dur-

ing eccentric viewing [27], but could also serve to mechanically implement Listing’s law [24–

26]. In support of this, [28] and [29] demonstrated that microstimulation of the abducens

nerve, which innervates the LR muscle, generates eye movements that comply with Listing’s

law. These results indicate that, at least for the horizontal muscle system, the LR/MR pulleys

aid in the mechanical implementation of Listing’s law.

Clearly, mechanical and geometric properties of the extra-ocular muscles largely determine

the direction of passive and active forces acting on the eye, and therefore on its instantaneous

orientation. Note, however, that LL is only valid for eye movements with the head erect and

gazing at far targets. For vestibular-evoked eye movements [30], head-unrestrained gaze shifts

[31, 32], near viewing [33, 34], and microstimulation in several premotor brainstem areas [18],

Listing’s law is violated, and Donders’ law applies. Although it has been hypothesized that the

muscle pulleys could be actively controlled to shift the muscle’s action dynamically, so as to

accommodate programmed violations of Listing’s law [35, 36], neurophysiological evidence

[37] as well as theoretical arguments [38] have rendered this hypothesis unlikely. Further, it

should also be noted that the saccadic system is not perfect: often, the eye spontaneously

jumps out of Listing’s plane by a small saccade, leading to>2 deg of cyclotorsion (e.g., Fig 3C).

Interestingly, the next spontaneous saccade is then endowed with an opposite torsional com-

ponent that typically brings it closer to the plane, thus preventing the eye from walking away

from LP during free gazing behaviour [23]. This indicates that saccades have three, rather than

two degrees of freedom, and that the control of ocular cyclotorsion may possibly involve the

cerebellum [18].

Fig 3. Listing’s law for ±3500 eye positions during spontaneous saccades in the light, of a monkey. All eye orientations lie in a well-defined plane, which

is perpendicular to the torsional direction, and defines the primary position (cross at (0,0,0)). The center of the oculomotor range is, for this animal, about

20 deg down from primary position, and the animal’s head was pitched downward by 15 deg. (A) Frontal view of LP. (B) Side view of LP. (C) Expanded

side view of LP. After: [18].

https://doi.org/10.1371/journal.pcbi.1008975.g003
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In summary, regardless the underlying structural mechanics, any system that has to deal

with sequences of 3D rotations has to account for noncommutativity [3]. As a result, Donders’

law, and possibly also Listing’s law, has to be embedded in a neural control strategy [2, 3, 18,

19, 23, 37, 39–42].

In our robotic prototype, the pulleys were kept head-fixed, so that a potentially active pulley

mechanism is not considered. Instead, we here analyze the potential relationship between the

emergence of Listing’s law and the properties of the oculomotor plant on the basis of control-

ling a simple physical model.

Main sequence nonlinearity

Apart from the restrictions on the eye’s cyclo-torsion, primate saccadic eye movements also

display a number of characteristic dynamic behaviors. First, saccades obey stereotyped kine-

matic relations, known as the main-sequence [44]: saccade duration increases with amplitude,

and the peak eye velocity saturates at large saccade amplitudes. Further, because the accelera-

tion time of saccades is approximately constant (Fig 4A), the increase in saccade duration is

primarily due to its deceleration phase, and may betray an internal dynamic feedback mecha-

nism [45]. As a result, the skewness of saccade velocity profiles increases with saccade duration

[43]. These properties are summarized as follows:

duration : D ¼ aDRþ b

peak velocity : Vpk ¼ V0ð1 � exp ð� DR=aÞÞ

acceleration : Taccel � 20 ms

skewness : S ¼ cDþ d

combined : VpkD ¼ kDR and Vpk ¼
kc

S � d
DR

ð1Þ

where D is saccade duration; ΔR: saccade amplitude; Vpk: peak eye velocity; Taccel: time to

reach Vpk; S: skewness of the velocity profile, and a, b, V0, α, c, d, k parameters. The two final

relations hold for fast, as well as slow (drug-affected, fatigued, non-visual) saccades (Fig 4B

and 4C). Together, the relations of Eq (1) indicate the presence of a nonlinear dynamic (feed-

back) controller in the saccadic system [46]: for a linear controller, saccade duration and shape

Fig 4. (A) Example velocity profiles for saccades of different amplitudes. Note that their peak velocity is reached at the same moment. (B) The

amplitude-peak velocity relation (ordinate: 0–700 deg/s) for fast and very slow (diazepam-affected and fatigued) saccades (different symbols). The red curve

delineates the fastest saccades possible for this human subject. Oblique lines separate sectors where saccades have a particular skewness. The lower the

slope, the slower the saccades, and the larger its skewness. (C) Tight relation for saccades between amplitude and the product of peak velocity and duration.

This relation expresses the fact that typical eye-saccades have single-peaked, ‘triangular-shaped’ velocity profiles. After: [43].

https://doi.org/10.1371/journal.pcbi.1008975.g004
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should be independent of amplitude, and the peak eye velocity should increase proportionally

with amplitude. Because the oculomotor neurons are known to carry these properties in their

bursting activity, the main-sequence behavior is not explained by a nonlinearity in the plant.

Models of the saccadic system have therefore proposed nonlinear controllers at the level of the

saccade-velocity activity carried by burst-neurons in the pons (for horizontal saccades [45]),

and riMLF (for vertical/torsional saccades [41]).

Straight trajectories

Oblique saccades have approximately straight trajectories, which means that the horizontal,

vertical (and torsional) velocity components are scaled versions of each other. Thus, if the sig-

nal to the plant for a saccade with amplitude ΔR, is encoded as a 3D angular velocity com-

mand, ωΔR(t) = [ωx(t), ωy(t), ωz(t)]T (see below), the following holds:

Hor : ozðtÞ ¼ akωΔRðtÞk

Vert : oyðtÞ ¼ bkωΔRðtÞk

Tors : oxðtÞ ¼ gkωΔRðtÞk

ð2Þ

with α2 + β2 + γ2 = 1.

However, because of the saturating nonlinearity in the amplitude-velocity relation (Fig 4B),

the cross-coupling in the component velocity profiles is not trivial if the horizontal, vertical

and torsional velocity generators would be independently driven by their own dynamic dis-

placement errors, Δz and Δy, and Δx, respectively:

ozðtÞ ¼ f ðDzðtÞÞ

oyðtÞ ¼ gðDyðtÞÞ

oxðtÞ ¼ hðDxðtÞÞ

ð3Þ

with f(�), g(�) and h(�) nonlinear.

For example, if a Δz = 10 deg horizontal component is part of an oblique saccade in LP,

given by [Δx, Δy, Δz] = [0, 20, 10] deg, its duration (and velocity shape) matches the larger 20

deg upward vertical component, and therefore has a longer duration (and skewness) than a

purely horizontal [0, 0, 10] deg saccade. This phenomenon is called component stretching,

and constitutes yet another nonlinear property of the saccadic system.

However, if the component velocity generators would all be driven by a common vectorial

velocity command, ωΔR(t), a simple trigonometric scaling of this signal ensures straight sac-

cades and component stretching. This scheme has been introduced as the common-source

model by [47].

Interestingly, neurophysiological evidence has suggested that the main-sequence nonlinear-

ity (Fig 4B) may reside upstream from the saccade-component velocity generators, at the level

of the midbrain Superior Colliculus (SC). The SC could thus serve as the common nonlinear

vector-velocity generator for saccades [48, 49]. Furthermore, microstimulation at the SC

motor map does not lead to violations of Listing’s law [22], which suggests that the law is

implemented downstream from the stimulation site, either involving brainstem-cerebellar

neural circuitry [2, 18], or at the level of the oculomotor plant (see above; [24–26]).

The primary objective of the present paper is to investigate whether a feedforward optimal

control strategy for saccades, applied to a simplified 3D model of the eye, as illustrated in Fig 2,

could account for all observed kinematic properties of saccades (Listing’s Law, main-sequence

nonlinearity, and straightness of the trajectories), and how the extra-ocular muscle geometry

relates to Listing’s law and the orientation of Listing’s plane. Although several studies have
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investigated potential optimal control principles that could underlie the generation of saccades

[50–52], these studies were all confined to the control of horizontal gaze shifts, and therefore

did not address the 3D kinematics and dynamic problems that were central to the present

study.

