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ABSTRACT: Unknown extraction recovery from solid matrix samples leads to meaningless
chemical analysis results. It cannot always be determined, and it depends on the complexity
of the matrix and properties of the extracted substances. This paper combines a
mathematical model with the machine learning methodneural networks that predict
liquid extraction recovery from solid matrices. The prediction of the three-stage extraction
recovery of polycyclic aromatic hydrocarbons from a wooden railway sleeper matrix is
demonstrated. Calculation of the extraction recovery requires the extract’s volume to be
measured and the polycyclic aromatic hydrocarbons’ concentration to be determined for each stage. These data are used to calculate
the input values for a neural network model. Lowest mean-squared error (0.014) and smallest retraining relative standard deviation
(20.7%) were achieved with the neural network setup 6:5:5:4:1 (six inputs, three hidden layers with five, five, and four neurons in a
layer, and one output). To train such a neural network, it took less than 8000 stepsless than a second−−using an average-
performance laptop. The relative standard deviation of the extraction recovery predictions ranged between 1.13 and 5.15%. The
three-stage recovery of the extracted dry sample showed 104% of three different polycyclic aromatic hydrocarbons. The extracted
wet sample recovery was 71, 98, and 55% for phenanthrene, anthracene, and pyrene, respectively. This method is applicable in the
environmental, food processing, pharmaceutical, biochemical, biotechnology, and space research areas where extraction should be
performed autonomously without human interference.

1. INTRODUCTION

The treatment and disposal of used railway sleepers is a
problem worldwide.1 The regulations do not allow the disposal
of railway sleepers as a regular waste due to the presence of
polycyclic aromatic hydrocarbons (PAHs), which can cause
cancer to humans.2 There are three main ways of disposing off
the used railway sleepers: (a) storing in dedicated hazardous
material storage areas, (b) high-temperature burning, and (c)
bioremediation. Usually, high-temperature burning is avoided
due to the high costs, and storing railway sleepers causes
pollution of the nearby environment. The bioremediation
technological process is still under research and develop-
ment.3,4 Bioremediation of railway sleepers on a miniaturized
scale has already been demonstrated in a laboratory. However,
the high-scale bioremediation technological process is still a
challenge.3,5 PAH concentration monitoring is necessary to
develop a high-scale bioremediation technology, and this can
only be done with the aid of analytical techniques. Mainly,
high-performance liquid chromatography (HPLC), ultra-high-
performance liquid chromatography (UPLC), or gas chroma-
tography is used for determining PAH.5−9 As demonstrated in
previous studies, PAH distribution over the different parts of
railway sleepers varies.10

The uneven distribution requires more sample volume or
mass for extraction to achieve a repeatable extraction process.
This requirement leads to higher solvent volumes needed for
extending the costs of analytical procedures significantly.
Besides, the extracts of railway sleepers also have to be
disposed off properly. Another issue related to the extraction of
PAH is the different and irreproducible recovery using other
extraction methods. Soxhlet extraction is considered one of the
etalons in the PAH extraction process. However, this method
is practically inapplicable in the monitoring of multiple samples
during the optimization process.9,11 Maceration extraction
using solvents is practiced more often because it is simple.
Multiple samples can be extracted in parallel flasks or
extraction bottles; however, the method’s reproducibility fails
dramatically if samples of different humidities and different
constitutions are used for extraction.5 Other methods such as
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solid-phase micro-extraction or supercritical fluid extraction
can achieve high reproducibility. On the other hand, some
PAHs that are less volatile, such as pyrene and fluorene, are
extracted in minute recoveries. Currently, machine learning,
artificial intelligence, data ordering, and related methods are
being applied for various chemical analysis cases. A technique
utilizing the segmentation tree approach has been developed
and applied to determine the peak in the chromatogram which
is responsible for antiviral activity.12 Tasks such as classification
using neural networks of rapeseed oil have been performed.13

