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Abstract: Osteosarcoma is one of the most common types of bone cancers among paediatric patients.
Despite the advances made in surgery, chemo-, and radiotherapy, the mortality rate of metastatic
osteosarcoma remains unchangeably high. The standard drug combination used to treat this bone
cancer has remained the same for the last 20 years, and it produces many dangerous side effects.
Through history, from ancient to modern times, nature has been a remarkable source of chemical
diversity, used to alleviate human disease. The application of modern scientific technology to the
study of natural products has identified many specific molecules with anti-cancer properties. This
review describes the latest discovered anti-cancer compounds extracted from traditional medicinal
plants, with a focus on osteosarcoma research, and on their cellular and molecular mechanisms
of action. The presented compounds have proven to kill osteosarcoma cells by interfering with
different pathways: apoptosis induction, stimulation of autophagy, generation of reactive oxygen
species, etc. This wide variety of cellular targets confer natural products the potential to be used as
chemotherapeutic drugs, and also the ability to act as sensitizers in drug combination treatments.
The major hindrance for these molecules is low bioavailability. A problem that may be solved by
chemical modification or nano-encapsulation.

Keywords: osteosarcoma; natural products; traditional medicinal plants; drug discovery; signaling
pathway; combination therapy

1. Introduction

Osteosarcoma, a bone cancer mainly arising in children and adolescents between
the ages of 10 and 14, represents 3–5% of childhood cancer [1,2]. The annual incidence
of this disease is 5.6 cases per million of paediatric patients [3]. Osteosarcoma occurs
in the metaphysis of the wide portion of the long bones, which is characterized by an
accelerated cell division, necessary for bone elongation [2]. During this process, cells
can suffer different changes, such as loss of the tumour suppressor gene functionality,
which will make them develop into a cancer. Moreover, some conditions are well known to
predispose paediatric patients to osteosarcoma. These include retinoblastoma, Li–Fraumeni,
and Rothmund–Thomson syndromes [4].

Even though this type of bone cancer is predominant in the young population, adults
over the age of 50 are the second-highest risk group for suffering osteosarcoma [5]. In this
case it is a secondary tumour caused by irradiation exposure to treat another type of cancer,
which occurred previously in life [2]. Also, osteosarcoma can result from a sarcomatous
transformation, a rare complication observed in elderly patients with Paget’s disease of the
bone. In this group of patients, long bones are no longer the principal site affected by the
tumour. Instead, jaw and pelvis are the most affected [6,7].
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The current treatment option for osteosarcoma patients consists of surgical removal of
the tumour and multi-agent chemotherapy, usually with methotrexate, doxorubicin, and
cisplatin (Table 1). This therapy has enabled a five-year survival rate of 70% of patients
with localized disease. However, the acquired chemoresistance observed in the metastasis
or relapsed tumours is associated with a poor prognosis, with only a five-year survival
rate of 20% [4,5]. Osteosarcoma chemotherapy has not substantially altered for decades,
and the survival rate of patients with metastasis has remained unchanged for the last
20 years [5]. For this reason, the efficiency of osteosarcoma therapy needs to be urgently
improved. One of the strategies is to discover novel anti-tumor drugs. Notwithstanding
the potential of synthetic biology, this task has been more successfully achieved by taking
advantage of nature’s molecular designs, a resource that has not yet been totally explored.
New anti-tumour drugs could be found by looking at all that surrounds us, as nature is a
tremendous source of chemical diversity [8,9]. Also, discovery of the potential application
of the natural products has been facilitated with the contribution of modern computational
techniques. Creation of databases with the aid of chemo-informatics enables researchers to
access to the structural properties of the bioactive molecules [10]. Artificial intelligence and
machine learning have been demonstrated to be useful in candidate drug structure design,
as well as prediction of its targets, bioactivity, and toxicity [11].

Table 1. Chemotherapeutic drugs used in osteosarcoma therapy.

Chemotherapeutic
Drug Description Effect Reference

High-dose
methotrexate

Folic acid
analogue

Induced apoptosis and inhibited
DNA synthesis, through blockage of

dyhidrofolate reductase (DHFR)
[12]

Doxorubicin Anthracycline

Induced cell death through
intercalation between DNA strands,

Topoisomerase II complex
stabilization, and induction of

oxidative stress

[13,14]

Cisplatin Platinum-based
compound

Induced apoptosis and inhibited
genetic material replication and

repair through DNA
adduct formation

[15]

Ifosfamide Alkylating a gent

Induced apoptosis and inhibited
genetic material replication

through DNA intra- and
inter-strand crosslinks

[4,16,17]

Natural products encompass compounds derived from plants, fungi, and bacteria [18].
A first-in-class analysis between 1999 and 2013 demonstrated that 28% of the drugs
approved by the US Food and Drug Administration (FDA) were natural products or
their derivatives [9]. Indeed, current treatment of osteosarcoma relies on several com-
pounds originating from natural sources. One such is doxorubicin, which is part of
a standard drug combination given together with high-dose methotrexate and cis-
platin. This chemotherapeutic drug is an anthracycline isolated from the bacteria
Streptomyces peucetius [13,14]. Another one, etoposide, a semisynthetic compound de-
rived from the mandrake plant Podophyllum peltatum, is typically used in combination
with ifosfamide for osteosarcoma therapy [19,20].