Methods

3D eye orientation

When an extra-ocular muscle contracts to exert a force, a torque is applied on the eyeball,

which causes it to rotate around its center about an axis that is perpendicular to the plane

defined by the force vector and the moment arm from the eye’s center to the muscle insertion

point. To describe changes in eye orientation in 3D, it is convenient to define the primary posi-

tion as the origin of a head-fixed right-handed reference frame, from which any new eye orien-

tation can be reached by a single-axis rotation. In this frame of reference, a positive torsional

rotation (roll) is clockwise (rotation about the frontal +x axis), a positive vertical rotation

(pitch) is downward (lateral +y axis), and a positive horizontal rotation (yaw) is leftward (verti-

cal +z axis). There are many different ways to represent 3D rotations, but the most frequently

employed ones in the oculomotor literature are unit quaternions and so-called Euler-Rodri-

gues rotation vectors (e.g., [6]). Here we will only summarize their relevant properties. For

details, the reader is referred to [6].

Briefly, any single-axis rotation of a rigid body around the unit axis n̂ ¼ ½nx; ny; nz�
T

by

angle ρ can be parametrized by a unit quaternion (a 4-parameter complex algebraic object

with length one):

q ¼ cos ðr=2Þ þ sin ðr=2Þn̂ � I � q0 þ q � I ð4Þ

with q0 = cos(ρ/2) the (real) quaternion’s scalar part, I = [i, j, k] are the imaginary numbers for

the (x, y, z) coordinates satisfying the relations ij = k, jk = i, ki = j, i2 = j2 = k2 = ijk = −1, and q

= sin(ρ/2) [nx, ny, nz]T� [qx, qy, qz]T its (imaginary) vector part. Consequently, multiplying

two quaternions, p and q, yields: pq = p0q0 − p � q + [p0q + q0p + p × q] � I.

It is convenient to introduce the Euler-Rodrigues formulation [16, 17], here denoted as the

rotation vector, by:

r �
q
q0

¼ tan ðr=2Þn̂ ð5Þ

with

r� 1 ¼ � r ðinverseÞ

r0 ¼ 0 ðprimary position; PÞ
ð6Þ

In this latter parametrization, Donders’ law and Listing’s law (see above) have the following

formulations:

Donders’ law : rx ¼ f ðry; rzÞ

Listing0s law : rx ¼ 0
ð7Þ

where the latter defines Listing’s plane, expressed in the primary frame of reference (see

Fig 3B).

It can be shown that the single-axis rotation vector from an initial eye position, rA, to any

other final eye position, rB, is then described by the angular-velocity saccade vector (up to
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Oðr3Þ) [17]:

sAB � dþ rA � d ð8Þ

with d� rB − rA (difference vector). Thus, if the initial and final eye positions are both in List-

ing’s plane (rA,x = rB,x = 0):

sAB;x ¼ rA;ydz � rA;zdy ¼ jdjr?A 6¼ 0 ð9Þ

whenever angle (rA, d) 6¼ {0, π}.

From Eq 9, the angular-velocity axis of the eye, ω k sAB, can be tilted out of LP by any η 2
[−ρ/2, +ρ/2], depending on the angle between the saccade difference vector, d and the initial

eye orientation, rA. This geometric property is known as the half-angle rule [39].

Finally, from the quaternion relation between the angular velocity, ω� ω � I, the eye orien-

tation, q, and the rate-of-change of eye orientation, _q (the coordinate velocity; e.g. [19]):

_q ¼
oq
2

o ¼ 2 _qq� 1

ð10Þ

Expressed as rotation vectors, it follows that, up to Oðr3Þ:

_r �
1

2
ðωþ ω� rþ ðω � rÞrÞ

ω � 2ð _r þ r� _rÞ
ð11Þ

The rotation vector has some nice algebraic properties, which may also be useful for neural

representations. E.g., the trajectory of a single-axis rotation for a saccade in LP from A to B is

well approximated (up to Oðr3Þ) by a straight line in LP between the initial and final eye-posi-

tion rotation vectors [17]:

rðtÞ � rA þ sðtÞd ð12Þ

where σ(t) 2 [0, 1] (monotonic increase).

The eye-plant model

The methodology followed in this paper can be summarized as follows. First, we created a

non-linear simulator model in Matlab’s Simulink, which implemented Euler’s equations for

rotations of a rigid body, and the noncommutative 3D rotational kinematics (described above)

to our simplified mechanical model of the eye (see Fig 2). Input to the system is a time

sequence of signals from three independent motors, u(t), that each couple in a feed-forward

way to the three antagonistic pairs of eye muscles, modelled as elastic tendons. The model’s

output is the instantaneous rotation vector of the model eye, r(t), that parametrizes its current

3D orientation. To identify a linear approximation for this system for the optimal control algo-

rithms described below, the non-linear model equations were run through Matlab’s system-

identification algorithms with independent pseudo-random binary signal sequences (PRBS).

PRBS is a signal often used in systems identification. It is a deterministic signal composed of

rectangular pulses of fixed amplitude but variable duration that has similar properties to white

noise (flat spectrum), thus excites equally all the frequencies of interest in the system. The

amplitude range of these signals was chosen such as to obtain good approximations of the

model’s output on the range of the desired saccade amplitudes. The identified model was then

used to compute the optimal input sequences to control saccades, by applying different sets of
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combined performance costs. Finally, the optimized inputs were provided to the nonlinear

simulator to generate 1500 randomly distributed simulated eye movements, of which we ana-

lyzed the kinematic and dynamic properties.

The simulator. To model the eye we did not attempt to fully replicate the anatomical and

physiological features of the individual muscles. Instead, we only included their most essential

features: their insertion points on the globe and approximate pulling directions, their elastic

properties (note that the pull is caused by a lengthening of the string, rather than by a physio-

logical contractile element; the mechanical effect on the eye’s orientation, however, is identi-

cal), dynamic friction (a viscous force, caused by the drag of the optic nerve and orbital tissues

through the fatty layers), and the way in which the muscles will change their direction of action

when the eye orientation changes.

The input for the simulator (the angular positions of the drivers) was provided as a 3D com-

mand u(t) = [u1(t), u2(t), u3(t)]T, which acted as three independent signals for the three antag-

onistic muscle pairs (see Fig 5).

The model’s output corresponded to the resulting rotation vector, r(t) = [rx(t), ry(t), rz(t)]T,

which represents the 3D orientations of the eye that produced the resulting rotational move-

ment trajectory.

The rotational dynamics for this rigid-body mechanical system, expressed in the inertial

frame, are governed by Euler’s equation:

τT ¼
X

i

τi;el þ τfric ¼

¼ IðqÞα þ ω� ðIðqÞωÞ
ð13Þ

where τT is the total torque on the eye, τi,el are the elastic torques applied by the six muscles to

the eye at their insertion points, Qi, and τfric is the total frictional torque felt by the eye (viscos-

ity, τdyn and static friction, τstat, see below; we ignored the force of gravity); I(q) is the eye’s

Fig 5. Schematic of the mechanical model of Fig 2. The common driving signals, u1,2,3, are symbolized by the grey

bars, that rotate around the red axes, thus providing an antagonistic contraction/relaxation force on the associated

muscles (cables with same colours) from their end-insertion points at Pi (green dots). The six muscle insertion points,

Qi, on the eye (red dots) form the (elliptical) blue surface; C is the center of the globe at (0,0,0). The default

arrangement is nearly symmetrical with respect to the horizontal plane of the eye at z = 0.

https://doi.org/10.1371/journal.pcbi.1008975.g005
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moment of inertia tensor (which may change as the eye rotates about an arbitrary axis around

its center, C, and the mass distribution with respect to the primary reference frame changes

too), α is the 3D instantaneous angular acceleration vector (in rad/s2), and ω is the eye’s angu-

lar velocity (in rad/s). The cross-product term vanishes when I(q) = aI3 (where I3 is the 3x3

unity matrix). For our simulator, we verified that its contribution was negligible when com-

pared to the angular acceleration term, as the relative rms power of |ω(t) × (I ω(t))| vs. |Iα(t)|
remained <2 � 10−4 for saccade amplitudes up to 60 deg (S1(D) Fig). We therefore neglected

the cross-product term in the simulator.