Even improvement of peak properties in the electrophero-
grams has been utilized.14 A machine learning methodneural
networks operating in multidimensional space−−can be
applied for various cases, including solving chemical analysis
problems.15,16 Extraction recovery, machine learning, or
artificial intelligence methods are considered for the improve-
ment of the process. Multivariate regression analysis and neural
networks have been applied to predict the physicochemical
properties of medicinal plant extracts.17 Neural networks or
response surface methodology have been used to improve the
bioactive compounds’ extraction process from medicinal
plants.18−21 On the other hand, none of these methods can
predict the extraction recovery, which is demonstrated in this
paper. Neural networks is a machine learning method, which
belongs to the group of computerized methodologies which
provide an opportunity to solve the problems which were not
solved using common classical theories and means. Modern
analytical chemistry cannot make any progress without the
application of new technologies in integration, miniaturization
of analysis, and analytical tools including also information
technologies.
The failure to monitor PAH contents properly is probably

the main reason why no high-efficiency PAH bioremediation
technological process has been developed yet.
This work aimed to develop a mathematical multistage

extraction model of PAHs that can be used with machine
learning methods for determining the extraction recovery.

2. RESULTS AND DISCUSSION

2.1. Development of Mathematical Extraction Model.
In the typical machine learning methods, supervised and
unsupervised approaches are used. The developed method is
considered as a supervised, expert (chemical analysis special-
ist)-assisted technique. The following mathematical model has
been developed by carefully observing the multistage
extraction procedure. Assume that the railway sleeper content
that is being extracted contains x1 amount of selected PAH.
The amount here can be a dimensionless number or an actual
dimension such as mass. After the extraction process, the
amount of PAH can be expressed as eq 1

x r x r x(1 )1 1 1 1 1= + − (1)

where x1 is the initial amount of selected PAH and r1 is the
recovery (between 0 and 1) of the first extraction stage. Here,
r1x1 can be defined as the amount of PAH in the solvent after
the first stage extraction, and (1 − r1)x1 can be defined as that
which is not extracted and left in the railway sleeper pieces and
the rest of the matrix. After decanting and measuring the
extract in the measurement cylinder, it is observed that some
part of the solvent has soaked the extraction content (railway
sleeper pieces and the rest of the matrix). Therefore, a less
volume of the extract is decanted after the first extraction stage

than the solvent volume before extraction. The expression r1x1
can be reformatted as eq 2

r x v r x v r x(1 )1 1 1 1 1 1 1 1= + − (2)

where r1x1 is the amount of PAH in the solvent after the first
stage extraction, v1 is the ratio of the volume between the
collected extract and the added extrahent (a dimensionless
number between 0 and 1), and 1 − v1 is the fraction of the
volume that soaked the extraction material and was not
retained. Such observations suggest that eq 1 must be refined.
Assume that the first stage extract has been transported to the
storage bottle, so that the initial content can be expressed as
(eq 3)

x v r x v r x r x(1 ) (1 )1 1 1 1 1 1 1 1 1= + − + − (3)

where x1 is the amount of the selected PAH amount before
the first stage extraction, r1 is the first stage recovery (between
0 and 1), and v1 is the ratio between the volume of the added
solvent and the volume of the decanted extract. Therefore,
v1r1x1 is the amount of PAH stored in the bottle after
decanting the first stage extract. The volume that soaked the
extraction content but not decanted into the storage bottle is 1
− v1; therefore, (1 − v1)r1x1 is the amount of PAH extracted
but not decanted into the storage bottle due to the soaking of
the extraction content. The amount that is not extracted after
the first stage and left in the sleeper pieces is (1 − r1)x1. The
v1r1x1 amount can be measured by analytical methods such as
UPLC. Assume that C1 is the concentration determined by
UPLC in the first stage extract, and it relates to v1r1x1 by eq 4

C V u v r x1 1 1 1 1 1= = (4)

where C1 is the concentration determined by UPLC, V1 is
the volume of the extract, u1 is the amount of PAH that has
been determined, and v1r1x1 is the amount of PAH stored in
the bottle after decanting the first stage extract.
Proceeding to the second extraction stage, assume that the

amount (1 − v1)r1x1 + (1 − r1)x1 left in the extraction bottle
after decanting the extract into the storage bottle is assigned to
x2the second stage amount that is to be extracted. The
extraction at the second stage can be expressed by eq 5

x r x r x

x v r x r x

(1 ) ,

(1 ) (1 )
2 2 2 2 2

2 1 1 1 1 1

= + −

= − + − (5)