To date, native people of the developing countries rely on the use of medicinal herbs
to manage their healthcare issues [21]. For these people this kind of practice represents a
value for its tradition and long-term belief of its effectiveness. In rural places it is difficult
to access modern health facilities because of its costs, making it more likely in these areas
to seek solutions from traditional healers. As a result, there is an expanded use of herbs
for illnesses that range from minor diseases to serious ones, such as cancer [22–24]. In Sri
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Lanka, ginger, Zingiber officinale, is employed to treat oesophageal, liver, and gastrointestinal
cancer [25]. The leaves of the Black Calla Lily, Arum palaestinum Boiss, are commonly used
as a herbal remedy for cancer patients in Pakistan [26]. Many studies in medicinal plants
extracts confirmed their anti-tumor capacities [27]. Herb preparations represent a potential
source for anti-cancer agents that still should be explored. For this reason, the aim of this
review is to present compounds derived from medicinal plants currently in research for
osteosarcoma treatment.

2. Oridonin

Oridonin is a diterpenoid isolated from the Isodon plant, Rabdosia rubescens, in 1970
(Figure 1). This medicinal herb has been traditionally used by native people in China to
alleviate pain, manage inflammation, and treat oesophageal cancer [28,29]. Several studies
have demonstrated the anti-tumour capacities of oridonin, revealing a wide spectrum
of pharmacological activities that include: induction of cell autophagy and apoptosis;
arrest of cell-cycle progression; and inhibition of angiogenesis [28,30–34]. In the case
of osteosarcoma, the interest in this natural product is recent. There are few available
reports, but with promising results. Oridonin exerts its anti-cancer activity by inducing
mitochondria-mediated apoptosis through augmentation of Bax/Bcl-2 ratio, and activation
of caspase–3 and 9, accompanied by augmented reactive oxygen species (ROS) production.
Moreover, disruption of several signalling pathways promotes apoptosis. For example, the
natural product is able to activate p38 MAPK, JNK, and PPAR-γ, while it inhibits Akt and
Nrf2 pathways [35–37].
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Figure 1. Oridonin in osteosarcoma inhibition.

Chemoresistance observed in metastatic cancer is a challenge for a successful therapy.
In a study by Wang and Shu [31], oridonin showed the ability to suppress metastasis of
human ovarian cancer by blocking mTOR signalling pathway and increasing the expression
of the downstream gene FOXP3. To confirm and clarify these effects of the natural product
on osteosarcoma cells Sun et al. [38] focused on the epithelial-to-mesenchymal transition
(EMT), a process where cells lose their epithelial cell–cell adhesion pattern and acquire
a mesenchymal phenotype, with migratory and invasive properties. During EMT the
E–cadherin marker of epithelial cells disappears and instead N–cadherin, a mesenchymal
marker, is expressed. Oridonin was able to prevent this process by increasing the tran-
scription of the E–cadherin, while N–cadherin was down-regulated. Besides, TGF-β1, a
key receptor involved in the EMT initiation, was inhibited by preventing the activation
of the downstream Smad2 and Smad3, necessary for the expression of a variety of genes
involved in cancer progression [38]. These results demonstrate the potential of oridonin
to be an effective candidate for advanced stages of osteosarcoma, where a poor prognosis
still remains.

As with other chemotherapeutic drugs, an important drawback of natural products as
anti-cancer drugs is the risk of resistance that can appear within months. For this reason, to
increase the efficiency of osteosarcoma treatment, researchers rely on combination therapy.
Recently, a synergistic cytotoxic effect has been described for oridonin and doxorubicin
in an in vitro model of osteosarcoma [39]. Wang et al. [28] investigated the possibility
of combining the natural product with Nutlin–3, an inhibitor of mouse double minute 2
(Mdm2) protein, a negative regulator of p53 function. The combination was able to inhibit
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cell viability in those osteosarcoma cells that were bearing a wild-type p53. In osteosarcoma
in vitro models with compromised p53 function, such as MNNG/HOS cells, with mutated
p53, or Saos–2 cells, with null p53, a reduction in cell viability was detected, but the calcu-
lated combination index (CI) showed there was no synergistic activity between oridonin
and Nutlin–3 [28]. The administration of both drugs represents a novel therapeutic strategy,
although further studies are needed using different doses of oridonin and Nutlin–3, as
synergistic and antagonistic effects depend on the dosage.

Despite the promising efficacy of oridonin for osteosarcoma therapy, its clinical ap-
plication is hindered by its limited water solubility and bioavailability. To overcome such
drawbacks oridonin derivatives have been synthesised, such as geridonin and CYD0618.
Having the natural product come into osteosarcoma study recently, there are no reports
evaluating its analogs, but they have been studied for other types of cancer [40–42].