The torques were calculated from the simplified geometry, illustrated in Fig 5. Table 1 pro-

vides the coordinates of the insertion points in the (x, y, z) coordinate frame of the model’s eye

ball (re. its center), the coordinates of the via points, Xi, for the pulleys of the SR, IR, SO and

IO muscles (the LR and MR were directly connected to their muscle endings at Pi), and the

resulting normalized torques exerted by the muscles when the eye is at its equilibrium orienta-

tion, r = (0,0,0). The insertion points at which the driving signals u exercise their action are

represented by Pi. The changes of the insertion coordinates, from (Pi,0,x, Pi,0,y, Pi,0,z) (Table 1)

to (Pi,x, Pi,y, Pi,z), of the vertical recti and obliques (i = [SR,IR], or [SO, IO]), which are con-

trolled by u1 and u3, respectively, in radians) were determined by the following relations:

Pi;x ¼ Pi;0;x �
LM
2

sin ðu1;3Þ

Pi;y ¼ Pi;0;y

Pi;z ¼ Pi;0;z �
LM
2
ð1 � cos ðu1;3ÞÞ

ð14Þ

with LM = 20 cm. For the lateral recti (i = [LR,MR], with LR = 28 cm, controlled by u2) this

yielded:

Pi;x ¼ Pi;0;x �
LR
2

sin ðu2Þ

Pi;y ¼ Pi;0;y �
LR
2
ð1 � cos ðu2ÞÞ

Pi;z ¼ Pi;0;z

ð15Þ

The locations of the muscle insertion points on the eye, specified at Q0,i in the primary position

(Table 1), will change as a result of the eye’s rotation (given by the rotation matrix, R)

Table 1. Coordinates of the insertion points (in cm) on the mechanical model of the right eye at rest (Q0,i), and the craniocentric via points (‘pulleys’) (Xi) with

respect to the (head-fixed) center of the eye. Here, LR and MR have no pulleys; they directly connect to driver 2. The cranial insertion points, Pi,0 at rest are given in

columns 8–10. Columns 11–13: the unit torque-vector components, as computed from Eq (18) with the eye in the resting orientation. Note that the SO, IO, SR and IR ten-

dons all pull with a prominent cyclo-torsional (x) and vertical (y) component.

Muscle Q0,x Q0,y Q0,z Xx Xy Xz P0,x P0,y P0,z τx τy τz
MR -0.7 7.5 0 - - - -32.3 14.0 0.5 -0.01 0.00 1.00

LR -0.7 -7.5 0 - - - -32.3 -14.0 0.5 0.01 0.00 -1.00

SR -0.7 0.53 5.3 -20.6 -7.5 -5.3 -43.6 -8.4 -7.9 0.35 -0.93 -0.05

IR -0.7 0.53 -5.3 -20.6 -7.5 5.3 -43.6 -8.4 12.1 -0.31 0.94 0.13

SO -0.7 -0.53 5.3 -15.0 15.0 6.3 -43.6 8.4 12.1 -0.71 -0.70 -0.02

IO -0.7 -0.53 -5.3 -15.0 15.0 -6.3 -43.6 8.4 -7.9 0.73 0.66 -0.16

https://doi.org/10.1371/journal.pcbi.1008975.t001

PLOS COMPUTATIONAL BIOLOGY Modelling 3D saccade generation by feedforward optimal control

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008975 May 24, 2021 11 / 35

https://doi.org/10.1371/journal.pcbi.1008975.t001
https://doi.org/10.1371/journal.pcbi.1008975


according to

Qi ¼ RQi;0 ð16Þ

Because of the changes in the eye-insertion points, the muscles will change their lengths and

exert elastic forces Fi through Hooke’s law:

Fi ¼ � kiðli � l0;iÞt̂i ð17Þ

with l0,i the rest length of muscle i, and li� l0,i the current length of the muscle. κi is the elastic-

ity of the muscle, and was given the same value of 6.0 N/m for all tendons. t̂ i is the unit vector

of the tendon’s pulling direction from Qi to Xi for SO, IO, SR and IR, and to Pi for ML and LR.

The elastic torques (Fig 6 and Table 1) are then determined by

τi;el ¼ Qi � Fi ð18Þ

Besides the elastic forces, the eye also feels frictional forces, because of its rotation through the

fatty embedding within the orbit. In the model, we included both a small static friction (by

Newton’s 3rd law: equal and opposite to the total exerted torque) and an angular-velocity

dependent dynamic friction. The dynamic frictional force was approximated by:

τdyn ¼ � wdynω ð19Þ

where χdyn = 0.02 Nms/rad is the dynamic friction coefficient. This parameter, which relates to

the viscosity of the plant, was set to make the eye behave as an over-damped system.

For the static friction we took:

τstat ¼

(
0 ( jωj > � _ jτcompj � wstat

� τcomp ( jωj < � ^ jτcompj < wstat

ð20Þ

with τcomp = τel + τdyn, � a small dynamic cut-off velocity, |ω| is the amplitude of the angular

velocity vector, and χstat = 0.006 Nm is the static friction coefficient.

Fig 6. Block diagram of 3D eye saccade simulator. Close to each block is a summary description and the equation numbers that implement the associated

functions (when applicable).

https://doi.org/10.1371/journal.pcbi.1008975.g006
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Once all torques are known, the angular acceleration, α, can be computed through Eq (13),

given that the inertial tensor can be assumed constant for each small time step of the simula-

tion (Δt = 10 ms). The angular velocity vector of the eye, ω (and hence, its instantaneous axis

of rotation, n̂, Eq (5)) is obtained from the angular acceleration by time integration. The result-

ing new orientation of the eye, q (or, alternatively, its rotation vector, r; Eq (4)), is subsequently

computed by integrating the coordinate-velocity _q, which was obtained from q(t − Δt), and ω
from Eq (10). When the new orientation, q(t), is calculated, it is used to update the coordinates

of the insertion points on the eye Qi and to update the tensor of the moment of inertia by I(R)

= RI0 RT (with I0 the moment of inertia tensor in the eye’s primary reference frame, and R the

rotation matrix associated with the quaternion q; see Fig 6). For a perfect symmetric sphere I0
would be given by Isphere ¼ 2

5
ma2, with a its radius, andm the mass, and invariant to eye orien-

tation. In our robotic prototype, it is given by:

I0 ¼

4:759 � 0:01 0:111

� 0:01 4:316 0

0:111 0 3:956

2

6
6
6
4

3

7
7
7
5
� 10� 4 kg �m2 ð21Þ

A simplified diagram of the simulator is shown in Fig 6. The simulator was implemented in

Matlab’s Simulink toolbox (version 2018b). It is important to note that the equations govern-

ing the simulator are nonlinear. This is already obvious from the nonlinear updates of the cra-

nial insertion points (Eqs (14) and (15)). However, also the pulling directions of the elastics

change as the eye rotates, causing the gains between inputs and outputs to depend on the oper-

ating point. Moreover, the 3D kinematic relations include vector products which are non-

commutative, and contain trigonometric dependencies on the angles. This all means that the

model can only be well approximated by a linear system around a given operating point, and

outside that region is expected to produce large errors.

To check whether the model was mechanically capable to cover the full range of 3D eye

movements, we simulated a large feedforward set of 21 rotational steps for each of the three

motors over a range of [-35, +35] deg (i.e., a total of 213 = 9216 combinations), to evaluate the

3D oculomotor range of the model. Fig 7 shows the result of this simulation. Clearly, the hori-

zontal, vertical, and torsional ranges of the model eye were quite comparable, and close to

[-50, +50] deg in all directions.

Linear system identification. The system identification procedure [53, 54] consisted of

the following steps. As input for the identification we used a 180 s long Pseudo-Random

Binary Sequence (PRBS) signal, uncorrelated between the three motor inputs. The first 120

s were used to train the system-identification algorithm (typically yielding >98% accuracy

for all components), while the remaining 60 s of the data were used for testing the model

predictions and validating the quality of the fit. We constructed a state-space model from

our system, which represents the relation between its inputs and outputs through a set of nth

order differential equations, comprised within a single first order n × n matrix difference

equation. We consider that the dominant dynamics is given by the eye mechanical inertia

(the motor electric and mechanical time constants are comparatively much smaller), so the

state vector has intrinsically 6 dimensions (3 orientations and 3 angular velocities). In this

way, the discrete dynamical system is represented by the following two matrix equations,
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with n = 6:

xtþ1 ¼ Axt þ But
rt ¼ Cxt þ Eut

ð22Þ

where t is the discrete time variable. To find the optimal parameters, the matrices [A, B, C,

E], of the model, we applied the subspace method ([55]; implemented in Matlab’s “n4sid.m”

function), which is known to provide numerically stable state-space models for multivari-

able dynamical systems [54, 56].

To quantify the quality of the identification, we calculated the normalized root-mean

squared error (NRMSE) fitness value, which indicates how well the predicted model response

matches the non-trained target data for the nonlinear simulation:

NRMSEð%Þ ¼ 100 1 �
kr � r̂k
kr � �rk

� �

; ð23Þ

where r is the true validation data output of the nonlinear system, r̂ is the output of the identi-

fied linear system and �r is the mean of r.