where x2 is the total amount of PAH that is being extracted at
the second stage. After decanting and measuring the extract,
the volume of the extract is still lower than that of the solvent
added. Assume that the second stage extract has been
transported to the storage bottle; so, eq 4 requires adjustment,
and the initial content can be expressed by eq 6

x v r x v r x r x

x v r x r x

(1 ) (1 ) ,

(1 ) (1 )
2 2 2 2 2 2 2 2 2

2 1 1 1 1 1

= + − + −

= − + − (6)

where x2 is the total amount of PAH extracted at the second
stage, v2 is the ratio between the volume of the added solvent
and the decanted extract volume at the second stage extraction,
and r2 is the recovery of the second stage. The concentration
C2 measured by UPLC in the second stage extract is related to
the content v2r2x2 by eq 7

C V u v r x2 2 2 2 2 2= = (7)

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c01737
ACS Omega 2021, 6, 14612−14620

14613

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c01737?rel=cite-as&ref=PDF&jav=VoR


where C2 is the concentration of the second stage extract
measured by UPLC, V2 is the volume of the decanted second
stage extract, u2 is the amount of PAH that has been
determined in the second stage extract, and v2r2x2 is the
amount of PAH that is stored in the bottle after decanting the
second stage extract.
Proceeding to the third extraction stage, assume that the

amount which was neither decanted nor extracted and left in
the extraction bottle, (1 − v2)r2x2 + (1 − r2)x2, after decanting
the extract into the storage bottle is assigned to x3the third
stage amount that is to be extracted. The extraction at the third
stage can be expressed by eq 8

x v r x v r x r x

x v r x r x

x v r x r x

(1 ) (1 ) ,

(1 ) (1 ) ,

(1 ) (1 )

3 3 3 3 3 3 3 3 3

3 2 2 2 2

2 1 1 1 1 1

= + − + −

= − + −

= − + − (8)

where x3 is the total amount of PAH that is being extracted
in the third stage, v3 is the ratio between the volume of the
added solvent and the volume of the decanted extract in the
third stage extraction, and r3 is the recovery of the third stage.
The concentration of PAH in the third stage extract can be
determined and is related to the content v3r3x3 by eq 9

C V u v r x3 3 3 3 3 3= = (9)

where C3 is the concentration of the determined PAH in the
third stage extract, V3 is the volume of the decanted third stage
extract, and u3 is the amount of PAH that has been determined
in the third stage extract.
As this research aims to find the total extraction recovery in

a multistage extract, full recovery after the three stages of
extractionr3tot−−can be expressed by eq 10

r
v r x v r x v r x v r x

x

x v r x r x

x v r x r x

(1 )
,

(1 ) (1 ) ,

(1 ) (1 )

3tot
1 1 1 2 2 2 3 3 3 3 3 3

1

3 2 2 2 2

2 1 1 1 1 1

=
+ + + −

= − + −

= − + − (10)

where r3tot is the total extraction recovery after the three
stages, x1 is the amount of selected PAH before the first stage
extraction (x2 and x3second and third stages, correspond-
ingly), r1 is the first stage (r2 and r3second and third stages,
correspondingly) recovery (between 0 and 1), and v1 is the
ratio between the volume of the added solvent and volume of
the decanted extract in the first extraction stage (v2 and v3
second and third stages, correspondingly).
The component (1 − v3)r3x3 is not retained after decanting

the third stage extract and is left in the extraction bottle.
Therefore, it is meaningful to calculate the apparent recovery
for the three-stage extraction (eq 11)

r
v r x v r x v r x

x

x v r x r x

x v r x r x

,

(1 ) (1 ) ,

(1 ) (1 )

3a
1 1 1 2 2 2 3 3 3

1

3 2 2 2 2

2 1 1 1 1 1

=
+ +

= − + −

= − + − (11)

The expression for the two-stage apparent extraction
recovery is represented in eq 12

r
v r x v r x

x

x v r x r x

,

(1 ) (1 )

2a
1 1 1 2 2 2

1

2 1 1 1 1 1

=
+

= − + − (12)

where r2a is the two-stage and r3a is the three-stage apparent
extraction recovery, x1 is the amount of selected PAH before
the first stage extraction (x2 and x3second and third stages,
correspondingly), r1 is the first stage (r2 and r3second and
third stages, correspondingly) recovery (between 0 and 1), and
v1 is the ratio between the volume of the added solvent and
volume of the decanted extract in the first extraction stage (v2
and v3second and third stages, correspondingly).