3. Wogonin

Wogonin is one of the active components extracted from the root of Baikal skullcap,
Scutellaria baicalensis Georgi, commonly used for the treatment of inflammatory diseases
in China (Figure 2) [43]. It was shown to have anti-cancer properties in osteosarcoma
U2OS cells through the activation of apoptosis. Wogonin triggered this process by inducing
ROS production, responsible of mitochondrial membrane potential disruption, release of
additional ROS, and caspase–3 activation [44].
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Cancer is a complex disease where tumour cells are not the unique component of
the tumour microenvironment. Endothelial cells, tumour-associated macrophages (TAM),
carcinoma-associated fibroblasts, and cancer stem cells (CSC) are other important elements
that can contribute to cancer metastasis and relapse [45]. Importantly, for osteosarcoma
therapy wogonin demonstrated to have inhibitory properties on metastatic tumour. In
CSC the natural product favoured ROS generation by reducing the expression of the
antioxidant peroxiredoxin 5 (PRX5) and inhibiting the transcriptional factor STAT3 [46].
Moreover, wogonin was able to affect the expression of matrix metalloproteinase 9 (MMP–9)
in osteosarcoma stem cells, a protein involved in the degradation of the extracellular matrix
(ECM) and promoter of the angiogenesis necessary for malignant cells invasion. In this
way, the renewal capacity of CSC was inhibited, diminishing the potential risk of these cells
to contribute with further cancer cells necessary for metastasis [47].

The Implication of TAM in the anti-tumour effect of wogonin was observed in a
mice model bearing a highly metastatic osteosarcoma: LM8 cells. The inhibition of
cyclooxygenase–2 (COX–2) expression and IL–β production in activated TAM led to the
suppression of vascular endothelial growth factor (VEGF)-induced lymphangiogenesis [43].
The ability of wogonin to target different components of the tumour microenvironment
makes it a valuable candidate for osteosarcoma therapy that should receive further attention.
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4. Oleuropein

Oleuropein is a secoiridoid, one of the most abundant components found in the fruits
and leaves of the olive tree Olea europaea L. (Figure 3). The olive oil is a well-known source
of energy, and important part of the Mediterranean diet [48]. Besides, the leaves, fruit,
bark, and oil of the olive tree have been used in traditional medicine among different
countries. In the Mediterranean folk medicine, olive leaves preparations are commonly
used against gout, while in Tunisian folk medicine, they are used to treat inflammation
and bacterial infections, such as gingivitis or otitis [49,50]. In some regions of Iran, the
leaves are used as a remedy for muscle and joint pain [51]. A number of studies have
demonstrated the anti-tumor effect of oleuropein in different types of cancer [52–54]. In
the case of osteosarcoma, it has shown anti-proliferative properties, where autophagy
was implied. The role of autophagy induction by oleuropein in cancer cells is still to be
elucidated, as this process has a dual role, being in some cases promoter and in another
suppressor of the tumour growth [48,55,56]. This is an important information to take into
account, as it will determine the success of the therapy.
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The available studies about oleuropein in osteosarcoma employ the drug to improve
the efficiency of other, better-known drugs. Co-administration of doxorubicin with oleu-
ropein in an in vitro model of osteosarcoma resulted in enhanced inhibition of osteosar-
coma cell proliferation. Given the cumulative, dose-dependent, side effects of doxorubicin
(such as cardiotoxicity), combination therapies that allow reducing its dosage are actively
sought [48]. In another study, synergism between oleuropein and 2–methoxyestradiol
(2–ME), a metabolite of 17β–estradiol with anti-cancer properties, was observed [56].

5. Evodiamine

Evodiamine is an alkaloid isolated from the fruit of the Chinese medicinal plant
Evodia rutaecarpa (Figure 4). Traditionally, this herb has been used to treat inflammation
diseases, abdominal pain, headache, dysentery, and postpartum haemorrhage [57,58]. Re-
search studies demonstrated evodiamine to possess anti-tumor properties by inhibiting
the proliferation of several types of cancer, including osteosarcoma [59–63]. In bone cancer
these effects were caused in a time- and dose-dependent manner. Evodiamine exerted its
anti-cancer activities through mitochondrial apoptosis induction, evident from increased
levels of Bax, caspase–3 and PARP, while the expression of Bcl–2 and Survivin were de-
creased. Cell-cycle arrest at the G2/M or G0/G1 phase was also implicated. Further
studies on the mechanisms of the anti-cancer effects of evodiamine found inactivation of
PTEN/PI3K/Akt and inhibition of Wnt/β–catenin signalling pathways [59–61].
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Osteosarcoma is a tumour that has a tendency of invasion and metastases in lungs.
These factors are responsible for the poor prognosis in the advanced stages of bone
cancer [2,4]. Evodiamine was shown to be effective in suppressing the EMT process as-
sociated to metastatic processes. Thus, the natural product increased the expression in
E–cadherin, while N–cadherin, Vimentin, MMPs, and the transcription factor Snail were
down-regulated [59].

The efficacy of Evodiamine as a potential candidate for osteosarcoma treatment has
been studied in vivo in a xenograft model, where 143B cells were subcutaneously injected
into the backs of athymic nude mice. After the treatment with the natural product, tumour
growth was suppressed in a dose-dependent manner and the expression of the proliferating
cell nuclear factor (PCNA) in tumour cells was decreased, thus confirming the inhibition of
tumorigenesis [61]. Based on these findings, Evodiamine is another candidate to be further
evaluated in osteosarcoma treatment.