Even though the predictions on the validation set for the linearized fit of Eq (22) were not

perfect, the result was generally judged satisfactory. The torsional and horizontal components

exhibited NRMSE values above 75% for the torsional component, and 90% or higher for the

horizontal component, which is excellent. The vertical component, however, lagged somewhat

behind with a best correlation of 40%. It should be noted, however, that the linearization will

always produce errors, since the simulator is highly non-linear, especially for the strongly

cross-coupled torsional/vertical muscle pairs. Indeed, correlations for rx and ry increased sub-

stantially, when the via points for SO and IO were positioned less laterally (not shown).

Optimal control. We next used the identified system, Eq (22), to find the optimal control

commands ui that minimize a total cost functional. Several cost functions for the gaze control

Fig 7. 3D oculomotor range of the model in two planar views (yz-plane, left and xz-plane, right), when the inputs ran from [-35, +35] deg for each of

the three muscle pairs. Note that the torsional range of the model is substantial, and quite comparable to the horizontal and vertical ranges.

https://doi.org/10.1371/journal.pcbi.1008975.g007
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system have been proposed in past studies to account for the nonlinear main-sequence proper-

ties of Eq (1). An optimal control strategy that minimizes saccade duration and maximizes sac-

cade accuracy has proved successful (speed-accuracy trade off; e.g. [50]). However, models on

optimal gaze control have so far been confined to one dimension only (horizontal saccades),

and therefore miss other important aspects of gaze control, like component cross-coupling,

and Listing’s law. Here, we evaluated the contribution of different cost terms on overall sac-

cade performance.

In general, the optimal open-loop control problem is represented as the solution to the fol-

lowing constrained optimization problem:

minimize U;D JTOT ¼
P

a
laJaðU;D;RÞ

subject to : xtþ1 ¼ Axt þ But

rt ¼ Cxt þ Eut t ¼ 0; :::;D

ð24Þ

where JTOT is the total cost, and [λα, Jα] represent the relative weight and costs of each of the

terms that contribute to JTOT. D is the saccade duration in discrete time steps, and U = [u0, u1,

. . . uD], and R = [r0, r1, . . . rD] are the time series of inputs and outputs, respectively, from the

beginning of the saccade (at t = 0) until its offset at t = D. The constraint is applied to the line-

arized identified model of Eq (22), and parametrized by matrices [A, B, C, E].

Our aim is to identify the simplest cost function (with the smallest set of cost terms) that

best accounts for the following properties:

• Control of 3D saccadic movements, such that all axes describing eye orientations lie in a

plane (Listing’s plane), according to Eq 7

• Nonlinear dynamic properties of saccades (their main-sequence relations, including skew-

ness, straight trajectories, and the associated component stretching of velocity profiles).

Costs. The first three cost terms to be considered have also been proposed in earlier stud-

ies. They acount for (i) minimization of the gaze-direction error (i.e., maximize saccade accu-

racy), (ii) minimize the total energy spent by the input signals, and (iii) minimize saccade

duration, D.

Accuracy. The accuracy cost minimizes the mean-squared difference between the target

direction, ðr̂ y; r̂ zÞ, and the actual 2D gaze direction at the end of the saccade, (ry,D, rz,D), with-

out putting any additional constraints on the amount of cyclo-torsion, rx. Moreover, as the sac-

cade reaches its goal, the velocity and acceleration should be zero. Thus, the classical two-

dimensional accuracy cost is written as:

JAðrDÞ ¼ ðry;D � r̂ yÞ
2
þ ðrz;D � r̂ zÞ

2 and ½ _rD;€rD� ¼ 0 ð25Þ

Clearly, this cost term is essential for any optimization procedure, as without it the system’s

performance will not be bound to any particular input-output relationship. For some solvers,

it may be better to include zero velocity and acceleration constraints in the cost function to

penalize the norms of the velocity and acceleration vectors.

Energy. The energy expenditure by the input signals was taken to be proportional to the

total squared input velocity vector across time. The latter is proportional to the instantaneous

changes in the input vector, dut = ut+1 − ut. In this way, the cumulative energy cost was
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expressed by the length of the time-series difference vector:

JEðUÞ ¼ kDUk
2
; ð26Þ

with Δ a matrix consisting of blocks of 3x3 identities, such that

DU ¼

I3 0 ::: 0

� I3 I3 ::: 0

..

. ..
. . .

. ..
.

0 ::: � I3 I3

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

U ¼

u0

u1 � u0

..

.

uD � uD� 1

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

: ð27Þ

Duration. The duration term penalizes a long saccade duration, D. To implement a dura-

tion cost, we took the hyperbolic discount of reward at D, proposed by [57]:

JDðDÞ ¼ 1 �
1

1þ bD

� �

; ð28Þ

with β is the rate at which the value of reward decays.

Listing’s law. Because the first three costs do not put any constraints on the 3D behaviour

of the eye movement, we also considered costs that might enforce a behaviour according to

Listing’s Law (Eq (7)). We considered two costs that explicitly penalize deviations from List-

ing’s plane: one that only incorporates the final 3D orientation of the eye, regardless the trajec-

tory followed, and one that constrains the entire eye-movement trajectory to Listing’s plane.

Thus, the cost that penalizes deviations from Listing’s plane at saccade offset is determined

by:

JLP;Toff ðrDÞ ¼ krx;Dk
2

ð29Þ

while constraining the entire eye movement trajectory to Listing’s plane was associated with

the following cost:

JLP;TallðRÞ ¼ kRxk
2

ð30Þ

with Rx = [rx,0, rx,1, � � �, rx,D].

Force. Note that the functionals of Eqs (29) and (30) assume an a-priori representation of

Listing’s plane in the system. As such, the primary position is explicitly assumed to correspond

to the straight-ahead eye orientation. However, if Listing’s plane were to be an emerging prop-

erty of the optimization, such an assumption should preferably not be imposed a priori. In the

default mechanical model of Fig 5, and Table 1, the origins of the extraocular muscles at the

back of the orbit were arranged approximately symmetrically around the horizontal plane of

the eye (z = 0). However, if these origins were to be jointly shifted upward or downward, the

orientation of the primary position (the normal vector to Listing’s Plane) might change

accordingly. This possibility would suggest that the orientation of Listing’s Plane could be

related to an (a)symmetry in the pulling directions around the horizontal plane of the eye with

respect to straight ahead. We thus included a cost that would minimize the total tension

exerted by the extraocular muscles on the globe at the final eye orientation (i.e., fixation at t =

D), and hence, would minimize the total effort required from the neural inputs when the eyes

are not moving. As an empirical approximation, we related the total force and eye orientation
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by the following quadratic form:

JF � rTDHFrD ð31Þ

This quadratic relation resulted from simulations with the model across the system’s oculomo-

tor range for different configurations of the origins and eye orientations. To estimate the 3 × 3

matrixHF, we gathered data across a large range of 3D eye orientations, like in Fig 7.

The weight of the force cost was taken much smaller than the weight for the accuracy cost,

i.e. λF� λA, because the objective was that the force minimization should only differentiate

between saccades ending in the same vertical and horizontal desired orientations, and not

deteriorate the accuracy of the final gaze-direction components ry,D and rz,D.

Although, in principle, 32 different cost functions can be constructed from any combina-

tion of the accuracy cost with the other five, we considered the six cost functionals in Table 2

as the most relevant candidates for the optimal control.

The optimal saccade commands U, and saccade durations, D (at 10 ms resolution), were

found by solving the quadratic problems with linear constraints, outlined in Eq (24) and

Table 2, through applying Matlab’s “quadprog.m” optimization algorithm. Fig 8 (left) shows

an example of the optimization for the JAED cost as function of the movement duration for a 10

deg horizontal saccade. In the simulations, we ran 1500 saccades in random directions. The

saccade vectors were drawn from a Gaussian distribution for the vertical (r̂ y) and horizontal

(r̂ z) components with a standard deviation of 15 deg. The first saccade started at the (assumed)

primary position, r0 = 0, and any subsequent saccade started from the new end position in a

random direction and amplitude (Fig 8, right). On this set of randomly directed saccades, we

implemented the different optimization strategies outlined in Table 2.

Results

We characterized the 3D behaviour of the model by analyzing the saccade trajectories, kine-

matics, and velocity profiles. To quantify the distribution of rotation vectors, we considered all

data points, R, and analyzed their deviations from the best-fit plane. We analyzed the behavior

for two different simulator configurations: one, in which the insertion points, Pi were symmet-

rical with respect to the eye’s equator (z = 0, like in Fig 5), and one in which we systematically

varied all insertions together along the z-direction (the asymmetrical case).

