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Crosstalk between MSH2–MSH3 and pol b
promotes trinucleotide repeat expansion
during base excision repair
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Studies in knockout mice provide evidence that MSH2–MSH3 and the BER machinery

promote trinucleotide repeat (TNR) expansion, yet how these two different repair pathways

cause the mutation is unknown. Here we report the first molecular crosstalk mechanism, in

which MSH2–MSH3 is used as a component of the BER machinery to cause expansion. On its

own, pol b fails to copy TNRs during DNA synthesis, and bypasses them on the template

strand to cause deletion. Remarkably, MSH2–MSH3 not only stimulates pol b to copy through

the repeats but also enhances formation of the flap precursor for expansion. Our results

provide direct evidence that MMR and BER, operating together, form a novel hybrid pathway

that changes the outcome of TNR instability from deletion to expansion during the removal of

oxidized bases. We propose that cells implement crosstalk strategies and share machinery

when a canonical pathway is ineffective in removing a difficult lesion.
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M
ammalian cells have evolved sophisticated DNA repair
systems to correct mispaired or damaged bases and
extrahelical loops. In the mismatch repair (MMR)

pathway, MutS-like heterodimers (MutSa, MSH2–MSH6 and
MutSb, MSH2–MSH3) recognize chemically modified or
extrahelical DNA, and initiate sequential assembly of downstream
repair machinery to repair the lesion1–3. Surprisingly, however,
the eukaryotic mismatch recognition complex, MSH2–MSH3,
not only fails to act as a guardian of the genome at the long
disease-length trinucleotide repeat (TNR) tracts but also causes
expansion, the lethal mutation underlying Huntington’s disease
(HD) as well as at least 30 other fatal diseases4–8.

Indeed, crossing of mice harbouring expandable triplet repeats
with mice lacking the MMR protein MutS homologue 2 (MSH2)
or MutS homologue 3 (MSH3) attenuates expansion in the
50-CAG-30 repeats in the human HD gene9–16, the 50-CTG-30

repeats in the 30-untranslated region of the human myotonic
dystrophy 1 protein kinase transgene17–20, the 50-GAA-30

repeats in the FXN gene in Friedreich’s ataxia (FRDA)21 and
the 50-CGG-30 repeats in the fragile mental retardation gene in
fragile X syndrome (FXS)22. Loss of Pms2 (ref. 23), and other
MutL homolog (MLH)-related endonucleases24,25, also
suppresses expansion, bolstering the notion that the MMR
pathway contributes to expansion. Loss of MSH6 has little,
tissue-specific, or even protective effects on expanding TNRs in
most animal models11,14,17,19. Indeed, human cell line
experiments agree with the fact that MSH3 is the causative
agent, and MSH6 is less important in this process26. These
unexpected results provided genetic evidence that
MSH2–MSH3 causes, rather than corrects, the expansion
mutation. A causative role for MSH2–MSH3 has been
confirmed in multiple cell models for disease27–29.

MSH2–MSH3 binds well to small loops and mispaired bases in
hydrogen bonded TNR loops11,30–33. Although there is general
agreement that expansion arises from faulty processing of non-B
form DNA, the role of MSH2–MSH3 in this process remains
enigmatic. Normally, in post-replicative repair, MSH2–MSH3
initiates successful removal of small loops by 50–30 exonuclease
activity and does so without mutation. However, expansion in
non-dividing cells requires an unrepaired loop, whose integration
into duplex DNA increases the length of the TNR tract.
Thus, MSH2–MSH3 can cause expansion by either facilitating
loop formation, failing to remove the loop, or by aiding loop
incorporation into duplex DNA. Although the results from diverse
model organisms imply that other DNA repair pathways can
promote TNR expansion, the preponderance of evidence indicates
that the MMR system remains arguably the most important.

A mechanistic role for the MMR pathway, however, has been
difficult to establish in vitro. Much attention has been paid to
somatic expansion, whose suppression delays disease onset34,35, yet
in vitro mechanistic analyses support conflicting models. For
example, irreversible dissociation of MSH2–MSH3 from the
hairpin could block its removal, yet biochemical analysis
confirms that MSH2–MSH3 binds equally well and in a modest
range to CAG/CTG hairpins and to repair competent, small,
unstructured loops, which are good substrates for MMR-dependent
removal11,30–32. Moreover, plasmids harbouring repeat tracts
undergo small insertions and deletions in cell extracts lacking
MSH2, implying that it is not needed for loop repair36. In at
least one other analysis, CAG hairpins are removed efficiently
in vitro by a process that resembles MMR37. Despite clear genetic
data, it remains highly controversial how MSH2–MSH3 causes
expansion.

Part of the difficulty may be the multi-functional nature of
MSH2–MSH3, which has emerged as a component in double-
strand break repair38,39, transcription-coupled repair (TCR)40–43

and base excision repair (BER). Indeed, at TNRs, expansion is
reduced in transgenic mice lacking 8-oxo-guanine glycosylase
(OGG1)44, NEIL1 (ref. 45), pol b with normal activity46 and
XPA47, strongly supporting the notion that excision repair
machinery also contributes to expansion during the removal of
oxidative damage in vivo. Consistent with such a role, oxidative
DNA-damaging agents promote instability in CTG repeats in
human embryonic kidney cells48, CAG repeats in HD cells49,
CGG repeats in FXS transgenic animals50 and CAG repeats in
human HD fibroblasts44.

As with the MMR pathway, however, no clear mechanisms are
obvious. XPA is part of the NER pathway, which has two
subpathways, one for global genome repair and the other for
transcribed genes (TCR)51. In mice, the loss of XPC, the
recognition protein for global genome repair, has no effect on
instability in an HD mouse model14. Cockayne’s syndrome B
protein (CSB), a DNA remodelling initiator of TCR, stabilizes
repeats at least in FXS52 and HD40 mouse models. Loss of BER
machinery (OGG1, NEIL1 and an inactive pol b mutant)
suppresses expansion in mice. However, in vitro, lesion repair
by BER causes substantial deletions of TNRs in systems
reconstituted using purified components53–55.

Despite years of investigation, there remain puzzling disconnects
between the in vivo genetic predictions and in vitro mechanistic
testing of TNR dynamics at disease-length alleles. Multiple
pathways appear to contribute to expansion, but how or under
what conditions they are used remains poorly understood. Here to
the best of our knowledge, we provide the first direct evidence for a
molecular crosstalk mechanism, in which MSH2–MSH3 is used as
a component of the BER machinery to cause expansion.
MSH2–MSH3 forms a physical complex with pol b, and when
operating in the context of BER, stimulates pol b synthesis through
the TNRs, switching the outcome of BER from TNR deletion to
TNR expansion. The MMR and BER, operating together, form a
novel hybrid pathway that coordinates the activities of more than
one pathway to both suppress deletion and promote expansion of
TNR tracts during the removal of oxidized bases.

Results
MSH2–MSH3 and pol b physically interact at TNR tracts. BER
comprises a series of well-characterized steps, which lead to
removal of a damaged base and restoration of an intact duplex
(Supplementary Fig. 1). An abasic site forms as a BER
intermediate after the damaged base is removed by a DNA
glycosylase, and the 50-end is processed by apyrimidinic
endonuclease 1 (APE1) forming a gap that is filled by a DNA
polymerase, often polymerase b (pol b; Supplementary Fig. 1).
Since MSH2–MSH3, OGG1, NEIL1 and pol b have been
implicated in causing expansions in mice, we asked whether there
are interactions between the MMR and BER machinery.

There was little evidence for a direct interaction of
MSH2–MSH3 with the lesion recognition glycosylase, OGG1, on
CAG templates harbouring an 8-oxo-G template (Supplementary
Fig. 2; Supplementary Method). Thus, we assessed the interaction
of MSH2–MSH3 with the downstream BER machinery on a
synthetic BER template, which mimicked an abasic site after
glycosylase removal of the oxidized base. The BER templates
comprised a (GAA)20 or (CAG)20 repeat tract (Fig. 1a, red) flanked
on either side with 20 bases of random sequences (Fig. 1a, black).
The abasic site mimic, tetrahydrofuran (THF), was substituted for
the guanine of the tenth GAA or CAG unit, and, in this case, leaves
a widowed C that lacks a complementary nucleotide within an
intact duplex (Fig. 1a). The THF residue represented a scenario
where the lesion resided in the centre of the TNR tract, and divided
it into 9 TNRs on the 50-side and 10 TNRs on the 30-side of the
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lesion (Fig. 1a). We performed three complementary experiments
to test for physical interactions among components.