2.2. Investigation of Relations between the Variables
of the Developed Model. The developed mathematical
model is intuitive and straightforward. On the other hand,
finding an apparent recovery from a determined concentration
in different stage extracts in a multistage extraction process is
difficult or even impossible. Fortunately, the existing machine
learning and artificial intelligence methods such as neural
networks can solve complex multifactor-based mathematical
relations. In this case, two problems can arise: (i)
dimensionality issue and (ii) data set size issue. For
dimensionality, using UPLC, the concentrations can be
determined in mass/volume units, moles, parts per million,
or even expressed in peak area units.12,22,23 It can be a problem
trying to solve the equation if the dimensions do not
complement. Such questions are solved by normalizing the
data set or modifying the values to dimensionless factors such
as ratios.22 Another critical issue is related to the size of the
data set. For separation methods, the data set size is usually
small (classically, it takes from 10 to 60 min to perform a single
analysis). In this work, several factors were expressed as ratios
between the determined amounts of PAH in different extracts.
The obtained ratios are dimensionless values. They do not
exceed 1 and are not lower than 0. The first ratiof1−−was
expressed using eq 13

f
u
u

v r x
v r x1

2

1

2 2 2

1 1 1
= =

(13)

where f1 is the ratio between the determined amount of PAH
in the second stage extract, and u2 and u1 are the amounts of
the first stage extract. x1 is the selected PAH amount before the
first stage extraction (x2second stage), r1 is the first stage
(r2second stage) recovery, and v1 is the ratio between the
volume of the added solvent and volume of the decanted
extract in the first extraction stage (v2second stage). The
second ratiof 2−−was expressed usingeq 14

f
u
u

v r x
v r x2

3

2

3 3 3

2 2 2
= =

(14)

where f 2 is the ratio between the determined amount of PAH
in the third stage extract, and u3 and u2 are the amounts of the
second stage extract. x2 is the PAH amount before the second
stage extraction (x3−−before third stage), r2 is the second
stage (r3third stage) recovery, and v2 is the ratio between the
volume of the added solvent and volume of the decanted
extract in the second extraction stage (v3third stage). The
ratios f1 and f 2 can be calculated from the determined
concentrations in the different stage extracts. Thus, following
previously expressed equations, a python script was pro-
grammed, which calculates the values for different stages and
outputs them in a comma-separated value (csv) file format.
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The fragment of the generated data is provided in Table S1. In
actual multiple extraction experiments (n 5), the average
decanted volume ratios after multistage extraction were: v1−−
0.89, v2−−0.95, and v3−−0.99. Subsequently, simulations were
done with the mentioned numbers. Figure 1 represents plots
showing how apparent recovery (r2a and r3a) changes for
different ratios ( f1, f 2, and f 2a) between the extracted amounts
of PAH.
It is observed (Figure 1A) that at very low extraction

recoveries (<0.1), the ratios f1 and f 2 exceed unity. It means
that more substance is extracted in later stages than in initial
stages (u2 > u1 and u3 > u2). The soaking effect leaves a
significant volume of the extract in the bottle without
decanting it, and in a later stage, it is decanted more (0.89
vs 0.95 vs 0.99). Also, if the raw material contains gel-forming
or extrahent-absorbing components, a multistage extraction
might not achieve a higher extract content (Figure S1).
Investigating the relationship between the last stage’s

quantity ratio and the sum of ratios of previous stages (Figure
1B, stage 3 (orange)), it was observed that no ratios exceeding
unity are present in the range of recoveries per stage of 0.01−
0.99. Additionally, for the same ratios of quantity, apparent
recovery yields a higher extraction rate.
Investigating the case (Figure 1C) where the initial stages (1

and 2) output changing recovery and stage 3 is a constant
(0.95), it is observed that the third stage extraction efficiency
predetermines the apparent recovery if initial stages yield low
numbers. It is important for the cases where a multistep
extraction process is used where some stages are not
necessarily directed to the extraction. Initial stages can be
used for sample cleanup or water removal. Even though
multiple extraction conditions have been compared and used