6. Parthenolide

Parthenolide is a sesquiterpene lactone found in the feverfew plant, Tanacetum parthenium
(Figure 5). This herb has been a traditional folk medicine across Europe, used to treat insect
bites, psoriasis, toothache, rheumatoid arthritis, migraine, and fever [64,65]. Nowadays,
feverfew supplements are given for migraine headaches, in the form of capsules or tables
of dried leaves, standardized to contain 0.2–0.4% of parthenolide [64]. Anti-cancer action of
this natural product has been found against different types of cancer, such as breast, colon,
prostate, and skin [66–69].
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NF–κB is a dimeric transcription factor that is up-regulated in osteosarcoma [70–72].
The cJun N–terminal kinase (JNK) is a signalling pathway involved in apoptosis induction
upon cytoplasmic stress or DNA damage [73]. In osteosarcoma, activation of NF–κB and
inhibition of JNK pathway favours malignant cell survival, thus affecting the outcome of
the cancer therapy. Parthenoline was reported to suppress NF–κB activity and prompt the
activation of JNK in a dose-dependent manner, followed by caspase-independent bone
cancer cell death [74,75]. One of the proposed mechanisms of the natural product is through
ROS generation, which leads to dissipation of mitochondrial membrane potential. As a
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result, there is a release of cytochrome c and apoptosis-inducing factor (AIF), followed by
nuclear translocation of AIF, which causes chromatin condensation and fragmentation [75].
Another mechanism by which parthenolide causes cell death is through autophagy in-
duction mediated by ROS production [74]. Furthermore, the natural product showed
metastasis preventive effects as it inhibited the development of lung metastasis of LM8, a
highly metastatic subclone of Dunn murine osteosarcoma cell line [72].

In some cases, the localization of osteosarcoma tumours, such as pelvis or jaw, makes
it difficult to perform its surgical resection, as these regions are surrounded by vital organs.
For this reason, post-operative radiation therapy is usually given to kill the remaining cancer
cells. Moreover, radiation is used to relieve the pain for unbearable bone metastasis and pro-
long the survival of the patient. Combination of radiotherapy with chemotherapy has been
observed to improve the effectiveness of the cancer treatment, in general [76,77]. However,
osteosarcoma is known for its radioresistance. For these reason, radiosensitization strate-
gies followed by a posterior chemotherapy are under investigation. It is established that the
expression of NF–κB contributes to osteosarcoma radioresistance [70,78]. Zuch et al. [63]
found enhanced cell death of an aggressive derivative of Saos–2, LM7, when parthenolide
and ionizing radiation were given together. In this case, treatment with the natural product
reduced NF–κB activity and increased oxidative stress. The posterior irradiation further
diminished osteosarcoma cell viability [69]. Similar findings were detected in LM8 trans-
fected with a reporter construct of NF–κB, Luc–LM8, in vitro and in vivo [78]. Importantly,
synergy between parthenolide and ionizing radiation was observed against the cancer stem
cells subpopulation of LM7 [69]. These data make parthenolide an attractive sensitizing
agent of osteosarcoma cells prior to radiotherapy. Finally, the effects of parthenolide seem
to be specific to cancer cells, being nontoxic to healthy cells, according to Zuch et al. [69]
where cell viability of LM7 and human fetal osteoblast hFOB 1.19 was assessed using
LIVE/DEAD Viability/Cytotoxicity kit [69].

7. Shikonin

Shikonin is a naphthoquinone isolated from the Chinese medicinal plant Lithospermum
erythrorhizon, widely used for treating inflammation and wound healing (Figure 6) [79,80].
It was shown to reduce osteosarcoma cell viability in a time- and dose-dependent
manner [79,81]. Moreover, shikonin can suppress osteosarcoma invasiveness through
MMP13 inhibition [82,83]. The natural product exerts its anti-cancer activity through differ-
ent molecular mechanisms that vary according to the cell line and treatment time. In 143B
cells, increasing levels of ROS production and activation of extracellular signal-regulated
kinase (ERK), in response to shikonin exposure, caused apoptosis [79]. On the other hand,
K7, K12, K7M3, and U2OS cell death after shikonin treatment occurred through necroptosis
induction, as the level of proteins RIP1 and RIP3, involved in this process, were increased.
These effects were reversed when necrostatin–1, a specific inhibitor of necroptosis, was
used, while no protective effects were observed with the addition of the general caspase
inhibitor, Z–VAD–FMK [81].
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Interestingly, shikonin has also proved to be a promising compound for combination
treatment. The natural product acted in synergy with low doses of doxorubicin and further
enhanced the apoptotic effect of this drug in osteosarcoma cells on account of caspase–3
and caspase–8-dependent apoptotic pathway [84]. The ability of shikonin to potentiate the
effects of low doses of doxorubicin should be taken into account since it could reduce the
previously mentioned side-effects of doxorubicin, such as cardiotoxicity, that is known to
produce a heart failure in survivors of paediatric cancer later in life [85].