In the first experiment, we tested whether MSH2–MSH3 would
bind to a lesion classically repaired by BER. Purified components
of the BER machinery were incubated with the GAA or CAG
synthetic templates, which were 32P-labelled on the 50-end of the
damaged strand (Fig. 1b). To initiate BER, the abasic site
(THF site) in the substrate was cleaved on its 50-side using 25 nM
APE1, which created a 30-OH for polymerase extension (Fig. 1b).
The reaction was cooled before the addition of pol b to prevent
further enzymatic activity. Agarose polyacrylamide gels resolved
the bound complexes by band shift56.

Pol b and MSH2–MSH3 independently formed binary
complexes with both (GAA)20 or (CAG)20 substrates (Fig. 1b,
lanes 3–4 and 9–10; pol b�DNA and MSH2–MSH3�DNA).
MSH2–MSH3 and pol b alone were independently capable of
binding to the 1-nt gap intermediate that was generated by APE1
50-incision of the abasic site (Fig. 1b, lanes 3–4 and 9–10; Fig. 1c,

lanes 2–3 and 7–8). The binding of MSH2–MSH3 was far greater
than that of pol b despite the fact that the latter is a classic
component of BER (Fig. 1b, lanes 3–4 and 9–10; Fig. 1c, lanes 2–3
and 7–8). The addition of pol b and MSH2–MSH3 together,
however, led to a striking and synergistic formation of a
protein–DNA ‘super-shifted’ band (Fig. 1b, lanes 5–6 and
11–12; Fig. 1c, lanes 4–5 and 9–10). The super-shifted
band was observed whether pol b was added together with
MSH2–MSH3 and DNA substrates (Fig. 1b, lanes 5 and 11;
Fig. 1c, lanes 4 and 9) or was added last (Fig. 1b, lanes 6 and
12; Fig. 1c, lanes 5 and 10). The formation of a pol
b�MSH2–MSH3�DNA complex did not depend on APE1
(Fig. 1c). Rather, the pol b�MSH2–MSH3�DNA complex formed
a super-shifted band in the absence of APE1, on both (GAA)20

and (CAG)20 substrates that mimicked the APE1 precut
intermediates (Fig. 1c, lanes 4–5 and 9–10). Thus, MSH2–
MSH3 acted as part of the BER machinery at the APE1
endonucleolytic nick site, the initiating intermediate for BER.
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Figure 1 | MSH2–MSH3 forms a physical complex with pol b that loads it onto the TNR tract at the APE1 incision site. (a) A schematic representation of

the synthetic TNR templates used in the BER reactions. Each comprised 100 bases with a total of 20 GAA or CAG TNRs (in red) and 20 bases of

random sequence on either end represented in black. One repeat modified with a tetrahydrofuran (THF, in blue) separates the 20 repeats, with nine TNRs

on the left side and 10 TNRs on the right side. The THF site mimics the abasic site intermediate for BER, and is cleavable by APE1 (black arrow and star) to

initiate the pol b extension reaction. (b,c) The formation of a pol b�MSH2–MSH3�DNA ternary complex was detected on (GAA)20 or (CAG)20

repeat-containing substrates by gel mobility shift assay as described in the Methods section. The composition of each reaction is indicated at the top of the

gel: (þ ) is the presence and (� ) is the absence of the component. Lanes 1 and 7 (b), and lanes 1 and 6 (c) correspond to the substrate only. Lanes 2 and 8

(b) correspond to binding mixture with 25 nM APE1. Lanes 3 and 9 (b), and lanes 2 and 7 (c) correspond to binding mixture with 10 nM pol b. Lanes 4 and

10 (b), and lanes 3 and 8 (c) correspond to binding mixture with 100 nM MSH2–MSH3. Lanes 5 and 11 (b), and lanes 4 and 9 (c) correspond to binding

mixture with 10 nM pol b in the presence of 100 nM MSH2–MSH3, where pol b was added together with MSH2–MSH3. Lanes 6 and 12 (b), and lanes 5 and

10 (c) correspond to binding mixture with 10 nM pol b in the presence of 100 nM MSH2–MSH3, where MSH2–MSH3 was incubated with the substrates

before the addition of pol b. The complexes are indicated to the right of the gel. An unidentified band migrating between APE1�DNA and pol b�DNA

complexes in b (lanes 4 and 10) and (c) (lanes 2 and 8) most likely represents a complex of DNA with a small truncation of MSH2–MSH3. The experiments

were repeated at least three times. rpt, repeat.
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DNase I footprinting assay confirmed that binding sites for pol
b and MSH2–MSH3 partially overlapped on both the (GAA)20

(Fig. 2a–c) and (CAG)20 (Fig. 2d–f) repeat substrates. Indeed,
when labelled on the 50-end of the (GAA)20 or (CAG)20 template
strand (Fig. 2a,d), the footprint of both pol b and MSH2–MSH3
proteins overlapped near the THF (Fig. 2c,f). Pol b had a
bi-partite footprint, which straddled the THF damage at
position þ 53 (Fig. 2a, lanes 3–4). MSH2–MSH3 binding
overlapped with that of pol b, but also protected a larger region
(Fig. 2a,d, lanes 5–6). No footprint was observed in the absence or
presence of DNase I without protein (Fig. 2a,d, lanes 1–2).
Interestingly, binding of both proteins was asymmetric. There
was little protection from either protein on the damaged
strand (top strand) of the (GAA)20 and (CAG)20 substrates
(Fig. 2b,e). However, protection by both proteins was detected
on the template strand (bottom strand) (Supplementary Fig. 3).
Thus, pol b and MSH2–MSH3 shared binding sites on the
template strand of the substrates at the APE1 nicked site, and
the complex was positioned with MSH2–MSH3 at or slightly
ahead of pol b (Fig. 2c,f).

Formation of the pol b�MSH2–MSH3 complex in cells. If a
physical complex between pol b and MSH2–MSH3 was relevant
to TNR expansion by a BER-dependent mechanism, we
expected that the two proteins would directly interact in cells, and
should be simultaneously recruited to lesions produced by
oxidative damage. Thus, in a second set of experiments, we
performed immunoprecipitation (IP) and co-localization (Fig. 3)
to test whether pol b and MSH2 formed a stable complex in
cells, and did so on TNR tracts. Tested was complex formation
before and after treatment with oxidative DNA-damaging
agents in normal lymphoblasts or in lymphoblasts from a FRDA
patient (GAA expansion). Potassium chromate (K2CrO4) or
potassium bromate (KBrO3) was used as DNA-damaging agents,
since the agents increase the level of oxidized bases that would
require removal by BER.

Indeed, pol b and MSH2–MSH3 formed a physical complex
in cells as judged by IP (Fig. 3; Supplementary Fig. 4).
In both untreated (Fig. 3a) and treated lymphoblasts (Fig. 3b,c),
pol b was ‘pulled down’ in the anti-MSH2 immunoprecipitates
(Fig. 3a, IP MSH2, lane 6), and MSH2 was detected in the
anti-pol b immunoprecipitates of normal lymphoblasts
(Fig. 3a, IP pol b, lane 5). In addition, MSH3 was detected in
the anti-pol b and anti-MSH2 immunoprecipitates under all
tested conditions (Supplementary Fig. 4, lanes 5–6). Consistent
with roles in BER, the IP complex increased in cells treated with
oxidizing agents potassium chromate (K2CrO4) or potassium
bromate (KBrO3; Fig. 3b,c; Supplementary Fig. 4b,c, lanes 5–6).
In all reactions, the antibodies were specific for each respective
protein (Fig. 3a–e; Supplementary Fig. 4, lanes 1 and 2), and
the proteins detected by IP were proportional to the input
protein (Fig. 3a–c; Supplementary Fig. 4, lane 3). IgG failed to
immunoprecipitate pol b, MSH2 or MSH3 from cells (Fig. 3a–c;
Supplementary Fig. 4, lane 4), indicating that the IP complexes
depended on the antibody. As an additional control, we repeated
the IP experiment in LoVo cells, which do not express MSH2
(Fig. 3d). As expected, in those cells, pol b was immunopreci-
pitated by its own antibody (Fig. 3d, lane 5), but MSH2 was not
detected nor did it co-immunoprecipitate with pol b (Fig. 3d,
lanes 5 and 6), and vice versa. The interaction was observed in
reactions containing the purified proteins (Fig. 3e), ruling out the
possibility that a bridging protein mediates the formation of the
MSH2–MSH3�pol b protein complex in the cell extracts. Thus, in
cells, MSH2–MSH3 and pol b formed a direct physical complex
(Fig. 3e), which appeared to increase on oxidative DNA damage.