for the determination of PAH in water and used railway
sleepers, the recovery dramatically fails if bioremediated wet
samples are extracted with a water-immiscible solvent such as
dichloromethane.5,9,24 In this case, it is better to use an
extrahent combination that can mix with a small quantity of
water; therefore, a dichloromethane−acetone mixture was
used, as in a previous study.5 We adopted the same strategy in
the current work, as acetone in the first and second extraction
stages can significantly lower the water content in the sample.
We also decided to use a less toxic extrahentethyl acetate.
The polynomial equation was fit between the x and y values,

and it was noticed that the coefficient of determination was
very high for all fittings (Table 1. Other mathematical model
fittings (linear, exponential, and logarithmic) were also tested,
and polynomial fittings provided the highest coefficients of
determination (R2). The represented cases are different from
the perspective of possible fitting and possible use cases.
It was observed that the prediction of the three-stage

apparent recovery from the ratio of third and second stage
extracted quantities is lower than that of the second stage
apparent recovery from the ratio of second and first stage
extracted quantities (R2: 0.9970 vs 1.0000). Obviously, in the
fitting and mathematics of the third stage quantities, no values
from first stage quantities were included. Therefore, it was
decided to add another ratio which has first stage quantity
included in the calculations (eq 15)

f
u

u u
v r x

v r x v r x2a
3

2 1

3 3 3

2 2 2 1 1 1
=

+
=

+ (15)

where f 2a is the ratio between the determined amount of PAH
in the three-stage extractu3−−and the sum of u1 and u2
amounts (first and second stage extract quantities). x1 is the

Figure 1. Apparent extraction recovery dependency on different stage recoveries (0.01−0.99). (A) Simulated quantity ratios ( f1, f 2) vs apparent
recovery, (B) simulated quantity ratios ( f1, f 2a) vs apparent recovery, (C) simulated quantity ratios ( f1, f 2a) vs apparent recovery, when the third
stage extraction recovery is constant. Settings: v1 = 0.89, v2 = 0.95, v3 = 0.99; r1min = r2min = r3min = 0.01 (A−C); r1max = r2max = r3max = 0.99 (A,B); r3
= constant = 0.95 (C).

Table 1. Comparison of Different Polynomial Fittings for Different Variables and Conditions

no. stage x y rmin rmax equation R2

1 second f1 r2a 0.30 0.99 0.9368x2 + 0.0632x + 1.0000 1.0000
2 third f 2 r3a 0.30 0.99 0.9534x2 + 0.4588x + 0.9437 0.9976
3 second f1 r2a 0.01 0.99 0.9368x2 + 0.0632x + 1.0000 1.0000
4 third f 2 r3a 0.01 0.99 1.4401x2 + 0.6529x + 0.9267 0.9970
5 third f 2a r3a 0.30 0.99 −3.2344x2 − 0.0690x + 1.0008 1.0000
6 third f 2a r3a 0.01 0.99 −3.3974x2 − 0.0153x + 0.9982 1.0000
a7 third f 2a r3a 0.30 0.99 0.0227x2 − 0.0521x + 0.9995 0.9987
a8 third f 2a r3a 0.01 0.99 0.0001x2 − 0.0055x + 0.9860 0.6095

ar3 = 0.95 (constant).
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amount of selected PAH before the first stage extraction (x2
and x3second and third stages, correspondingly), r1 is the
first stage (r2 and r3second and third stages, correspond-
ingly) recovery (between 0 and 1), and v1 is the ratio between
the volume of the added solvent and volume of the decanted
extract in the first extraction stage (v2 and v3second and
third stages, correspondingly).
Calculating the polynomial coefficients of determination for

polynomial fittings between f 2a and r3a values indicated
significant improvements (from 0.9970 to 1.000). Therefore,
it was decided to include the f 2a value in later calculations
instead of f1 and f 2. The decanted volume ratio was also
changed between 0.8 and 0.99, and relations were obtained
between f 2a and r3a values (Figure S1). Similar tendencies have
been observed. These findings suggest a strong relationship
between the determined quantities’ ratios in different stage
extracts and apparent recoveries. However, the relation
mechanism is not clear, except for only the obvious
observations: (i) higher stage recovery yields higher apparent
recovery and (ii) higher decanted extract ratio yields higher
apparent recovery.
Knowing the factors which affect the outcome of apparent