The observed anti-cancer effects of shikonin in vitro were confirmed in vivo in an
orthotopic osteosarcoma model, where the K7 osteosarcoma cell line was injected into
the medullary cavity of mice tibia. After tumours developed, the mice were treated with
shikonin for two weeks, after which they were euthanized and the tumours analysed.
Tumour size in the shikonin-treatment group was significantly smaller, as compared to
the untreated control. Necroptosis induction was deduced to have caused tumour cell
death in vivo, as RIP1 and RIP3 were significantly increased in the primary tumour tissue.
In a parallel experiment performed to asses metastasis of osteosarcoma cells to the lungs,
shikonin reduced the extent of lung metastasis and visibly prolonged the survival of mice
in this experimental group, as compared with the untreated control group [81]. Based on
these findings the natural product could be a propitious candidate to prevent metastasis in
osteosarcoma patients, as well as to improve osteosarcoma chemotherapy.

In order to boost the therapeutic efficiency of shikonin, Kong et al. [80] synthetized
different derivatives, acylated by distinct fluorinated carboxylic acids at the side chain, and
evaluated their anti-cancer activity in MG63 osteosarcoma cell line. The authors found that,
from 11 synthesised compounds, the one named S7 presented a strong anti-cancer activity
against MG63. In addition, docking simulations showed S7 to act as an inhibitor of tubulin
polymerization [80].

8. Berberine

Berberine is an isoquinoline alkaloid found in different types of plants, such as Berberis
vulgaris, Berberis aristata, Berberis aquifolium, Coptis chinensis, and Hydrastis canadensis (Fig-
ure 7) [86]. In traditional Chinese medicine it has been used for its anti-inflammatory
and anti-microbial properties [86,87]. Numerous studies reported berberine to be effective
against lymphoblastic leukemia, colorectal, prostate, breast, and esophageal cancer [88–92].
Similarly, it inhibited proliferation, viability, migration, and colony formation of osteosar-
coma cells in a time- and dose-dependent manner [87,93]. There are several proposed
underlying mechanisms that explain berberine’s anti-tumour effects. One of them involves
genomic damage triggering p53 activation, with subsequent induction of cell-cycle arrest
and apoptosis [93]. Zhu et al. [94] also found berberine to produce both apoptosis and
DNA double strand breaks. In another study, the natural product was able to reduce the
expression of caspase–1, a cysteine protease involved in the activation of proinflammatory
cytokines, and its downstream target IL–1β, leading to osteosarcoma cell growth inhibition.
This finding was confirmed in vivo in a xenograft mouse model [95].
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The success of cancer metastatic dissemination throughout the body depends on its
ability to migrate and degrade the extracellular matrix. Berberine has demonstrated to be
effective against metastatic osteosarcoma by inhibiting migration and colony formation of
these cells. This was achieved through the natural product’s ability to suppress the activity
of MMP2. Moreover, berberine could also inhibit EMT, as suggested from the observed
increased expression of E–cadherin and reduced expression of N–cadherin, vimentin, and
fibronectin observed in berberine-treated MG63 osteosarcoma cells in vitro [87].

Cisplatin is one of the chemotherapeutic drugs given along with doxorubicin and
high-dose methotrexate for osteosarcoma treatment [5]. Its applicability is limited due
to cancer cells resistance and its serious side effect, i.e., nephrotoxicity. As it occurs with
doxorubicin, novel adjuvant drugs are being sought that can be combined with cisplatin
in order to achieve a safer treatment, with lower cisplatin dosing but equal therapeutic
effect. Experimental evidence supports that berberine potentiates the anti-cancer activity of
cisplatin. In an in vitro model of osteosarcoma (MG63 cells), the combination of cisplatin
and berberine significantly inhibited cell migration and invasion to a higher extent than
individual drug administration. These anti-tumour effects were attained by cell-cycle arrest
in G0/G1 phase and apoptosis induction through MAPK signalling pathway repression [96].

Berberine represents a potential candidate for osteosarcoma therapy. However, further
studies are needed to elucidate the safeness of the natural product as its ability to produce
DNA damage is a concern requiring attention.