The results of the co-localization of MSH2–MSH3 and pol
b also supported the IP results (Fig. 3f; Supplementary Fig. 5).
In normal lymphoblasts, both pol b and MSH2 are constitutive
proteins and exist throughout cells (Fig. 3), and we expected that
detection of meaningful interactions would be difficult based on
the merged image alone. Therefore, cells untreated or treated with
damaging agents were stained with specific antibodies to pol b
(Fig. 3f, green) and MSH2 (Fig. 3f, red), and complex formation
was evaluated using pixel analysis. That analysis quantifies the
number of pixels that contain one, the other, or both emission
intensities. Specifically, we imaged optical sections of 1 mm in the
middle of each cell, and only those pixels that harboured both red
and green signals were considered as meaningful interactions
between the proteins (Fig. 3f,g; Supplementary Fig. 5).

We were unable to detect constitutive interactions of pol b and
MSH2–MSH3 in untreated lymphoblasts (Fig. 3f, untreated).
Most red (Fig. 3f, MSH2) and green (Fig. 3f, pol b) pixels did not
overlap (Fig. 3f, Merge), and few pixels contained both red and
green intensity (Fig. 3f, pixel analysis). However, DNA-damaging
agents induced a marked increase in the number of the pixels that
harboured both pol b and MSH2 intensities (Fig. 3f, K2CrO4 and
KBrO3), implying that complexes formed in response to damage.
As we observed in the IP experiments, co-localization of MSH2
and pol b was abolished in LoVo cells, which do not express
MSH2, and no pixels harboured both red and green signals under
these conditions (Fig. 3g). In untreated lymphoblasts from
FRDA patients (Supplementary Fig. 5), the number of pixels
that harboured both red and green signal intensity was higher
relative to untreated normal lymphoblasts (Fig. 3f), and the
number of complexes changed little in response to damage
(Supplementary Fig. 5). These results are consistent with the fact
that oxidative damage is elevated in FRDA cells57.

We predicted that if the interaction of pol b and MSH2–MSH3
were relevant to expansion, then the pol b�MSH2–MSH3
complex would bind to the TNR regions within the disease
genes after damage. Chromatin IP (ChIP) assay was a test of the
hypothesis (Fig. 4; Supplementary Fig. 6). No GAA repeat
DNA precipitated in the absence of antibody (Fig. 4a, lanes 6, 10
and 14). Only MSH2 co-precipitated with the (GAA)15 locus
in the FXN gene in untreated normal lymphoblasts (Fig. 4a,
compare lanes 4 and 5), while both pol b and MSH2 proteins
co-precipitated the same site in the treated cells (Fig. 4a, lanes 8–9
and 12–13). The results implied that the complex was recruited to
the repeat tract after treatment with either 0.5 mM K2CrO4 or
10 mM KBrO3. The quantified results confirmed that the
enrichment was substantial relative to untreated cells (Fig. 4c).
In LoVo cells that lack MSH2, no DNA was detected with MSH2
antibodies (Fig. 4b,d). The GAA repeat sequence recruited pol b
only on oxidative DNA damage (Fig. 4a, compare lanes 8 and 12
with lane 4; Fig. 4a,c). Since endogenous DNA damage occurs
throughout life in every cell, some pol b was recruited to the CAG
repeats in the HTT gene in HD patient lymphoblasts
independently of exogenous DNA damage (Supplementary
Fig. 6a,b), as also shown previously in the striatum of HD
mice58. Collectively, MSH2–MSH3 and pol b were recruited
together to the sites of damage in cells, consistent with a physical
cooperation of the two proteins during the removal of oxidized
bases by BER.

MSH2–MSH3 suppresses TNR deletion and promotes expansion.
Since MSH2–MSH3 and pol b bound together at the APE1 nick,
we asked whether the interaction played a role in TNR expansion.
To test the hypothesis, we pre-cleaved the synthetic BER substrate
(Fig. 5a) on the damaged strand at the THF site using 25 nM
APE1 to initiate BER, and added to the reaction was pol b, FEN1
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and ligase I (LIG I) at 37 �C to complete BER without or with
100 nM MSH2–MSH3 (Fig. 5b). The repaired product was
separated from the template with avidin beads, and the ligated
50-FAM (fluorescein amidite) repair fragments were resolved

by high-resolution capillary electrophoresis to define their
length (Fig. 5b).

In the absence of MSH2–MSH3, repair of the abasic lesion in
the (GAA)20 substrate resulted in deletion of seven to nine repeats
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(d–f) Same as a–c except for the (CAG)20 substrates. The experiments were performed in triplicate.
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and expansion of one to two repeats (Fig. 5c, panel 2), whereas
repair in the context of (CAG)20 repeats led to a prominent
deletion of two CAG repeats (Fig. 5d, panel 2). Consistent with
our previous findings48,53–55, deletions were the most prominent
BER repair products, independent of the repeat sequence, when
MSH2–MSH3 was absent from the reaction (Fig. 5c,d).
Surprisingly, the addition of MSH2–MSH3 to the BER reactions
largely attenuated deletions in the (GAA)20 (Fig. 5c, panel 3)
and (CAG)20 substrates (Fig. 5d, panel 3). Rather, cooperation
of the two proteins generated expansion of one to two repeats
(Fig. 5d, panel 3), consistent with the size that is observed
at premutation-length alleles in human patients59. PCR
amplification of undamaged (GAA)20 or (CAG)20 substrates
failed to show any repeat expansion or deletion products
(Fig. 5c,d, panel 1), indicating that DNA instability depended
on the lesion and BER. Thus, in the context of BER,
MSH2–MSH3 suppressed deletion and promoted expansion
via strand-displacement synthesis. Interestingly, some GAA
repeat expansion occurred without MSH2–MSH3. However,
CAG repeat expansion absolutely required MSH2–MSH3.
This may result from more efficient synthesis of GAA than
CAG repeats by pol b.

MSH2–MSH3 stimulates pol b synthesis during BER. We tested
how MSH2–MSH3 acting together with pol b might suppress
deletion and promote expansion. TNRs expand or contract if
TNR loops form on the daughter strand or the template strand,
respectively. Since deletion and expansion products were altered

by addition of MSH2–MSH3, we postulated that it might affect
loop formation during pol b synthesis in a strand-specific man-
ner. To test the role of MSH2–MSH3 in suppressing deletion, we
used S1 nuclease to map a TNR loop that formed on the template
strand of (GAA)20 or (CAG)20 substrates during BER (Fig. 6).
The substrates were labelled at the 50-end of the template strand
(Fig. 6a,g), and the resulting single-strand cleavage
patterns visualized the position and size of loops that formed at
(GAA)20 (Fig. 6a–f) or (CAG)20 tracts (Fig. 6g–l). As before,
pol b DNA synthesis was initiated by pre-cleaving the damaged
strand using 10 nM APE1, and added were the purified
components of the BER repair machinery without or with
MSH2–MSH3 (Fig. 6). The schematic diagram of the results of
each substrate product is below each figure (Fig. 6f,l).