For the symmetrical simulator, the primary position is expected to coincide with the

straight-ahead orientation, so that Listing’s plane is simply defined by rx = 0 for all eye orienta-

tions. To compare the different optimal control strategies, we analyzed the dispersion

Table 2. Six different cost functionals, all optimized to control saccades by tuning the weights, λα for the contrib-

uting terms. Each total cost includes the accuracy cost, but differs in the contribution from other kinematic terms. AD:

accuracy and duration; AE: accuracy and energy; AED: accuracy, energy and duration; AEDL1: AED with Listing’s law

at saccade offset only; AEDL2: AED with Listing’s law for the entire trajectory. The weights are the (two to four) free

parameters for the optimal control.

Costs Total movement cost

AD JAD = λA JA(rD) + λD JD(D)

AE JAE = λA JA(rD) + λE JE(U)

AED JAED = JAD + λE JE(U)

AEDL1 JAEDL1
¼ JAED þ lLP1JLP;Toff ðrDÞ

AEDL2 JAEDL2
¼ JAED þ lLP2JLP;Tall ðRÞ

Force JForce = JAED + λF JF(rD)

https://doi.org/10.1371/journal.pcbi.1008975.t002
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(standard deviation) of the torsional component of the eye orientations with respect to the

model’s Listing’s Plane: srx .

To quantify the straightness of the resulting saccades (that is, to what extent they are

generated as a single-axis rotation, and follow the rules of component stretching, described

Fig 8. (A) Example of minimizing the total movement cost, JAED (purple curve), as function of the simulated saccade duration for a 10 deg rightward

saccade. In this case, the optimum is reached at a duration of 50 ms (circular symbol). (B) Illustration of the first 150 goals for the saccade planner in

degrees. The simulator started at the straight-ahead fixation point at (0,0), with the eye in the (assumed) primary position, at r0 = 0, in a random direction,

and any subsequent saccade started (black dot) from the end point of its predecessor (red symbol).

https://doi.org/10.1371/journal.pcbi.1008975.g008

Table 3. Results for the different optimization strategies specified in Table 2. n: normal to the best-fit plane through the rotation-vector data, and absolute angle

between n and the straight-ahead direction, P = [1, 0, 0]; Width LP: standard deviation of the data around the best-fit plane. MS: nonlinear main-sequence data fit on all

saccade data: V0: asymptotic velocity (deg/s); α: angular constant (in deg); rCS: component stretching correlation of vpk,ΔH=8o(F) vs. cos(F) (cf. Fig 11B).

Optimization normal n re. P (o) Width LP (o) MS: [V0, α] rCS
AE [0.969, -0.245,-0.032] 14.3 1.64 [647, 61.2] -0.04

AD [0.990, -0.137, 0.036] 8.1 3.29 [9607, 493.2] -0.98

AED [0.955, -0.266,-0.129] 16.5 5.88 [689, 32.2] 0.96

AEDL1 [0.997, -0.073, 0.012] 4.2 1.71 [589, 20.5] 0.82

AEDL2 [1.000, -0.018, 0.004] 1.1 1.59 [443, 22.4] 0.87

Force

Δz = -8 [0.995, -0.088, 0.055] 5.1 1.77 [571, 19.7] 0.95

Δz = -6 [0.996, -0.081, 0.032]] 4.7 1.69 [559, 18.5] 0.96

Δz = -4 [0.997, -0.080, 0.007] 4.6 1.64 [538, 17.0] 0.92

Δz = -2 [0.996, -0.083, -0.025] 5.0 1.60 [518, 15.4] 0.94

Δz = 0 [0.994, -0.087, -0.062] 6.1 1.55 [500, 13.9] 0.96

Δz = 2 [0.993, -0.040, -0.107] 6.6 1.64 [476, 12.2] 0.97

Δz = 4 [0.986, -0.055, -0.157] 9.6 1.77 [472, 11.4] 0.90

Δz = 6 [0.976, -0.070. -0.205] 12.5 1.89 [469, 11.1] 0.90

Δz = 8 [0.964, -0.085, -0.251] 15.4 2.03 [464, 10.9] 0.92

https://doi.org/10.1371/journal.pcbi.1008975.t003

PLOS COMPUTATIONAL BIOLOGY Modelling 3D saccade generation by feedforward optimal control

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008975 May 24, 2021 18 / 35

https://doi.org/10.1371/journal.pcbi.1008975.g008
https://doi.org/10.1371/journal.pcbi.1008975.t003
https://doi.org/10.1371/journal.pcbi.1008975


in the Introduction) we calculated the correlations between the vertical and horizontal

velocity profiles, represented by �rvy ;vz , with v ¼ _r. For a straight saccade, this value should

be close to one.

Finally, we analyzed the main-sequence properties of the saccades: the relations between

duration, peak velocity and amplitude of saccades (Fig 4), and the stretching of the vector com-

ponents for oblique saccades. Because the temporal resolution of the simulations was set at 10

ms, we did not calculate a measure for the skewness of velocity profiles, as it would be too

coarse. We analyzed the dynamic properties for the entire set of 1500 saccades, as well as for

three selected sets of 12 saccades made in three different directions (horizontal, oblique (at a

45 deg angle) and vertical), all starting from the primary position.

In what follows, we present the results for the optimal control of JAED (no constraint on

ocular torsion), of JAEDL1
(constraining the final eye orientation to Listing’s Plane), and of JForce

for nine asymmetric configurations (without putting an explicit constraint on ocular torsion).

The results for the other optimization strategies (AE, AD, and AEDL2) are summarized in

Table 3, and in S2–S5 Figs.

Minimizing AED

Fig 9 shows the main simulation results for the 1500 saccades resulting from the AED cost

minimization.

Listing’s plane analysis. As can be seen in Fig 9A and 9B, the model eye looked all across

the visual field (about 50˚ range both in horizontal and vertical gaze directions in the yz
plane). The best-fit plane, rx = ary + brz, through the 3D eye-movement trajectories had a nor-

mal vector of n̂ ¼ ½0:955; � 0:266; � 0:129�, with the data scattering around the plane with a

standard deviation of σx = 0.043 half-radians (4.88 deg). The best-fit plane is therefore rotated

with respect to the frontal (yz) plane, along the y- and z-axes. This can be appreciated by the

slight forward tilt of the data cloud in the (xz)-view (panel B), in which the torsional scatter is

nearly twice as large (10.95 deg; cf. Fig 3C). Clearly, the scatter around the best-fit plane is

much smaller than the torsional oculomotor range of the model, illustrated in Fig 7.

The axis and angle that will rotate the normal to the plane, n̂ (which is expressed in the eye-

centered reference frame), onto the true primary direction, P = (1, 0, 0) of Listing’s reference

frame, is given by n̂P ¼ n̂ � P ¼ ½0; � 0:437; 0:900�, and rP ¼ arccos ðn̂ � PÞ ¼ 17:2 deg.

Applying the associated rotation matrix, RP, to the rotation-vector data of Fig 9 then yields the

eye orientations expressed in Listing’s frame of reference:

rL ¼ RPr ð32Þ

The result of this coordinate transformation is shown in Fig 10 for the (x, z) view.

Trajectory analysis. The simulations also showed that saccade trajectories were approxi-

mately straight, as the correlations between the horizontal and vertical velocity profiles had

their mode very close to 1.0 (histogram, Fig 9D). This property emerges from the simultaneous

optimization of the duration and energy costs. A straight trajectory thus ensures a movement

with the shortest possible duration, at the lowest energy cost.

Main sequence analysis. The main-sequence plot of all saccade data is presented in Fig

9C. Note that there is a considerable variability in the peak vectorial eye velocities, which is

due to the fact that saccades started all across the oculomotor range, and were pooled for all

movement directions. Because of the mechanical properties of the eye muscles, it may be

expected that the peak eye velocity will be position- and direction-dependent. To illustrate the
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direction-dependence on the saccade dynamics we ran the model once more to elicit saccades

from straight-ahead in three selected directions: purely horizontal (red) dots, purely vertical

(blue) and oblique (45 deg re. horizontal; green). The dashed curves show the best-fit exponen-

tial functions, described by Vpk = V0(1 − exp(−ΔR/α)).

Note that the horizontal saccades were by far the fastest, while the vertical saccades were

much slower. While almost all the torque applied to the eye by the horizontal muscles is con-

verted in horizontal motion, the vertical and oblique muscles divide their torques along the

vertical and cyclo-torsional components (see Table 1). Furthermore, because of the pulleys, the

Fig 9. 3D oculomotor behavior and saccade dynamics, resulting from minimizing the AED cost. (A,B) 3D trajectories in the (y,z) and (x,z) views.