9. Triptolide

Triptolide is a diterpenoid epoxide obtained from the Thunder God Vine, Tryptery-
gium wilfordii, a medicinal plant used for centuries in China to treat inflammatory and
autoimmune diseases (Figure 8) [97,98]. Several studies have shown the ability of this
natural product to reduce proliferation and cause cell death in pancreatic cancer, non-
small cell lung cancer, and hepatocellular carcinoma [99–101]. In the case of osteosar-
coma, triptolide has shown to exert diverse effects on apoptosis, autophagy, and angio-
genesis [102–104]. It has been observed that the natural product can up-regulate Fas
death receptor and its ligand FasL, and also increase the levels of caspase–3, –8, –9
and enhance cytochrome c release, pointing triptolide-induced apoptosis to be caused
through activation of both extrinsic (FasL, Fas, caspase–8) and intrinsic (caspase–9 and
cytochrome c) mitochondrial pathways [102]. Similarly, Zhao et al. [97] proposed the anti-
tumour effects of triptolide to occur via the activation of DR–5/p53/Bax/caspase–9/–3
and DR–5/FADD/caspase–8/lysosomal/cathepsin B/caspase–3 signalling pathways.
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The variety of mechanisms of action proposed for triptolide make this drug a pos-
sible multifunctional compound against osteosarcoma. Another explored pathway sug-
gests that triptolide reduces osteosarcoma cell viability by decreasing the expression of
mitogen-activated protein kinase phosphatase 1 (MKP–1), a repressor of MAPK signalling
pathway, and that of heat shock protein 70 (Hsp70), a chaperone whose increased levels are
speculated to contribute in chemoresistance [105]. Besides, the anti-cancer effects of trip-
tolide were reported to occur through autophagy induction by inactivating Wnt/β–catenin
signalling. In addition, it may suppress angiogenesis in osteosarcoma cells [103]. A dual-
specificity protein phosphatase 1 (DUSP1) that functions as a negative regulator of MAPK
family members, and is known to be up-regulated in bone cancer, is another target pro-
posed for the natural product. DUSP1 inhibition enables the activation of ERK1/2 and
JNK1/2, leading to further induction of apoptosis [104].

Combination therapy is another strategy through which triptolide could contribute to
improving current osteosarcoma therapies. In several studies, it has been observed that the
natural product enhances the sensitivity of cancer cells to doxorubicin and cisplatin [104,106].
On other hand, triptolide co-administration with AMD3100, an antagonist of C–X–C
chemokine receptor type 4 (CXCR4), induced apoptosis, and inhibited proliferation and in-
vasion of osteosarcoma cells in vitro. In vivo, this combination suppressed primary tumour
growth and lung metastasis, thus representing a promising strategy against metastatic
bone cancer [107]. However, the low solubility of triptolide in aqueous solutions limits,
at present, its application in in vivo models. For this reason, minnelide, a prodrug of the
natural product, has been developed. Similar to triptolide, minnelide has shown to be an
effective compound with the ability to reduce tumour growth and metastasis in nude mice.
Importantly, both minnelide and triptolide have been able to negatively affect osteosarcoma
cells, while having minimal repercussion on osteoblastic cells, pointing these drugs to be
safe for chemotherapeutic usages [108].

10. Novel Natural Products

Recently, novel natural products have been evaluated for the first time for osteosar-
coma therapy. Phillygenin is a lignan component isolated from the dried fruit of Forsythia
suspense, a traditional Chinese medicinal plant used for heat clearing and swelling re-
duction [109]. Previously it had shown anti-tumour effects against a non-small cell lung
cancer [110]. In osteosarcoma, phillygenin decreased cell growth and inhibited cell migra-
tion of 143B, HOS, and SJSA by interfering with STAT3 signalling pathway [111]. Another
novel compound is oxyresveratrol, extracted from Cortex mori, whose roots have been
used in traditional Chinese medicine to treat asthma, cough, and water swelling [112].
In modern research it showed to be effective against neuroblastoma, breast cancer, and
hepatocellular carcinoma [113–115]. Also, oxyresveratrol revealed promising results in
osteosarcoma treatment. The natural product inhibited Saos–2 cell viability and induced
apoptosis by reducing the phosphorylation level of STAT3 [116]. However, further stud-
ies of the underlying mechanisms of phillygenin and oxyresveratrol are still needed to
elucidate the applicability of these novel compounds for osteosarcoma therapy. Calonghi
and coworkers investigated the effect of the lipophilic fraction of two Paeonia species on
different types of cancer cells. They found that ovarian carcinoma and osteosarcoma cells
were sensitive to the extracts, which caused alteration of the mitochondria membrane
potential and production of ROS. Interestingly, paeonol, the active compound characteristic
of peonies, was not present in the studied fraction. This suggests the presence of alternative,
not-yet-identified, anti-cancer compounds in Paeonia plants [117].

The summary of the effects of the natural products on osteosarcoma discussed in the
present review are outlined in Table 2.
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Table 2. The effects of different natural products on osteosarcoma.

Natural
Product Dose Target Effect Model Cell Line Reference

Oridonin 0–200 µM MMP–2, 3, 9 and
STAT3 pathway

Induced apoptosis, inhibited
proliferation, migration,

and invasion
In vitro U2OS [35]

Oridonin 0–100 µM PPAR–γ and
Nrf2 pathways

Induced apoptosis and
inhibited proliferation

In vitro and
in vivo

MG63
and HOS [36]

Oridonin 0–100 µM Akt, ERK, p38 MAPK
and JNK pathways

Induced apoptosis and
suppressed proliferation In vitro MG63, U2OS

and Saos–2 [37]

Oridonin
0–4 µM;

0, 10 and
15 mg/kg

TGF-β1/Smad2/3 Inhibited EMT, migration,
invasion, and lung metastasis

In vitro and
in vivo

MG63, U2OS
and 143B [38]

Wogonin 0–100 µM;
25 and 50 mg/kg -

Reduced tumour growth,
metastasis, angiogenesis,
lymphangiogenesis, and

TAM number

In vitro and
in vivo LM8 [43]

Wogonin 0–150 µM ROS and caspase–3 Induced apoptosis In vitro U2OS [44]