In the absence of pol b and MSH2–MSH3, the APE1 nick site
and small flap opened on breathing to expose around three
repeats to the S1 nuclease, as indicated by S1 cleavage bands
between þ 48 and þ 55 nt (Fig. 6b), and the template was
eventually degraded. Addition of MSH2–MSH3 alone to the
BER reaction had a strong protective effect (Fig. 6c), and blocked
S1 cleavage at the APE1 incision site, preventing degradation of
the template. MSH2–MSH3 appeared to cover the template and
infrequently dissociate (Fig. 6c,f).

We next evaluated the S1 sensitivity of the template strand
during active pol b synthesis. Surprisingly, in the absence of
MSH2–MSH3, S1 cleavage generated a distinct ladder of bands
between þ 53 and þ 23 below the APE1 incision product
(Fig. 6d), indicating that the active pol b induced a large
single-stranded region in the template strand (Fig. 6d). Indeed,
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control. (a) Representative agarose gel results showing recruitment of MSH2 and pol b to GAA repeats of the FXN gene in normal lymphoblasts after

exposure to chromate or bromate or without any treatment. (b) Representative agarose gel results showed recruitment of pol b to GAA repeats of the FXN

gene in untreated LoVo cells or LoVo cells treated with chromate or bromate. Lanes 1 and 15 represent DNA size markers (M). The ‘non-template’ control,

the no antibody control and the input DNA are indicated for both treated and untreated cells. The bands were obtained using quantitative PCR and
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NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12465 ARTICLE

NATURE COMMUNICATIONS | 7:12465 | DOI: 10.1038/ncomms12465 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


in reactions lacking deoxynucleoside 50-triphosphates (dNTPs)
and pol b synthesis, the S1 cleavage was suppressed (compare
Supplementary Fig. 7b,c with Fig. 6d,f). Thus, pol b synthesis
facilitated the formation of a large single-stranded loop or
multiple small loops within the TTC tract (Fig. 6d,f). When
MSH2–MSH3 and pol b were added together, however, the
single-stranded region on the TTC template strand did not form,
as judged by S1 cleavage (Fig. 6e,f). Thus, pol b could not
efficiently copy the TTC repeats in the absence of MSH2–MSH3
and appeared to bypass them, forming a looped out region in the
process (Fig. 6d,f). Similar results were obtained with the (CAG)20

repeat substrate (Fig. 6g–l; Supplementary Fig. 7e,f). Consistent
with this finding, active polymerase on the 1 nt gapped random
sequence substrate, which does not form secondary structure,
resulted in only a single product with 53 nt (Supplementary
Fig. 8). Collectively, the results suggested that MSH2–MSH3
suppressed deletion by stimulating pol b to copy through the
repeats on the template strand.

We tested whether MSH2–MSH3 could promote expansion by
stimulating pol b DNA synthesis (Fig. 7). In this experiment, the
damaged strand of (GAA)20 and (CAG)20 substrates was labelled
at the respective 50-ends, and their length was monitored during
pol b DNA synthesis, without and with MSH2–MSH3 (Fig. 7a).
APE1 cleavage produced the expected incision product (Fig. 7b,
lane 2). Consistent with the S1 analysis, pol b was less processive
in the absence of MSH2–MSH3 and extended only one or two
TNRs from the APE1 cleavage site on both (GAA)20 and (CAG)20

substrates (Fig. 7b,c, lanes 3 and 8; Fig. 7d). Addition of MSH2–
MSH3, however, stimulated pol b to copy the TNR tract and
inserted up to seven GAA or six CAG repeats relative to pol b
alone (Fig. 7b,c, compare lanes 4 and 9 with lanes 3 and 8;
Fig. 7d). MSH2–MSH3 had a direct stimulatory effect on pol b, as

its DNA synthesis was not altered when MSH2–MSH3 was
substituted by the same concentration of bovine serum albumin
(BSA; Fig. 7b,c, lanes 5 and 10). The extra synthesis was not due
to a contaminating DNA polymerase. In parallel reactions, we
failed to observe any DNA primer extension on an open template
from any of the components alone or when purified
MSH2–MSH3 was added at concentrations up to 500 nM (Fig. 7f).

Cooperation of MSH2–MSH3 and pol b promotes flap formation.
We have previously demonstrated that the damaged strand
on a CAG template forms a displaced flap during pol b DNA
synthesis, which provided a precursor for expansion44. To
monitor the length of the flap during strand displacement, we
labelled the 30-end of the damaged strand (Fig. 7g), and measured
the size of the flap during pol b DNA synthesis as judged by
FEN1 cleavage. No flap cleavage was observed in the absence of
FEN1 (Fig. 7h, lanes 1–3). When FEN1 was added in the absence
of MSH2–MSH3, the most prominent flap lengths for the GAA
template were between two and four repeats in the simple
BER reactions (Fig. 7h, lane 4; Figure 7j), although flaps up to
eight repeats formed infrequently. However, addition of
MSH2–MSH3 significantly increased flap size such that the
major lengths reached or exceeded eight repeats (Fig. 7h, lane 5;
Fig. 7j). The increase in flap size depended on MSH2–MSH3,
since its replacement with BSA abolished the effect (Fig. 7h,
lane 6), and MSH2–MSH3 without or with pol b synthesis failed
to cut the DNA (Fig. 7h, lane 7 and Supplementary Fig. 9,
lanes 2 and 4).

Thus, MSH2–MSH3 both stimulated strand displacement and
generated flaps that were significantly longer than the four to five
repeats copied by pol b alone. Indeed, the difference between the
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most prominent repeats synthesized by pol b (Fig. 7b, lane 4) and
those removed by FEN1 (Fig. 7h, lane 5) predicted the one to
three repeat expansions, which were present after ligation in the
DNA fragment analysis (Fig. 5c, panel 3). The CAG templates
showed similar properties. MSH2–MSH3 stimulated pol b to

synthesize five to six extra repeats, while FEN1 removed only
two repeats (Fig. 7i, lane 12; Fig. 7k), generating tracts that
were longer than the original template. Collectively,
MSH2–MSH3 not only prevented deletion by stimulating pol b
synthesis of the TNRs on the template strand but also caused
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expansion by stimulating strand displacement of the damaged
strand during BER.

Discussion
In vivo and in vitro mechanistic testing of individual pathways
has provided no consistent picture of how MMR causes
expansion. We report here that MSH2–MSH3 acts as a key
co-factor in the BER pathway, and in that context, promotes
expansion of TNR tracts harbouring lesions that are canonical
substrates for BER. Pol b makes a previously unrecognized
physical complex with MSH2–MSH3, and without its help, pol b
fails to complete DNA synthesis in the TNR loop and
bypasses them on the template strand causing large deletions.
MSH2–MSH3 enhances pol b loading onto TNRs, stimulates
DNA synthesis through a TNR loop and enhances strand
displacement. The results provide, to our knowledge, the first
direct evidence for a hybrid mechanism that requires cooperation
of both the MMR and the BER machinery to cause the
expansion mutation, and explains the fact that both pathways
are implicated in vivo. While in vitro BER alone supports
primarily deletions, addition of MSH2–MSH3 switches the
primary outcome to TNR expansion.

Taken together, the results support a ‘toxic oxidation cycle’ by
a MMR–BER crosstalk mechanism44 (Fig. 8, þMSH2–MSH3).
After removal of the oxidative base, the residual 50-flap becomes
the loop precursor, whose incorporation by an ‘in trans’
endonuclease completes the expansion. The cycle can repeat
with age. If MSH2–MSH3 is not available, pol b cannot traverse
the repeats, which are then removed by ‘in cis’ endonuclease
activity, resulting in deletion (Fig. 8, �MSH2–MSH3). We find
size of the expansion is smaller than the size of the flap. Since it
blocks FEN1 processing of Okazaki fragments28, it is likely that
MSH2–MSH3 will also block access to the TNR flap junction and
will prevent its removal. In such a model, MSH2–MSH3 adjusts
its position to optimally bind to the loop, and in the process,
allows flap re-equilibration and partial re-binding (Fig. 8). A new
and shorter flap is generated, with a junction that is suitable for
FEN1 processing and ligation (alternate flap cleavage)60 (Fig. 8).
These steps are consistent with known features of MMR and BER.
FEN1 cleavage requires access to a junction and to the 30-end of
the synthesized strand61, MSH2–MSH3 alters the junction
of a CAG hairpin32, ligase requires FEN1 activity60,62 and
coordination of APE1, pol b and FEN1 modulates CAG repeat
expansion56,60,63.