recovery, a dataset containing 4560 data points was generated.
Each data point was a vector consisting of the following
variables: v1, v2, v3, f 2a, and calculated r3a. In the dataset,
different combinations of different stage recoveries and
decanted volume ratios were simulated. The simulated/
generated data were used for training the neural network
model. The variables v1, v2, v3, and f 2a were used as training
inputs, and r3a values were used as prediction values. Various
neural network combinations were tested: (i) two to eight
hidden layers, (ii) two to six neurons in a layer. For different
combinations, the training lasted between 15,132 and 68,550
steps. The mean-squared errors (MSEs) obtained were
relatively highin the range of 3.97−5.27 (Figure 2).
It was noticed that the neural network model was not

capable of predicting apparent recovery values. Therefore, it

was decided to add f1 and f 2 ratios into the training data set.
New data set contained 3710 data points consisting of v1, v2, v3,
f1, f 2, and f 2a values for inputs and r3a value for training or
predictions. Various combinations of neural network models
were tested with the newly generated data set: (i) two to three
hidden layers, (ii) two to seven neurons in a hidden layer. The
shortest training took 3118 steps, and the longest training took
34,961 steps. The lowest MSE was 0.009, and the highest MSE
was 0.050 for different models. Table 2 shows the selected
neural network models and their performance. An example of
the performance of other models is provided in Figures S2 and
S3.

It was noticed that some models showed high performance
(low MSE) and were selected as potentially useful for the
current application. Each of the selected neural network
models was retrained 10 times, and means of MSE and relative
standard deviations (%) were calculated for each model. The
4:4:4 NN model provided the highest MSE, and the 7:6 NN
model provided the highest RSD. The neural network model
of 5:5:4 configuration provided the lowest MSE and lowest
RSD, suggesting that it can be trained, and the expected MSE
should be within 0.014 ± 0.003. For further research, the 5:5:4
NN configuration was selected (Figure 3).
Neural networks can predict r3a, and the initial quantity in

the extraction material can be calculated following eq 16

Figure 2. Neural network predictions of three-stage apparent recovery from the v1, v2, v3, and f 2a values. (A) Neural network model and (B) plot
representing actual and predicted apparent recovery values.

Table 2. Performance of Selected Neural Network Models
for Different Trainings (n = 10)

no. model average MSE RSD (%)

1 5:5 0.018 27.0
2 6:6 0.015 25.7
3 7:6 0.016 52.2
4 4:4:4 0.021 39.6
5 5:5:4 0.014 20.7
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x
u u u

r1
1 2 3

3a
=

+ +
(16)

where x1 is the amount of selected PAH in the extraction
material; r3a is the three-stage apparent extraction recovery; u1,
u2, and u3 are the amounts of PAH determined in different
stage (first, second, and third) extracts. The neural network
model performance characteristics were evaluated. It was found
that the accuracy, precision, sensitivity, specificity, and F1
score were 0.962, 0.961, 0.9648, 0.959, and 0.963, respectively.
2.3. Recovery of PAHs. Two samples were extracted and

analyzed. Both samples contained visually similar contents.
Mass did not differ more than 2% in the cotton bags. The first
bag (I) was dried and had humidity not more than 10%, and
the second bag (II) that was soaked in water contained > 50%
humidity. Both samples were extracted using the same
conditions, and after performing the extraction procedure
and chemical analysis, it was determined that the extracts of
sample I (dry) contained more PAHs than the extracts of
sample II (wet) (Table 3). It was also observed that water in

the extraction matrix influenced the decanted extract volume.
After the first and second stages of extraction, the wet sample
decanted more extract compared to the dry sample.
To determine phenanthrene, anthracene, and pyrene, a

previously developed method demonstrated in laboratory-scale
bioremediation experiments was used for chemical analysis.5