Although the torsional range is constrained to a width of σx = 4.88 deg, the eye is not confined to Listing’s Plane. (C) Saccade dynamics. Black dots: data

from 1500 saccades starting from randomized initial positions in randomized directions. When starting from straight-ahead, saccades follow a clear

saturating amplitude-peak velocity relation (red dots: purely horizontal saccades, blue dots: purely vertical saccades; green dots: 45 deg oblique saccades.)

Note that vertical saccades are slowest and horizontal saccades are fastest. (D) All trajectories were nearly straight, as most correlations between the

horizontal and vertical velocity profiles were near 1.0.

https://doi.org/10.1371/journal.pcbi.1008975.g009
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force vectors applied to the eye by the vertical and oblique muscles are less orthogonal to the

moment arm than the horizontal recti. Together, these factors reduce, on average, the effective

torque, hence the peak velocity, in the vertical direction. The velocities of the oblique saccades

tended to fall between these two extremes.

In line with the nonlinear main-sequence properties, and the relatively straight saccade tra-

jectories, the model saccades also exhibited strong component cross-coupling. Fig 11 shows

how the shorter component of an oblique saccade (here kept fixed at 8 deg in the horizontal

direction) is systematically stretched in duration (and lowered in its peak velocity) as the

orthogonal vertical component increases in size from 0 to 30 deg (i.e., saccade directions from

0 (horizontal) to nearly 80 deg (upward)). According to the common-source vectorial pulse-

generator model of [47], the small-component’s peak velocity declines as the cosine of the sac-

cade direction angle with the horizontal meridian (dashed line). The JAED model’s result is

quite close to this prediction. Note, however, that the common vectorial drive, as proposed by

the common-source model, is not implemented in the hardware of our mechanical analogue,

Fig 10. Same data as in Fig 9, but rotated by Rp (Eq 32), so that it is expressed in the reference frame in which the primary

position (the normal to the best-fit plane) coincides with P = [1, 0, 0]. This is defined as Listing’s reference frame. Compare to

Fig 9B.

https://doi.org/10.1371/journal.pcbi.1008975.g010
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as the three driving inputs, u = [u1, u2, u1] were taken essentially independent. Hence, the

observed cross-coupling between the eye-movement components is an emergent property that

resulted from the constraints imposed by the optimal control.

Zero torsion at saccade offset

3D kinematics and dynamics. Although the saccade dynamics resulting from JAED mini-

mization closely follow experimental data, the 3D orientations of the eye still allowed for a

wide range of torsional values. Thus, this optimization criterion by itself is not sufficient to

explain the emergence of Listing’s law. To check whether expanding the accuracy criterion for

gaze, which is essentially 2D, to a 3D analogue by requiring that the saccade should have (close

to) zero torsion at the end of the movement, we reran the optimization by including the end-

point Listing cost in the total cost function: JAEDL1
. The result is shown in Fig 12A and 12B.

Now, the saccades follow Listing’s law, as the standard deviation of all eye orientations around

the best-fit plane (which now has its normal vector very close to the P = [1, 0, 0] direction), has

reduced to only 1.7 deg. This value is close to what is observed in monkey and human data

[39] (cf. Fig 3).

As can be appreciated, adding the zero-torsion cost did not influence the shape of the sac-

cade-velocity profiles, the straightness of their trajectories, or their main-sequence properties

(panel C). There was nearly full component stretching in the oblique saccades (panel D). Thus,

the AED minimization by itself forces the eye to behave as a single-axis rotation, and the con-

straint on the final ocular torsion then suffices to keep the entire eye trajectory near Listing’s

plane. Including a cost on eye torsion would suggest that the saccadic system has an internal

representation of its torsional position state. As argued in the Introduction, experimental evi-

dence seems to supports this idea. For example, any deviation from Listing’s plane, even as

Fig 11. Component stretching in oblique saccades (after JAED minimization). In these examples, the horizontal component was kept fixed at 8.0 deg,

while the vertical component varied from 0 to 30 deg in 5 deg steps. (A) Horizontal and (inverted) vertical velocity profiles of the oblique saccades. Note

that the velocity profiles approximately match in duration. This is especially clear for the larger (�15 deg) vertical components (green, red, cyan and yellow

traces). (B) Peak velocity of the horizontal component depends on the saccade direction. Dashed line: cosine prediction for a common-source vectorial

drive ([47] see also Table 3).

https://doi.org/10.1371/journal.pcbi.1008975.g011
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small as one to two degrees, is typically corrected by the next saccade [18]. Moreover, in more

natural 3D gaze-control behaviors, like in eye-head coordination, data suggest that the system

appears to plan a gaze trajectory for which the ocular torsion is zero when the entire gaze shift

is over [32]. Such a strategy would be in line with a cost that includes eye torsion at the end of

the saccade.

Minimizing fixation-force

Symmetrical case: Δz = 0. Yet, explicitly forcing the eye to have zero torsion at the end of

the saccade also presupposes that the orientation of Listing’s plane coincides with the straight-

ahead direction. This, however, is not supported by experimental data (Fig 3). Thus, we

Fig 12. (A,B) 3D oculomotor behavior and (C,D) saccade dynamics, resulting from minimizing the AED cost and penalizing deviations from

Listing’s Plane at saccade offset. Now, the torsional range is constrained to a width of only σx = 1.7 deg (B), which keeps the eye close to Listing’s Plane,

also during the saccade trajectories. (C) The saccade dynamics still follow the same saturating amplitude-peak velocity relation as in Fig 9C, and nearly

straight trajectories (D), as there is clear component stretching.

https://doi.org/10.1371/journal.pcbi.1008975.g012

PLOS COMPUTATIONAL BIOLOGY Modelling 3D saccade generation by feedforward optimal control

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008975 May 24, 2021 23 / 35

https://doi.org/10.1371/journal.pcbi.1008975.g012
https://doi.org/10.1371/journal.pcbi.1008975


wondered how the orientation of Listing’s plane would depend on the pulling directions of the

extra-ocular muscles. We reasoned that also the forces exerted by the muscles on the eye when

it is not moving, are associated with a certain cost. At steady fixation, the brain might want to

minimize the total force required to maintain that eye orientation.

In Fig 13 we show the results when including a force cost at fixation for the mechanical pro-

totype shown in Fig 5 and Table 1. Interestingly, the inclusion of force minimization in the

optimal control led to good results for all aspects of saccade control. The scattering around

Listing’s plane resulted to be very small: a width of only 1.55 deg, which is even better than for

the JAEDL1
cost functional. The trajectories were approximately straight, with near-complete

Fig 13. (A,B) 3D oculomotor behavior and (C,D) saccade dynamics, after minimizing the AED cost and the total force on the eye during fixation.

Default case: Δz = 0. Now, the torsional range is constrained to a width of only σx = 1.25 deg (B), which is closely in line with Listing’s Plane. The saccade

dynamics follow a saturating amplitude-peak velocity relation (C). Also, oblique saccades show similar component stretching as in the AED and 3D-target

optimizations (D).

https://doi.org/10.1371/journal.pcbi.1008975.g013

PLOS COMPUTATIONAL BIOLOGY Modelling 3D saccade generation by feedforward optimal control

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008975 May 24, 2021 24 / 35

https://doi.org/10.1371/journal.pcbi.1008975.g013
https://doi.org/10.1371/journal.pcbi.1008975


component stretching (panel D), and also the nonlinear properties of the main-sequence were

not strongly affected by including the force cost (panel C). The best-fit Listing’s plane was

pitched by about 4 deg downward. This small downward tilt of the plane probably arose

because in the Δz = 0 case the centers of rotation for the drivers of the vertical recti and obli-

ques were slightly elevated with respect to the eye’s horizontal plane (see Table 1; column Pz
0
).

To further illustrate the appropriate saccade dynamics, Fig 14 shows that for all (slow and

fast) saccades, regardless their trajectories and starting points, a tight relation emerged for the

saccade amplitude vs. the product of its peak velocity with its duration. The simulated data

show a larger variability than is typically observed in the human data (Fig 4C), which is mainly

due to the discrete nature of the saccade-duration estimates (here taken at a 10 ms resolution).