The crosstalk pathway that we describe resolves at least some of
the controversial issues relevant to the role of MMR in expansion.
Plasmids harbouring preformed hairpins undergo small
insertions and deletions in cell extracts lacking MSH2, implying
that it is not needed for loop repair. However, we find that
the pol b�MSH2–MSH3 complex plays a definitive role in

loop formation during BER, which will require MSH2–MSH3
if the loop is not preformed. It has been debated whether
loop resolution occurs through a canonical MMR pathway, or
through an alternative pathway. Our results suggest that both
resolution mechanisms are likely to have roles64. At a CTG
hairpin, MSH2–MSH3 recruitment of MLH1–PMS2 results in
endonucleolytic incision both ‘in cis’ and ‘in trans’ to a small
loop lesion65. ‘In trans’ clipping by MLH1–PMS2 or other
MutL-like endonucleases resolves the hairpin, and the extruded
loop provides a template for gap-filling synthesis, leading to
expansion. However, this process becomes inefficient when TNR
loop sizes are larger than four repeats, which are often generated
in cells during excision repair. Indeed, in our hands, the flaps
generated at 20 TNRs exceed 8 repeats (Fig. 7) and are likely to
increase as the TNR tract lengthens.

Alternative mechanisms for resolution are as yet unknown.
However, the ability of MSH2–MSH3 to influence the outcome of
BER implies a broader role in directing choice among redundant
pathways for removing oxidative DNA damage. For example, in
mice, CSB in vivo protects CAG repeats from expansion, while
OGG1 tends to expand them40. A mechanism for CSB/OGG1
antagonism is unclear66. Although CSB is part of the TCR
machinery, it also interacts with BER machinery such as APE1
(ref. 67) and poly (ADP-ribose) polymerase-1 (ref. 68). Thus,
CSB may co-opt MSH2–MSH3 and prevent its ability to stimulate
pol b, favouring deletions via BER. Such crosstalk may explain the
protective effects of CSB and observations that treatment with
oxidizing agents can induce expansions and contractions41,48.
This kind of pathway choice is also predicted to be sensitive to the
tissue-specific level of the available repair machinery, as has been
noted for BER58. We have yet to test whether MSH2–MSH6 acts
as a scaffold for pol b, but it is also possible, given their structural
similarity, that MSH2–MSH6 participates in crosstalk by
modifying pol b-MSH2–MSH3-mediated TNR instability.

Whatever the detailed mechanism, our results provide evidence
that cells can implement crosstalk strategies to cause expansion,
and share machinery when lesion resolution is difficult. Pathway
crosstalk provides latitude in correcting a lesion by whatever
machinery a cell may have available or that best fits the situation.
The importance of crosstalk pathways cannot be overestimated,
as the efficiency of modulating the TNR tract length determines
whether repair is error-free or error-prone, and whether the
biological outcome is genetic integrity or fatal disease.

Methods
Materials. DNA oligonucleotides were synthesized by Integrated DNA
Technologies Inc. (Coralville, IA). The radionucleotide [g-32P] ATP
(6,000 Ci mmol� 1) and cordycepin 50-triphosphate 30-[a-32P] (5,000 Ci mmol� 1)
were purchased from PerkinElmer Inc. (Boston, MA). Micro Bio-Spin 6
chromatography columns were from Bio-Rad Laboratories (Hercules, CA). dNTPs
were from Roche Diagnostics (Indianapolis, IN). T4 polynucleotide kinase and
terminal nucleotidyltransferase were from Fermentas (Glen Burnie, MD). DNase I

Figure 6 | Pol b cannot traverse the TNRs in a TNR loop on the template strand during BER without MSH2–MSH3. S1 nuclease analysis of (GAA)20 or

(CAG)20 templates with time before or during pol b DNA synthesis was resolved by PAGE. (a) The (GAA)20 substrate was 32P-labelled on the 50-end of

the template strand. The S1 products of a identify the unpaired nucleotides on the template strand. The time of digestion is indicated in minutes. (b,c) S1

nuclease analysis of the starting (GAA)20 template (a) after APE1 cleavage without (b) or with MSH2–MSH3 (c). (d,e) The same as b,c except that pol b is

added to the reaction to initiate the DNA synthesis reaction in the absence (d) or presence (e) of MSH2–MSH3. Lanes 1, 7, 13 and 19 are the undigested

substrate. The machinery present in each reaction is indicated above the gels; (þ ) is the presence of the component and (� ) is the absence of the

component. The sites of S1 cleavage are indicated on the left of the gel with major cut sites indicated by black dots, and correspond to the numbering

system in a. The sizes of the synthesized DNA markers (M) are indicated to the right of the gel. The concentrations of the reagents in the reaction were as

follows: substrate (100 nM), APE1 (10 nM), MSH2–MSH3 (100 nM), pol b (10 nM) and S1 nuclease (12 U). In all reactions, the substrates and BER

components were pre-incubated with 10 nM APE1 to generate the 50-end for pol b extension before digestion with 12 U of S1 nuclease at the indicated time

intervals at 37 �C. f is the schematic summary of the S1 nuclease digestion using the numbering system in a. The black arrows and numbers indicate the

positions of S1 cleavage. The purple and green balls are the MSH2–MSH3 heterodimer; the orange ball is pol b. Red are the TNRs and black are the random

sequences. (g–l) Same as in a–f for the (CAG)20 substrate. Experiments were repeated in triplicate.
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was purchased from New England Biolabs (Ipswich, MA). S1 nuclease was from
Promega Corporation (Madison, WI). All other reagents were purchased from
Sigma-Aldrich (St. Louis, MO) and Thermo Fisher Scientific (Pittsburgh, PA).
Purified recombinant human apurinic/APE1, pol b, FEN1 and DNA LIG I were
expressed and purified as described63. In brief, APE1, his-tagged pol b and FEN1
were expressed in Escherichia coli BL21(DE3) (Thermo Scientific, Rockford, IL),

whereas his-tagged LIG I was expressed in E. coli BL21(DE3) AI strain (Thermo
Scientific). The expression of the proteins was induced by 0.5 mM isopropyl-1-
thio-b-d-galactopyranoside (APE1) or 1 mM (pol b and FEN1) for 3.5 h at 37 �C.
LIG I expression was induced with 1 mM isopropyl-1-thio-b-d-galactopyranoside
along with 0.2% (w/v) L-arabinose for 24 h at 18 �C. Cells were lysed with a French
press cell disruptor (Glen Mills, Clifton, NJ) in lysis buffer containing 30 mM
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HEPES, pH 7.5, 30 mM KCl, 1 mM dithiothreitol (DTT), 1 mM EDTA, 1 mM
phenylmethylsulfonyl fluoride and 0.5% inositol with proteinase inhibitors.
The supernatant was recovered after centrifugation at 18,000g at 4 �C and loaded
sequentially onto a Sepharose Q column (GE Healthcare, Piscataway, NJ) or
nickel-nitrilotriacetic acid (Ni-NTA) column (Qiagen, Valencia, CA; his-pol b),
CM sepharose column (GE Healthcare), phenyl sepharose column (GE Healthcare)
and Mono-S column (GE Healthcare) operated by an AKTA Fast Protein Liquid
Chromatography system (GE Healthcare). For purification of his-LIG I, the
supernatant was sequentially loaded onto a P11 phosphocellulose column
(Whatman-GE Healthcare) and a Ni-NTA column. Purified proteins were
aliquoted and frozen at � 80 �C until further use.