The obtained chemical analysis values and volume measure-
ments were used to calculate the necessary variables for
training the neural networks. The solvent volume added to the
extraction bottle was 0.1 L, and together with the measured
extract volumes, v1, v2, and v3 values were calculated.
Quantities u1, u2, and u3 were calculated from the
concentrations, and later, these quantities were used for
calculating f1, f 2, and f 2a ratios (Table 4). The calculated
variables were used in the trained neural network model, so
that the apparent three-stage extraction recovery (r3a) can be
predicted. Twenty iterations were performed for retraining and
repredicting the r3a valuethe apparent three-stage recovery.
The average values are presented in Table 4, and RSD (%) is
calculated for the predictions. It was noticed that there were
two predictions (out of 120 predictions) providing negative
values, and they were excluded as the outliers. Other outliers
that significantly differed were identified using the Thompson
Tau test calculations and excluded like it was done in the
previous study.5

It was observed that in sample I (dry), the extracts showed
recoveries around 1. Recoveries slightly exceeding unity can be
explained by the fact that chromatographic methods usually
determine concentrations within 5% accuracy and precision.
Additionally, the errors introduced in preparing the sample are
higher than the instrumentation errors and cannot always be
tracked. Furthermore, the predicted recoveries exceeding unity
suggest that minor error has been introduced in either
measuring the extract volume or determining the extract
concentration. Therefore, the initial quantity x1 should be
adjusted.
The RSD of predictions did not exceed 3% except for sample

II extracts where pyrene was determined, and the predicted
apparent recovery was 0.55 (55%). It was observed that sample
I contained more PAH than sample II. It was found that
sample I contained 4.47 mg phenanthrene, 1.26 mg
anthracene, and 2.21 mg pyrene and sample II contained

Figure 3. Highest performance neural network model. Input values v1, v2, v3, f1, f 2, and f 2a. (A) Neural network model and (B) plot representing
actual and predicted apparent recovery values.

Table 3. Determined PAHs in Measured Extracts

stage sample
phenanthrene

(mg/L)
anthracene
(mg/L)

pyrene
(mg/L) V (L)

first I 45.48 12.96 22.34 0.086
second I 6.42 1.83 3.33 0.095
third I 1.11 0.30 0.81 0.099
first II 6.93 4.64 4.55 0.091
second II 3.05 0.86 2.35 0.096
third II 0.69 0.10 0.56 0.099
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1.30 mg phenanthrene, 0.51 mg anthracene, and 1.15 mg
pyrene.
This method will be useful in food industry, pharmaceutical

manufacturing, biotechnology, and chemical industry. The
authors are of the opinion that the developed method will be
of importance in unmanned autonomous investigations such as
planetary explorations as well. In such research, spiking cannot
be performed, and human assistance is impossible; fortunately,
a multistage extraction process is achievable.25

3. CONCLUSIONS
An unprecedented method for determining the recovery of
extracted substances in a multistage extraction process has
been developed. The method is a combination of a
mathematical model and a machine learning methodneural
networks. The method does not require an external standard,
spiking procedure, or any reference. The method is expected to
be useful in any multistage extraction, even for different
substances other than PAHs.

4. MATERIALS AND METHODS
4.1. Chemicals and Instrumentation. Acetone (99.8%)

and methanol (MeOH) (99.9%) were purchased from Macron
(Poland). Acetonitrile (ACN) (99.9%), ethylacetate (99.9%),
and trifluoroacetic acid (TFA) were purchased from Sigma-
Aldrich (Germany). Bidistilled water was produced in our
laboratory using Fistreem Cyclon bidistillator (United King-
dom). Cotton tea bags 8 × 12 cm (PRC) were purchased from
the local store. An Acquity UPLC system equipped with a
fluorescence detector was purchased from Waters (USA).
4.2. Crushing of Railway Sleepers. Used railway sleepers

were collected from Lithuanian railway company Lietuvos
Gelez ̌inkeliai (coordinates: 54.881187, 23.934914). Three
standard-sized intact softwood railway sleepers stored for 10
years after usage were ground on September 07, 2018, using a
Jensen A530 wood chipper (Jensen, United Kingdom). The
pieces of the crushed material occupied not less than 0.75 m3.
After the crushing, the pieces were stored in three 0.3 m3

volume high-density polyethylene bags near the bioremedia-
tion site.
4.3. Analytical Procedure. Chemical analysis was