Wogonin 0–80 µM ROS

Reduced cell viability,
proliferation, stemness,

migration, and
self-renewal capacities

In vitro CD133+
Cal72 [46]

Wogonin 0–80 µM MMP–9
Induced apoptosis, inhibited

migration invasion, and reduced
renewal capacities

In vitro CD133+
Cal72 [47]

Oleuropein 50–400 µM - Reduced proliferation In vitro MG63 and
Saos–2 [55]

Evodiamine 0–32 µM Wnt/β–catenin
pathway

Induced apoptosis, inhibited
proliferation, migration, and

invasion; suppressed EMT and
caused cell-cycle arrest

In vitro MG63
and 143B [59]

Evodiamine 0–12.5 µg/mL Bcl–2, Bax, caspase–3,
and survivin

Inhibited proliferation and
induced apoptosis In vitro U2OS [60]

Evodiamine 0–4 µM PTEN/PI3K/Akt
pathway

Inhibited proliferation, induced
apoptosis and caused

cell-cycle arrest

In vitro and
in vivo 143B [61]

Parthenolide 0–25 µM ROS Induced cell death, autophagy,
and mitophagy In vitro MG63 and

Saos–2 [74]

Parthenolide 0–100 µM AIF Induced cell death In vitro MG63 [75]

Parthenolide 0–20 µM NF–κB pathway Induced cell death
and radiosensitivity In vitro LM7 [70]

Parthenolide 0 and 1 µg/mL;
1 and 2 mg/kg NF–κB Enhanced radiosensitivity and

inhibited tumour growth
In vitro and

in vivo LM8 [78]

Shikonin 0–8 µM ROS, ERK, and Bcl–2 Induced apoptosis In vitro 143B [79]

Shikonin 0–15 µM;
2 mg/kg RIP1 and RIP3

Induced cell death, necroptosis,
and increased the survival time

in metastatic disease

In vitro and
in vivo

K7, K12,
K7M3, U2OS

and 143B
[81]

Berberine 0–80 µM MMP–2, H3K27me3,
and EZH2

Inhibited proliferation,
migration and EMT In vitro MG63 [87]

Berberine 0–50 µg/mL p53, p21, p27,
and cyclin E

Induced apoptosis, inhibited
proliferation, and caused

cell-cycle arrest
In vitro U2OS, Saos–2

and HOS [93]

Berberine 0–80 µM DNA Induced DNA damage
and apoptosis In vitro MG63 [94]
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Table 2. Cont.

Natural
Product Dose Target Effect Model Cell Line Reference

Berberine 0–120 µg/mL;
20 mg/kg

Caspase–1/IL–1β
pathway

Induced apoptosis, inhibited
tumour growth, and modulated

inflammation in tumour
microenvironment

In vitro and
in vivo

MG63 and
Saos–2 [95]

Triptolide 0–200 nM

DR–
5/p53/Bax/caspase–

9/–3 and
DR–5/FADD/caspase–
8/lysosomal/cathepsin
B/caspase–3 pathways

Suppressed cell viability and
induced apoptosis In vitro MG63 [97]

Triptolide 0–500 nM

procaspase–8,–9, Bcl–2,
Bid, Fas, FasL, Bax,
caspase–3, PARP,

mitochondrial and
cytosolic cytochrome c

Inhibited cell growth, induced
cell-cycle arrest, and apoptosis In vitro U2OS [102]

Triptolide 0–200 nM
HIF–1alpha, VEGF, and

Wnt/β–catenin
pathway

Inhibited angiogenesis, induced
apoptosis through

autophagy activation
In vitro MG63 [103]

Triptolide 0–400 nM;
0.2 mg/kg DUSP1

Inhibited cell viability, migration
and invasion; induced apoptosis

and caused cell-cycle arrest

In vitro and
in vivo

MG63, U2OS
and

UMR–106
[104]

Phillygenin 0–200 µM SHP–1/JAK2/STAT3
pathway

Inhibited cell growth
and motility In vitro 143B, HOS,

SJSA [111]

Oxyresveratrol 0–45 µM STAT3 pathway Inhibited cell viability and
induced apoptosis In vitro Saos–2 [116]

11. Discussion and Future Perspectives

Osteosarcoma is a cancer type for which, despite abundant research, no significant
therapeutic improvements have been achieved in the last decades. However, if something
can be learnt from research, it is that osteosarcoma is a very variable cancer type, in both
its clinical manifestation and its cellular and molecular basis. Gene sequencing, molecular
profiling, and phenotypic screening of osteosarcoma biopsies and cell lines have shown
that the aberrant behaviour of osteosarcoma cells can have its origin in a wide range of
genetic, epigenetic, and molecular changes [118]. Consequently, it is unlikely there will
ever be a “one-fits-all” chemotherapeutic regime for this disease. A precision medicine
approach, in which different drug combinations will be suggested by the phenotypical
profiling of each patient’s tumour, is far more plausible. Also, because of the complexity
of osteosarcoma, these treatments are expected to combine different drugs with different
targets, including, for example, intracellular pathways, microenvironmental signalling,
or cancer stem cells. Therefore, the fight against osteosarcoma is expected to require a
broad spectrum of chemotherapeutical agents to be combined ad hoc for each patient.
Paradoxically, at present only four drugs are used for this cancer (cisplatin, doxorubicin,
ifosfamide, and methotrexate), three of them sharing DNA as their common target. Hence
the urgent need for new drugs to be used in combination therapies that attack the tumour
in its multiple metabolic and cell-cycle checkpoints aberrations.