Oligonucleotide substrates. DNA oligonucleotide substrates containing a THF,
an abasic site analogue, were designed to mimic an abasic site that occurs in a
(GAA)20 or (CAG)20 repeat tract. The guanines in the tenth repeat unit of (GAA)20

or (CAG)20-containing substrates were substituted with a THF residue. Substrates
were constructed by annealing an oligonucleotide with a THF residue to its tem-
plate strand at a molar ratio of 1:2. Substrates mimicking the abasic site-containing
intermediates preincised by APE1 were constructed by annealing the upstream
strand and the downstream strand with a 50-phosphorylated THF residue with the
template strand at a molar ratio of 1:1:2. A DNA fragment that contained (GAA)20

or (CAG)20 without DNA lesions was used as a size marker for DNA fragment
analysis. The sequences of the oligonucleotides are listed in Supplementary Table 1.

MSH2–MSH3 purification. Human MSH2 and His-tagged MSH3 were
overexpressed in SF9-insect cells using a pFastBac dual-expression system
(GIBCO-BRL), and purified as follows11,30. MSH2 and his-tagged MSH3 were
overexpressed in SF9-insect cells using a pFastBac dual-expression system. Briefly,
the supernatant was loaded onto a 5 ml HiTrap chelating column (GE Healthcare)
charged with Ni-NTA affinity column and equilibrated with lysis buffer. The
bound proteins were then eluted with a 25 ml 20–200 mM imidazole gradient. The
peak fractions containing the MSH2/MSH3 (eluted at 140 mM imidazole) and were
then loaded onto a Mono P and HiTrap Heparin column (GE Healthcare)
connected in tandem and equilibrated in column buffer (25 mM HEPES NaOH,
pH 8.1, 0.1 mM EDTA, 10% glycerol (v/v) and 1 mM DTT) containing 300 mM
NaCl. The MSH2/MSH3 containing fractions were then applied to MonoQ
(GE Healthcare). MSH2/MSH3 fractions were stored in 20% glycerol (v/v),
aliquoted and frozen at � 80 �C.

Gel mobility shift assay for detecting protein–DNA complexes. Substrates
(25 nM) were incubated with 25 nM APE1 for 15 min at 37 �C in reaction buffer
with 5 mM Mg2þ to generate 1-nt gap intermediates. Reactions were then
incubated with 10 nM pol b in the absence and presence of 100 nM MSH2–MSH3
for 10 min on ice. Protein–DNA complexes were separated from the free DNA by
1% agarose–0.1% polyacrylamide gel electrophoresis (PAGE) at 4 �C (ref. 56).

DNase I footprinting of binding sites of pol b and MSH2–MSH3. DNase I
footprinting was performed to identify the binding of pol b and MSH2–MSH3 to
(GAA)20 or (CAG)20 substrates. Ten microlitres of binding reactions was assembled
on ice with pol b (50, 100 nM), MSH2–MSH3 (100 and 200 nM) and 25 nM 32P-
labelled DNA substrate in 10 mM HEPES, pH 8.1, 110 mM NaCl, 1 mM DTT,
0.1 mg ml� 1 BSA, 10% (v/v) glycerol and 0.25% (w/v) inositol with 5 mM Mg2þ ,
2 mM ATP and 2 mM ADP. The reactions were made with pol b or MSH2–MSH3
added last. The binding reactions were incubated on ice for 15 min. Subsequently,
the protein–DNA complexes were subjected to DNase I digestion in 20ml reaction
buffer that contained 10 mM Tris–HCl, pH 7.6, 2.5 mM MgCl2 and 0.5 mM CaCl2.
The protein–DNA complexes were incubated with 0.008 U DNase I at 37 �C for
10 min. Enzyme digestion reaction was terminated by transferring to 95 �C for

10 min in 20ml of stopping buffer containing 95% formamide and 2 mM EDTA.
Substrates and nuclease digestion products were separated by 15% urea-denaturing
PAGE and detected using a Pharos FX Plus PhosphorImager from Bio-Rad
Laboratories. Synthesized DNA size markers were used to indicate the size of
nuclease cleavage products.

In vitro reconstituted BER assay. Substrates (25 nM) were pre-incubated with
25 nM APE1 at 37 �C for 15 min to generate single-strand DNA break intermediates
before incubation with 100 nM MSH2–MSH3 on ice for 30 min. Subsequently, BER
of a THF residue was reconstituted by incubating APE1 precut substrates with
indicated concentrations of BER enzymes at 37 �C for 15 min in a 20-ml reaction
mixture that contained reaction buffer, which was composed of 10 mM HEPES, pH
8.1, 110 mM NaCl, 1 mM DTT, 0.1 mg ml� 1 BSA, 10% (v/v) glycerol and 0.25%
(w/v) inositol with 50mM dNTPs, 5 mM Mg2þ , 2 mM ATP and 2 mM ADP. The
reactions were terminated by transferring to 95 �C for 10 min. To isolate repair
products, the template strand of the substrate was biotinylated at the 50-end. Repair
products were incubated with avidin agarose beads (Pierce-Thermo Scientific) in
binding buffer that contained 0.1 M phosphate, 0.15 M NaCl, pH 7.2 and 1% (v/v)
Nonidet P-40 at 4 �C for 2 h with rotation. Agarose beads were centrifuged at 2,000g
for 1 min and were washed three times with binding buffer. Repaired strands were
then separated from their template strands by incubating with 0.15 M NaOH for
15 min with rotation under room temperature and centrifugation at 2,000g for 2 min.
Repaired strands were then precipitated with ethanol, dissolved in TE buffer and
stored at � 20 �C for subsequent repeat sizing analysis.

Sizing analysis of TNR length. Repair products resulting from in vitro BER in the
context of (GAA)20 and (CAG)20 repeats were amplified by PCR with a forward
primer (50-CGA GTC ATC TAG CAT CCG TA-30) and a reverse primer tagged by a
6-carboxyfluorescein (50-6-FAM-CA ATG AGT AAG TCT ACG TA-30). PCR
amplification was performed under the following conditions: 95 �C for 10 min, 1
cycle; 95 �C for 30 s, 50 �C for 30 s and 72 �C for 1.5 min, 35 cycles; 72 �C for 1 h. The
6-carboxyfluorescein-labelled PCR products were then subjected to capillary elec-
trophoresis using an ABI 3130XL Genetic Analyzer (Applied Biosystems, Foster
City, CA; Florida International University DNA Sequencing Core Facility). The size
of repair products was determined by DNA fragment analysis using the GeneMapper
version 5.0 software (Applied Biosystems). Size standards, MapMarker 1000
(Bioventures, Murfreesboro, TN), were run in parallel with PCR-amplified repair
products.

S1 nuclease digestion. Formation of repeat hairpin or loop structures in the
template strand was probed by incubating 12 U or 10 U S1 nuclease with 25 nM
substrates that contained (GAA)20 and (CAG)20 repeats. Substrates containing a
THF residue were pre-incubated with 10 nM APE1 in the absence or presence of
10 nM pol b at 37 �C for 30 min. The reactions with MSH2–MSH3 were performed
by incubating APE1 precut substrates with 100 nM MSH2–MSH3 complex on ice
for 30 min before incubation with S1 nuclease. The 10-ml reaction mixture was
assembled in reaction buffer containing 50 mM sodium acetate (pH 4.5), 280 mM
NaCl and 4.5 mM ZnSO4. The reaction was incubated at 37 �C for 3, 5, 10 and
15 min, and subsequently subjected to protease K digestion at 55 �C for 30 min.
Reaction mixtures were subjected to 95 �C for 10 min for denaturing DNA.
Substrates and nuclease digestion products were separated by 15% urea-denaturing
PAGE and detected by a PhosphorImager. Synthesized DNA size markers were
used to indicate the size of nuclease cleavage products.