performed using previously optimized conditions.5 A gradient
acidified with TFA water (0.05%) and ACN was used for
separation in a Waters Acquity UPLC HSS T3 polar
embedded 2.1 × 150 mm column. The gradient initially
used 15% ACN which raised to 85% in 20 min. The column
was thermostated at 35 °C. 5 μL of samples thermostated at 5
°C was injected before separation.
4.4. Extraction and Sample Preparation. The samples

were extracted using a three-stage procedure. For the first
stage, a tea bag containing ground railway sleeper and soil was
placed in a 100 mL bottle, and 100 mL of acetone was added
into the bottle. The bottle with the contents was shaken

overnight at ambient temperature (22 °C) at 200 rpm. After 24
h, the bottle was opened, and the acetone extract was decanted
into a measurement cylinder. The first stage acetone extract
was added into a storage bottle and kept in a fridge at 4 °C.
For the second stage, 100 mL of acetone was added into a
bottle with the partially extracted content and shaken
overnight. After 24 h, the acetone extract was decanted into
a measurement cylinder, and the second stage acetone-extract
was added into another bottle. For the third stage, 100 mL of
ethyl acetate was added into a bottle with the partially
extracted content and shaken overnight. After 24 h, the ethyl
acetate extract was decanted into a measurement cylinder, and
after measurement, it was added into a bottle. Before use, the
extracts were taken out of the fridge, filtered via a 0.47 μm
membrane filter, diluted 20−100 times with MeOH, and used
for direct injection and separation in the UPLC system.

4.5. Data Analysis and Modeling. The development of
mathematical statements is described in the section Develop-
ment of Mathematical Extraction Model. Following the
mathematical statements, the data were generated using Python
programming language with Pycharm software and exported as
a csv file format.
Neural network modeling was performed in R environment,

using Rstudio software (version 1.1.442) and a neuralnet
package (version 1.33).26,27 The generated data points were
separated into two equal-sized random groups for training the
neural network model: one for training and another to validate
predictions. The default settings of the neuralnet package were
used. To train the neural networks, a resilient backpropagation
with weight backtracking algorithm was utilized. As the ANN
model’s output was a number and not a class, the differentiable
activation function is bypassed. A sum of squared errors was
used as a differentiable error function. Training and predictions
were repeated 10 times, and MSEs were recorded. From the
MSEs, the means and relative standard deviations [RSD (%)]
were calculated. Two main types of neural network models
were trained: (i) four inputs and (ii) six inputs. Different
models were trained: (a) containing from two to eight hidden
layers, (b) having from two to six neurons in a hidden layer
(this included different combinations of neuron numbers in a
hidden layer). All models were used for predicting only one
parameterthe three-stage apparent recovery.
The predicted cases were classified to calculate the

developed model performance characteristics. If the predicted
value is equal to or higher than the actual value from the
dataset, then it is classified as positive. If the predicted value is
lower than the true value, then it is classified as negative. A
0.5% error criterion (the value that the chemical analytical
high-performance instrumentation operates at) was used to
classify true and false cases. If the predicted value differs by less
than 0.5% from the actual value, then the data point is
classified as true. If the predicted value differs by more than
0.5% from the actual value, then the data point is classified as

Table 4. Data Used for Predictions and the Recovery and Determined Amounts of PAH

substance sample v1 v2 v3 f1 f 2 f 2a r3a RSD (%) u1 + u2 + u3 (mg) x1 (mg)

phenanthrene I 0.86 0.95 0.99 0.16 0.18 0.02 1.04 1.79 4.63 4.47
anthracene I 0.86 0.95 0.99 0.16 0.17 0.02 1.04 2.67 1.32 1.26
pyrene I 0.86 0.95 0.99 0.16 0.25 0.04 1.05 2.38 2.32 2.21
phenanthrene II 0.91 0.96 0.99 0.46 0.23 0.07 0.71 1.13 0.92 1.30
anthracene II 0.91 0.96 0.99 0.20 0.12 0.02 0.98 0.65 0.50 0.51
pyrene II 0.91 0.96 0.99 0.54 0.24 0.09 0.55 5.15 0.64 1.15
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false. The obtained numbers from the dataset were used to
calculate the accuracy, precision, sensitivity, specificity, and F1
score. Ten retrainings were performed, and mean values were
reported.
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(12) Drevinskas, T.; Marusǩa, A.; Telksnys, L.; Hjerten, S.;
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