Asymmetrical cases: Δz 6¼ 0. To verify the influence of the muscular geometry on the ori-

entation of Listing’s plane, we varied the relative position of the muscles’ cranial insertion

points with respect to the equatorial plane of the eye. We shifted all insertion points either

upwards or downwards with respect to the horizontal ocular midplane, by Δz, ranging from

Fig 14. The model produces a tight relationship (r2 = 0.89) between saccade amplitude and the product between peak eye

velocity and saccade duration (quantified at 10 ms resolution) for all saccades shown in Fig 13 (cf. Fig 4C).

https://doi.org/10.1371/journal.pcbi.1008975.g014

PLOS COMPUTATIONAL BIOLOGY Modelling 3D saccade generation by feedforward optimal control

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008975 May 24, 2021 25 / 35

https://doi.org/10.1371/journal.pcbi.1008975.g014
https://doi.org/10.1371/journal.pcbi.1008975


-8.0 to +8.0 cm, in nine steps of 2.0 cm. Fig 15 shows the (xz) side views of LP for three differ-

ent shifts: Δz = −4.0, +4.0, +8.0 cm, respectively. Note that the plane pitches downwards in a

systematic way with increasing Δz.
Fig 16 shows the empirical nonlinear relationship between the offset Δz and the resulting

pitch angle of LP in the xz-view. At the largest upward shift, we obtained a downward pitch

angle of about -15 deg, which is very similar to what has been obtained in the monkey

(Fig 3B).

Results for all optimizations

Table 3 summarizes the results for all optimization strategies. Although the JAE control strategy

(no duration constraint) seems to result in a 3D behavior constrained by Listing’s law, it does

not generate normal saccade dynamics. Typically, the main sequence resulted to be close to

linear, as evidenced by the large angular constant of the saturating exponential curve. The sac-

cade durations for this strategy were all D = 220 ms, as no cost was associated to the saccade

speed. As a result, saccades were slow, in order to minimize the total energy (proportional to

kΔUk2) spent by the inputs. Moreover, although saccades were straight, they did not display

any component stretching, as the velocity profiles for the horizontal components of oblique

saccades did not change with saccade direction (rCS = -0.04, Table 3; see also Supporting Infor-

mation, S2–S4 Figs). This is to be expected from a linear main sequence: in that case, compo-

nent stretching is a simple consequence of linear vector decomposition.

Abnormal dynamics were also obtained for the JAD functional (no energy constraint): again

the saccade durations were constant, but now at D = 100 ms, and the model produced very

high saccade speeds (up to 1000 deg/s), as the amount of energy spent by the input signals was

not penalized. Component cross-coupling in oblique saccades was observed, but in a

completely opposite way as seen in Fig 11: as the vertical component increased in size, the

peak velocity of the constant-size horizontal component also increased (rather than decreased)

with the saccade direction (rCS = -0.98, Table 3). To keep the final amplitude at 8 deg, however,

the horizontal component initially made a large overshoot, and then returned to the final tar-

get location during the remaining vertical movement. As a result, the saccade trajectories were

Fig 15. Eye orientations in the xz-plane for all saccades, for three different vertical shifts, Δz, of the cranial muscle insertion points with respect to the

horizontal midplane of the eye. Note that the orientation of LP tilts as a function of the shift.

https://doi.org/10.1371/journal.pcbi.1008975.g015
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strongly curved, and the saccades could not be described as single-axis rotations (see S2–S4

Figs in Supporting Information).

In contrast, imposing torsional constraints on the saccade endpoints, or on the entire sac-

cade trajectories, as well as minimization of the fixation force for all muscle geometries led to

both Listing’s law, and to normal nonlinear saturating saccade dynamics. In all cases, saccades

were nearly straight, and they displayed appropriate component cross-coupling as expected

for single-axis rotations.

Discussion

Summary

This work accounts for the dynamic and kinematic behaviors of saccadic eye movements and

eye orientations in three dimensions, by simulating a simplified mechanical model of the eye,

Fig 16. The pitch angle of Listing’s plane varies systematically with the craniocentric insertion points of the

muscles re. eye’s horizontal plane. Negative values: downward pitch angle.

https://doi.org/10.1371/journal.pcbi.1008975.g016
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driven by three independent motor signals, and subjected to different optimal control strate-

gies. Our model explains the major properties of saccade kinematics and dynamics in 3D with

a minimum of prior constraints on its biomechanical properties and neural control: direction-

dependent nonlinear main-sequence behavior, component cross-coupling, 3D single-axis

rotations of saccades, straight trajectories in Listing’s plane, and Listing’s law.

In our model, all six extraocular muscles were given the same elasticity (and kept constant),

the viscous force on the eye was taken proportional to eye angular velocity, and the eye’s iner-

tial tensor depended slightly on instantaneous 3D eye orientation. The direction of the torque

vector, exerted by each tendon, was determined by the shortest path from the muscle’s inser-

tion point on the globe, Qi, to its craniocentric via point, Xi (through passive pulleys for the

vertical and oblique muscles). Below, we will argue that these simplifications were not essential

to obtain the resulting eye-movement properties. Our model provides novel suggestions for

the potential control principles underlying the emergence of Listing’s Law and the main-

sequence in our robotic prototype, and it may serve as a starting point for more realistic biomi-

metic implementations in humanoid robotic systems.

Although previous studies have applied optimal control principles to explain human (sac-

cadic) oculomotor behavior, they have so far been confined to horizontal saccades only [13,

50–52, 57–59]. These studies suggested that the nonlinear main-sequence behavior of saccades

(Fig 4) may result from a neural control strategy that aims to optimize speed-accuracy trade-

off, rather than from mere saturation of neuronal peak-firing rates at the level of the brainstem

burst generator as proposed by [45]. Indeed, more recent single-unit recordings from the mid-

brain SC provided supporting evidence for such an optimal control by revealing synchronous

firing properties of Superior Colliculus cells in the neural population that encodes the vector

of the saccade goal, and its trajectory [48, 49].

Emerging properties

Our 3D mechanical model accounts for a number of emerging saccade properties, that have so

far not been explained by previous models:

i. the nonlinear main-sequence holds for saccades in all directions, and its direction- and ini-

tial position-dependence results from the geometric arrangement of the six eye muscles. For

example, purely vertical saccades from the straight-ahead initial orientation require a precise

coordination of the vertical recti and oblique eye muscles, which have their optimal pulling

directions not aligned with the cardinal (vertical and cyclo-torsional) Cartesian axes (see

Table 1), and had less-effective, non-orthogonal, moment arms. As a result, vertical saccades

of the model were slower than horizontal saccades, which involved an optimal orthogonal

activation of the horizontal recti (e.g., Fig 9).

ii. Despite the direction-dependence of the main sequence, the model produced a consider-

able amount of cross-coupling between the components of the instantaneous eye-velocity

vector. This resulted in trajectories in which both velocity components had very similar

durations, and were roughly scaled versions of each other (Fig 11A).

iii. Because of this strong component cross-coupling, saccade trajectories were approxi-

mately straight in all directions. As a result, the smaller component of the saccade vector

was stretched in time, and reached a lower peak velocity than when executed in isolation.

This effect could be well described by the cosine (horizontal component, as in Fig 11B)

and sine (vertical component; not shown) projections of the vectorial velocity vector, as

predicted by the common-source model [47]. This conceptual model assumes that sac-

cades are driven by a central vectorial pulse generator, which represents the vectorial
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velocity of the eye, and that the horizontal/vertical/torsional saccade components are

jointly derived from this common drive by vector decomposition. As our mechanical

model is driven by three essentially independent motors (Fig 5), the apparent common

vectorial velocity drive is implicitly encoded by their outputs as a result of the optimal

control constraints.

iv. By including the minimization of static total force on the eye, Listing’s law emerged with-

out any additional assumptions regarding the eye’s cyclo-torsional state, or with the inclu-

sion of precisely positioned pulleys for the horizontal and vertical/torsional muscle pairs.

Moreover, this force cost could also account for the orientation of Listing’s plane with

respect to the head, and hence, for the direction of the primary position with respect to the

oculomotor range (Fig 3). Although suggestions in this direction have been made before in

the literature [16, 24, 27, 60], our model explicitly demonstrates this potential relationship

for the first time.

Saccade dynamics

The dynamic properties of the saccades require the simultaneous optimization of energy, dura-

tion and accuracy (JAED minimization; Fig 8). Putting a constraint on the saccade duration in

the form of a hyperbolic discount leads to the saturation of saccadic peak eye velocity for large

amplitudes, and the affine relation between saccade duration and amplitude. Adding a penalty

on the total energy consumption of the 3D input drive is cause for the strong cross-coupling

between the components. This cross-coupling ensures straight saccades (and thereby the

shortest path taken by the eye), and can be effectively envisioned to promote a single-axis rota-

tion of the globe from starting to end orientation. Dropping either the penalty on saccade

duration (JAE) or energy (JAD) disrupts the main-sequence and cross-coupling properties of

the saccades (Table 3; Supporting Information, S2–S4 Figs). However, it should be noted that

the current simulations did not incorporate the effect of signal-dependent (multiplicative)

noise in the input driving signals. It can be demonstrated that speed-accuracy trade-off in the

presence of signal-dependent noise will show up in a similar quadratic way in the total cost as

the energy term in the current formulation (Eq 26), so that the energy term in the cost func-

tional may be dropped when signal-dependent noise is included in the model ([58, 61]; unpub-

lished results from our lab).