Enzymatic activity assay. Pol b DNA synthesis during BER was measured in the
absence or presence of MSH2–MSH3 using 25 nM oligonucleotide substrates
containing (GAA)20 or (CAG)20 with a THF residue as shown in Supplementary
Table 1. The effects of MSH2–MSH3 on pol b DNA synthesis activity were

Figure 7 | MSH2–MSH3 stimulates pol b DNA synthesis and enhances TNR flap size in the context of BER. (a) The schematic representation of the

(GAA)20 or (CAG)20 substrates with a 32P-label on the 50-end of the damaged strand. (b) The labelled bands correspond to the length of pol b extension

products in the absence or presence of MSH2–MSH3. The (GAA)20 (b) or (CAG)20 (c) substrates (25 nM) were incubated at 37 �C with 25 nM APE1 and

10 nM pol b in the absence or presence of 100 nM MSH2–MSH3. The machinery present in each extension reaction is indicated above the gels; (þ ) is the

presence of the component and (� ) is the absence of the component. BSA substitutes for MSH2–MSH3 in reactions in lanes 5 and 10. The number of

repeats added is indicated to the right of the gels. (d) A schematic illustration of the results from b and c. (e) A schematic diagram of an open-template

substrate containing random DNA sequence 32P-labelled at the 50-end of the primer. (f) DNA synthesis activity from purified MSH2–MSH3 proteins was

measured by incubating the open-template substrate shown in e without (lane 1) or with 100–500 nM of MSH2–MSH3 (lanes 2–4). Lane 5 represents

reaction mixtures with 5 U Pol I Klenow fragment as a positive control. An extension product is observed only in lane 5. (g–j) The effect of MSH2–MSH3 on

the size of the displaced strand during active BER after APE1 cleavage and pol b extension. (g) Schematic diagram of the (GAA)20 or (CAG)20 substrate

illustrating the THF site and the position of 32P-labelling at the 30-end of the damaged strand and the APE1 site (black arrow and star). Pol b DNA synthesis

on the substrate generates displaced flaps, whose size is measured by FEN1 flap cleavage. (h,i) FEN1 cleavage products after pol b DNA synthesis of the

(GAA)20 (h) or (CAG)20 (i) substrate. The concentration of FEN1 in the reaction is 10 nM, and all other reagents are the same as in b and c. Black dots and

numbers to the right of the gel indicate the sizes of the FEN1 cleavage products. (j,k) Schematic representations of the results of h and i. Experiments were

done in triplicate. rpts, repeats.
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examined at 37 �C for 15 min in a 20-ml reaction mixture that contained reaction
buffer with 50mM dNTPs, 5 mM Mg2þ , 2 mM ATP and 2 mM ADP. FEN1
cleavage assay was also conducted in the absence or presence of MSH2–MSH3
under the same conditions. Reaction mixtures were subjected to 95 �C for 10 min in
20ml of stopping buffer containing 95% formamide and 2 mM EDTA to denature
DNA. Repair intermediates and products were separated by 15% urea-denaturing
PAGE and detected by a PhosphorImager.

Cell culture. Human lymphoblast cell lines GM02152 (a normal individual with 15
GAA repeats), GM16207 (FRDA patient with 280/830 GAA repeats) and
GM13511 (HD patient with 45/47 CAG repeats) were purchased from Coriell
Institute for Medical Research (Camden, NJ) and cultured in RPMI 1640 medium
with 15% fetal bovine serum (FBS), 2.05 mM L-glutamine and 1% antibiotics
(penicillin and streptomycin). LoVo (MSH2 deficient) cells, from American Type
Culture Collection (Manassas, VA), were grown in DMEM with 10% FBS, 2.05 mM
L-glutamine and 1% antibiotics (penicillin and streptomycin). Cells were grown at
37 �C under 5% CO2.

Co-IP and immunoblotting. A total of 8� 106 lymphoblasts derived from a
normal individual were treated with either 0.5 mM K2CrO4 or 10 mM KBrO3 for
2 h, respectively. Untreated LoVo cells were used as a control. After treatment, cell
lysates were prepared as described54 Briefly, cells were lysed in buffer containing
10 mM Tris–HCl, pH 7.8, 200 mM KCl, 1 mM EDTA, 20% glycerol, 0.1% Nonidet
P-40, 1 mM DTT and protease inhibitors with rotation at 4 �C for 2 h. Lysed cells
were then subjected to centrifugation at 18,000g for 30 min. The supernatant was
collected as cell lysates.

Subsequently, cell lysates were incubated with 100ml protein A plus agarose
(Pierce-Thermo Scientific) at 4 �C for 2 h with rotation. Cell lysates were further
incubated without or with 1mg of rabbit anti-pol b antibodies (ab26343, Abcam,
Cambridge, MA), 1mg of rabbit anti-MSH2 antibodies (ab16833, Abcam) or 1mg of
rabbit IgG (ab37451, Abcam) at 4 �C overnight with rotation, respectively. Cell lysates
were then incubated with 50ml protein A plus agarose at 4 �C for an additional 2 h
with rotation, followed by three washes at 4 �C in washing buffer that contained
20 mM HEPES, pH 7.5, 150 mM NaCl, 1% NP-40 and 2 mM EDTA. Bound proteins
were eluted by heating in SDS-loading buffer at 50 �C for 10 min and were
subsequently subjected to SDS–PAGE and immunoblotting with rabbit anti-human
pol b antibodies (1:1,000; ab175197, Abcam), mouse anti-human MSH2 antibodies
(1:500; ab52266, Abcam) or rabbit anti-human MSH3 antibodies (1:800; ab154486,
Abcam), followed by incubation with goat anti-rabbit IgG (1:10,000; ab6721, Abcam)
or rabbit anti-mouse IgG (1:7,000; ab6728, Abcam) and chemiluminescent analysis

(Pierce-Thermo Scientific). To further confirm the direct interaction between pol b
and MSH2, co-IP was also conducted with purified enzymes. A concentration of
100 nM purified pol b was incubated with 300 nM purified MSH2–MSH3 on ice for
30 min in 20-ml reaction mixture that contained reaction buffer with 50mM dNTPs,
5 mM Mg2þ , 2 mM ATP and 2 mM ADP. Reaction mixtures were further incubated
without or with 1mg of rabbit anti-pol b antibodies (ab26343, Abcam), or 1mg of
rabbit anti-MSH2 antibodies (ab16833, Abcam) or 1mg of rabbit IgG (ab37451,
Abcam) at 4 �C for 2 h with rotation, respectively. Reaction mixtures were then
incubated with 20ml protein A plus agarose at 4 �C for an additional 2 h with
rotation, followed by three washes at 4 �C in washing buffer that contained 20 mM
HEPES, pH 7.5, 150 mM NaCl, 1% NP-40 and 2 mM EDTA. Bound proteins were
eluted by heating in SDS-loading buffer at 50 �C for 10 min and were subsequently
subjected to SDS–PAGE and immunoblotting with rabbit anti-human pol b
antibodies (1:1,000; ab175197, Abcam) or mouse anti-human MSH2 antibodies
(1:500; ab52266, Abcam), followed by incubation with goat anti-rabbit IgG (1:10,000;
ab6721, Abcam) or rabbit anti-mouse IgG (1:7,000; ab6728, Abcam). Proteins were
then detected by chemiluminescence.

Immunocytochemistry and pixel analysis. The protein–protein interaction
between pol b and MSH2–MSH3 in lymphoblasts was determined by immunocy-
tochemistry. Normal lymphoblasts (GM02152) and FRDA patient lymphoblasts
(GM16207) were treated with 0.3 mM K2CrO4 or 30 mM KBrO3 for 2 h. Untreated
cells served as a negative control. After treatment, cells were pelleted by cen-
trifugation at 1,000g for 3 min at room temperature. Cell pellets were washed with
PBS, resuspended and fixed in three volumes of 4% paraformaldehyde (in PBS), and
incubated at room temperature for 10 min. Fixed cells were pelleted by centrifuga-
tion at 1,000g for 3 min at room temperature, and cell pellets were washed with PBS.
Cells were then permeabilized by resuspension in three volumes of PBS containing
0.1% Triton X-100 and incubated at room temperature for an additional 10 min and
were pelleted by centrifugation at 1,000g for 3 min at room temperature. Cell pellets
were washed with PBS before incubation with antibodies for immunofluorescence.