This review is focused on the most recently identified compounds from medicinal
plants that can have a potential for osteosarcoma treatment. These compounds have been
found able to inhibit cell growth or kill osteosarcoma cells by acting on different pathways,
which included apoptosis and autophagy induction, ROS generation, EMT inhibition, etc.

When it comes to designing a drug regime for osteosarcoma, the heterogeneity of
the tumour tissue is of special concern. It contains neoplastic cells and cancer stem cells,
associated to a tumour-associated stroma, vasculature, and immune infiltrate, all of them
conforming a niche that governs tumour characteristics, such as invasion, metastasis, and
dormancy [119]. Among the compounds discussed in this review, wogonin seems to be able
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to act against different cell components of the tumour microenvironment, including cancer
stem cells. Different studies have described that it can reduce migration and self-renewal
tumour ability, and exert anti-angiogenic effects [43,44,46,47], making it a promising drug
to avoid recurrence or metastatic spread.

Interestingly, several of the revised natural products, including oridonin, oleuropein,
shikonin, and triptolide, have proven to work in synergy with doxorubicin, a drug com-
monly used in the current treatment of osteosarcoma. The combination with these drugs
helped to reduce doxorubicin dosage, thus limiting its very serious side-effects. Chemother-
apeutic regimes based on the combination of novel drugs with classical ones are worth
exploring, given that chemotherapy-induced toxicity is an unresolved issue for osteosar-
coma, as well as other cancers [120,121]. Of similar interest would be the combination
therapy of some of the herein described plant-derived products with other synthetic drugs
currently undergoing clinical trials. Thus, oridonin, oleuropein, and triptolide have been
found to present a synergistic effect with Nutlin–3, 2–methoxyestradiol, and AMD3100,
respectively, when used against osteosarcoma [28,56,107].

In order to futureproof natural products in drug development for bone cancer there
are still gaps that should be filled with additional investigation. Most of the articles
describing the effects of new compounds on osteosarcoma use only one cell line. As
mentioned, osteosarcoma is a complex, heterogenic cancer, where neoplastic cells differ
in their phenotype and mutation status, leading to a variable response (sensitivity or
resistance) to drugs. Studies that include, from its most early stages, different bone cancer
cell lines are interesting in order to capture this diversity. Another key for accelerating
osteosarcoma drug discovery would be the introduction of 3D cultures at early stages of
in vitro research. Three-dimensional cultures are better at mimicking the complex signalling
within the tumour microenvironment, and are, therefore, better at predicting the in vivo
response of the tumour to a drug regime [122,123].

A handicap frequently faced by plant-derived compounds in in vivo assays and clini-
cal trials is their low bioavailability, which can be due to several causes, such as instability
in low pH environments, poor intestinal absorption, high rate of metabolism, or rapid
systemic elimination [124]. Sometimes the drug has a low water solubility, hindering both
oral and injected administration routes. This is, for example, the case with oridonin, that is
being circumvented through the synthesis of different analogues [40–42]. Chemical modi-
fications of the plant-derived bioactive compounds can confer them improved solubility
and pharmacokinetic properties. For example, Calonghi and coworkers have recently
tested a series of regioisomers of the hydroxystearic acid (HSA) on different cancer cell
lines, finding that positional isomers possess distinct biological activities [125]. Although
osteosarcoma cells were not included in this paper, it opens a new avenue for studying how
chemical modification of known natural compounds can modulate their activity. Another
alternative that is gaining ground is encapsulation in liposomes, micelles, or nanoparticles.
These delivery systems can protect the drug on its way to the tumour, and also provide
additional pharmacokinetic advantages, such as the ability to cross the cell membrane
or the specific vectorization towards the tumour [126,127]. In the case of bone cancers,
decorating the nanoparticles with bisphosphonates has proven to efficiently and selectively
deliver nanoparticles to the bone [128].

12. Conclusions

This review has presented the latest plant-derived compounds to show promising
activity against osteosarcoma. These products present a wide variety of targets, including
intracellular pathways and bone cancer microenvironment signalling. They have poten-
tial to be used as chemotherapeutic agents due to their innate anti-tumour effect, or as
sensitizers in multi-drug regimens.

The natural world is an inexhaustible source of bioactive compounds and, notwith-
standing huge achievements in synthetic drug manufacturing, nature, particularly plants,
keeps being the main supplier of pharmaceuticals. Although more preclinical research and
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clinical trials are still needed, the positive results found to date with plant-derived drugs
encourage searching for new compounds in the still widely unexplored natural world.
Research into the effects of these products should go hand-in-hand with research into the
cellular and molecular causes of osteosarcoma, in order to design safe, efficient, and precise
treatments for this malady.
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