3D saccade kinematics

The classical cost functional that jointly minimizes the mean accuracy of (2D) target acquisi-

tion, input energy expenditure, and movement duration (JAED) could not readily account for

the 3D behavior of saccades, as the torsional excursions of the model eye resulted to be too

large, at about ±10 deg. Thus, to obtain a behavior that would be better in line with Listing’s

law, the accuracy constraint had to be extended by either explicitly penalizing the amount of

ocular cyclo-torsion at saccade offset, or (but perhaps trivially) by constraining the entire tra-

jectory to Listing’s plane. Because the AED criterion by itself results in single-axis rotations of

the eye, putting an additional constraint on the final eye orientation in 3D would thus ensure

that the entire trajectory remains in Listing’s plane, by virtue of Eq 12. This extra constraint

hardly affected the dynamic behavior of the saccades. The requirement that the entire saccade

trajectory should stay in Listing’s plane, however, led to much slower saccades than the other

cost functionals of Table 2, as the asymptotic velocity was only 440 deg/s. Inclusion of a Listing
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cost only at saccade offset generated saccades that could reach velocities of nearly 600 deg/s

(Table 3; see also Supporting Information, S5 Fig).

Yet, the explicit requirement of zero cyclo-torsion presupposes that the primary direction is

known, and aligned with the straight-ahead direction, i.e., the center of the oculomotor range.

Experimental results, however, indicate that the primary direction may be located more eccen-

tric, in the upward viewing direction (see Fig 3, for an example). Although the precise reason

for this off-center direction is unclear, our model simulations with the asymmetrical muscle

insertions indicate that the geometrical arrangement of the extra-ocular muscles could be

directly related to this phenomenon. Interestingly, by adding a static force cost to the overall

classical AED cost functional, Listing’s law became an emerging property of the system, but

now with the primary direction systematically depending on the muscle geometry (Figs 15 and

16). Note that the human eye generates about 3–4 saccades/s, with an average duration of 80–

100 ms, which means that 60–70% of the time the eye is not moving, but kept at the eye orien-

tation obtained after the previous saccade. It would therefore make sense for the system to

minimize the total effort (i.e., “optimize the skill”) needed to keep the eye in any particular

orientation.

Our simulations thus suggest that Listing’s law (Fig 3) and the main-sequence behavior of

saccades (Fig 4) could be part of a joint optimization strategy of the oculomotor system that

aims to minimize movement duration and fixation effort when collecting sensory evidence

about the environment. In dealing with this problem, the system has to overcome a sluggish

(overdamped), anisotropic plant with quite complex static and dynamic mechanical properties

[25–27, 35, 38, 62], as well as the noncommutative nature of sequential rotations [3, 6, 16, 19,

37, 39].

Note that Donders’ law and Listing’s law could also help to optimize visual-sensory func-

tions, like stereoscopic depth perception and the perception of (binocular) visual line orien-

tations seen from different eye positions [21, 33, 34]. The pulley system of the horizontal

recti [25, 26] might then also function to facilitate joint binocular control. If so, their plane

of action, and even the location of the primary position, could then perhaps reflect an adap-

tive response of the oculomotor system to the statistics of natural binocular visual inputs

[63].

Model simplifications

Clearly, the mechanical model of Fig 5 is a coarse simplification of the true complexity of the

human eye: the actual properties of the muscles were modelled as simple linear springs with a

fixed elasticity, taken to be equal for all six tendons (cf., [27, 64]). Moreover, the paths taken by

these muscles to exert their forces on the globe were not constrained by (static or dynamic)

pulleys [25, 26, 29, 38]. These mechanical simplifications for sure have an influence on the

exact motor commands needed to control the plant. This is already demonstrated by the effects

of the different geometrical arrangements of the muscles with respect to the eye’s equatorial

plane (Fig 15), but also by adding head-fixed pulleys for the horizontal recti in our simulator

(results not shown). Yet, the major saccade properties: their main-sequence behavior, straight

trajectories, component cross-coupling and Listing’s law, all emerge for these different geome-

tries, albeit in slightly different ways (e.g., as a tilt of LP). The concept is illustrated in the sche-

matic of Fig 17.

More realistic models of (nonlinear) extraocular eye muscles [27, 64], and incorporation of

a pulley mechanism [24–26], will obviously change the model eye’s 3D transfer characteristic,

but the learning algorithm that uses the eye’s measured outputs (3D orientation and angular
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velocity) in combination with the set of optimization constraints, will result in appropriate

(albeit different) commands to cope with more complex plant properties.

Supporting information

S1 Fig. Assessing the relative contributions of inertial acceleration and angular velocity to

the eye movement (Eq (13)). (A) Saccade-like traces (generated by an appropriately scaled

tanh function): position (in deg) from 2 to 60 deg amplitude; angular velocity (in deg/s); angu-

lar acceleration (in deg/s2). (B) Main sequence of the simulated saccades. (C) Instantaneous

value of the Iα and ω × (Iω) terms (taken from t = 0.85–1.15 s). Note differences in scale (fac-

tor 100) for the angular velocity (black) and angular acceleration terms. (D) The relative RMS

power of the two terms (calculated over the same 300 ms as in C) as function of saccade ampli-

tude. Its value increases with amplitude up to about 0.02% for the largest saccades. As a result,

the latter term was ignored in our simulations.

(TIF)

S2 Fig. (A,B) 3D oculomotor behavior and (C,D) saccade dynamics, resulting from minimiz-

ing the AD cost. Although the 3D eye orientations are close to Listing’s law, the saccade

dynamics (main sequence and component cross-coupling) are abnormal. The saccade peak

velocity (C) doesn’t seem to saturate, as the exponential fit yields a non-physiological asymp-

tote near 104 deg/s, with a angular constant close to the oculomotor range. (D) In the fixed-

component oblique saccade test (as in Fig 9), the 8 deg horizontal component develops a large

overshoot (with all durations the same, at about 100 ms), which is followed by a long return

phase. This results in goal-directed, but curved saccade trajectories. See also Table 3 for

numerical details.

(TIF)

S3 Fig. (A,B) 3D oculomotor behavior and (C,D) saccade dynamics, resulting from mini-

mizing the AE cost. Also for this control strategy the saccades are abnormal: (C) the peak

velocity increases linearly with saccade amplitude (but saccades remain much slower than for

the JAD strategy, with the fitted asymptote at around 650 deg/s), and absence of component

stretching (D), as all horizontal saccade components have the same, slow, velocity profile (all

Fig 17. The total model encompasses two linked (nonlinear) components: the sequence of motor commands, Ut, and the 3D eye plant, H. The plant’s

output (described by 3D eye orientation, rt, and angular velocity, ωt) is used to tune the cost function, JForce(r, ω), that drives the motor outputs. The

system’s behavior follows the dynamics and kinematics of real saccades (insets, right). Any change in the plant’s parameters will require corresponding

changes in the motor outputs, ut. rD: 2D target location. The thin feedback arrow represents the training phase during which eye movements recurrently

train the motor outputs to minimize the imposed cost.

https://doi.org/10.1371/journal.pcbi.1008975.g017
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positive traces superimpose with a fixed duration of about 200 ms; See also Table 3 for numeri-

cal details).

(TIF)

S4 Fig. Amount of stretching of the horizontal peak eye velocity component (kept fixed at

an amplitude of 8 deg, for saccade vectors in different directions, as indicated on the

abscissa; see also panels D in S2 and S3 Figs) for the AD (A) And AE (B) cost-minimization

strategies. The simulated data have either a negative, or no correlation with the expected com-

mon-source cosine prediction (dashed lines; cf. Fig 11), indicating that saccade trajectories are

curved. See also Table 3.

(TIF)

S5 Fig. A,B) 3D oculomotor behavior and (C,D) saccade dynamics, resulting from mini-

mizing the JAEDL2
cost. As expected, saccades follow Listing’s law (width of the plane is 2.25

deg), but peak velocities (C) of the saccades are much lower than for the strategies constraining

AED and AED with final eye position in LP. (D) Saccade trajectories are straight, as the corre-

lations between horizontal and vertical velocity profiles are high (see also Table 3 for numerical

details).

(TIF)
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