Primary antibodies were as follows: rabbit anti-MSH2 polyclonal antibody
(1:200, (N20), sc494, Santa Cruz Biotechnology, Dallas, TX) and mouse
monoclonal anti-DNA polymerase b antibody (1:200, #ab1831, Abcam). Secondary
antibodies were as follows: donkey anti-rabbit 568 (donkey anti-rabbit IgG (Hþ L)
secondary antibody, Alexa Fluor 568 conjugate 1:250, #A10042, Life Technologies,
Carlsbad, CA) and goat anti-mouse 488 (goat anti-mouse IgG (Hþ L) secondary
antibody, Alexa Fluor 488 conjugate 1:250, #A11001, Life Technologies, Carlsbad,
CA). Antibody dilutions were in PBS containing 3% BSA. Antibody incubations
were for 1 h at room temperature. 4,6-Diamidino-2-phenylindole stain (Life
Technologies, Carlsbad, CA) was added to a final concentration of 0.125 ng ml� 1 to
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visualize the nuclei. Cells were mounted onto glass slides with ProLong Gold
Antifade mounting media (Molecular Probes, Eugene, OR). Slides were imaged on
a Zeiss 710 confocal system equipped with an inverted Zeiss Observer microscope
and a LD-C Apochromat � 100 1.1 numerical aperture oil-immersion objective
(Thornwood, NY). Pixel analysis was performed with Zeiss Zen software using the
following criteria. Optical sectioning at 1.0 mm, and a pinhole set to provide 1 a.u.
(0.7mm sections using Plan apochromat � 100/1.4 oil differential interference
contrast objective). The lasers: argon (458, 488 and 514 nm), DPSS 5610-10
(561 nm), HeNe (633 nm), Diode 405-1 (405 nm); the filters: MBS 458/514 (visible
light), MBS 405 (invisible wavelengths). The pixel size (on the sample): 514� 514
pixels per frame.

Chromatin immunoprecipitation. A total of 8� 106 lymphoblasts from a normal
individual and a HD patient were treated with either 0.5 mM K2CrO4 or 10 mM
KBrO3 for 2 h. Untreated cells were employed as a negative control. After treatment,
cells were washed twice with PBS and pelleted by centrifugation at 1,000g for 3 min
at room temperature. Cell pellets were then resuspended in complete culture med-
ium that contained RPMI 1640 medium with 15% FBS. Formaldehyde (36.5%) was
added to culture medium to a final concentration of 1% for the crosslinking reaction.
Cells were incubated with formaldehyde at 37 �C for 30 min. Crosslinking was
quenched by the addition of 1 M glycine to a final concentration of 125 mM and
incubation with shaking for 5 min at room temperature. Cells were then pelleted by
centrifugation at 500g for 4 min at 4 �C and washed twice by ice-cold 1� PBS
containing protease inhibitors (Roche Diagnostics). Washed cell pellets were further
resuspended in lysis buffer that contained 1% (w/v) SDS, 10 mM EDTA and 50 mM
Tris–HCl, pH 8.0, with protease inhibitors. Cell suspensions were incubated on ice
for 10 min to release crosslinked chromatins before sonication. Cell lysates were
further subjected to sonication for 15 cycles of 30 s ON and 30 s OFF for each cycle
at 4 �C with Bioruptor ultrasonicator (Diagenode, Denville, NJ). The supernatant of
the sheared cell lysate was separated from cell debris by centrifugation at 18,000g for
10 min at 4 �C. The supernatant was further diluted 10-fold with ice-cold ChIP
dilution buffer that contained 1% (v/v) Triton X-100, 1.2 mM EDTA, 167 mM NaCl
and 16.7 mM Tris–HCl, pH 8.0, with protease inhibitors. 150ml of the diluted
supernatant was set aside as INPUT for total DNA control. The remaining lysates
were initially incubated with sheared salmon sperm DNA-coated protein A
sepharose (Life Technologies, Grand Island, NY) for 2 h at 4 �C with rotation.
Subsequently, the lysates were divided into equal aliquots as the No-Ab control and
immunoprecipitates (IPs) with pol b and MSH2, respectively. For each IP, the
diluted chromatin solutions were incubated overnight with 2mg rabbit anti-human
pol b antibody (kindly provided by Dr. Samuel H. Wilson at the National Institute of
Environmental Health Sciences, National Institutes of Health, Research Triangle
Park, NC) or 2mg rabbit anti-human MSH2 antibodies (ab16833, Abcam) at 4 �C
with rotation. Subsequently, IP for pol b, MSH2 and the No-Ab control were
incubated with sheared salmon sperm DNA-coated protein A sepharose beads for
2 h at 4 �C with rotation. IP bound to protein A sepharose beads was pelleted with
centrifugation at 500g for 2 min and washed two times with low-salt washing buffer
that contained 150 mM NaCl, 0.1% (w/v) SDS, 1% (v/v) Triton X-100, 2 mM EDTA
and 20 mM Tris–HCl, pH 8.0, followed by high-salt washing buffer that contained
500 mM NaCl, 0.1% (w/v) SDS, 1% (v/v) Triton X-100, 2 mM EDTA and 20 mM
Tris–HCl, pH 8.0, and finally washed by TE buffer. IP was then eluted from agarose
beads by incubation with freshly prepared elution buffer that contained 1% (w/v)
SDS and 0.1 M NaHCO3. Subsequently, IP was subjected to crosslinking reversal
with 0.2 M NaCl and subsequent incubation at 65 �C for 6 h. Released DNA was
cleaned up with proteinase K digestion at 45 �C for 2 h and phenol/chloroform
extraction. DNA was then recovered by ethanol precipitation. The precipitated DNA
were dissolved in TE buffer and used for subsequent quantitative PCR.

Quantitative real-time PCR and data analysis. Quantitative PCR was performed
by using SYBR Green Supermix (Bio-Rad Laboratories) in a 20-ml reaction according
to the manufacturer’s protocols. Samples were amplified using a CFX Connect Real-
Time PCR Detection System from Bio-Rad Laboratories. GAA repeats in FXN gene
were amplified by a forward primer (50-GGG ATT GGT TGC CAG TGC TTA AAA
G-30) and a reverse primer (50-CCT ATT TTT CCA GAG ATG CTG GGA AAT
CC-30). The amplification was carried out by the following PCR procedure: 98 �C for
2 min (initial denaturation), 98 �C for 20 s (denaturation), 65 �C for 3 min (annealing
and extension), 40 cycles. The length of PCR products should be (422þ 3n) bp
(n¼ number of GAA triplets). CAG repeats in HTT gene were amplified by a for-
ward primer (50-GCT CAG GTT CTG CTT TTA CCT GC-30) and a reverse primer
(50-TGC AGG GTT ACC GCC ATC-30). The amplification was carried out by the
following PCR procedure: 98 �C for 2 min (initial denaturation), 98 �C for 20 s
(denaturation), 51 �C for 1 min (annealing), 72 �C for 2 min, 40 cycles. The length of
PCR products should be (394þ 3n) bp (n¼ number of CAG triplets). Ct values that
were recorded in CFX Manage Software (Bio-Rad Laboratories) during PCR were
used for performing quantification of data to evaluate the fold difference between
experimental samples and normalized input. DCt [normalized ChIP] (normalized to
the input samples)¼Ct [ChIP]� (Ct [input]� Log2 (input dilution factor)), where
input dilution factor¼ (fraction of the input chromatin saved)� 1. In our experi-
ments, the fraction of input chromatin used for further analysis was 150ml, whereas
the fraction used for each IP was 600ml. The fraction for IP was four times of the
input fraction. Thus, the input dilution factor was 4, and the equation was derived as:

DCt [normalized ChIP]¼Ct [ChIP]� (Ct [Input]� Log2 (4)). The input % for each
sample was calculated as: input %¼ 2�DCt [normalized ChIP]� 100. The ‘input %’ value
represents the enrichment of pol b and MSH2 on the GAA repeats of FXN gene or
the CAG repeats of HTT gene. Statistical analysis was performed using the GraphPad
Prism 6 (Graphpad software, San Diego, CA). Statistical significant differences in the
data were tested by standard two-way analysis of variance with Tukey’s multiple
comparison post tests. A significant difference was designated at Po0.05.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its Supplementary Information files are
available on request from the corresponding authors.
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