
Alternating Finite Automata
with Limited Universal Branching

Chris Keeler(B) and Kai Salomaa

School of Computing, Queen’s University, Kingston, ON K7L 2N8, Canada
{keeler,ksalomaa}@cs.queensu.ca

Abstract. We consider measures that limit universal parallelism in
computations of an alternating finite automaton (AFA). Maximum pared
tree width counts the largest number of universal branches in any com-
putation and acceptance width counts the number of universal branches
in the best accepting computation, i.e., in the accepting computation
with least universal parallelism. We give algorithms to decide whether
the maximum pared tree width or the acceptance width of an AFA are
bounded by an integer k. For a constant k the algorithm for maximum
pared tree width operates in polynomial time. An AFA with m states
and acceptance width k can be converted to an NFA with (m + 1)k

states. We consider corresponding lower bounds for the transformation.
The tree width of an AFA counts the number of all (existential and uni-
versal) branches of the computation. We give upper and lower bounds
for converting an AFA of bounded tree width to a DFA.

1 Introduction

Deterministic and nondeterministic finite automata (DFA and NFA) are well
understood models for which a significant number of results are known. As a
generalization of nondeterminism, alternation was introduced in [1], and has
since been studied extensively for Turing machines [5,6,23], and pushdown
automata [1,20].

The power of alternation in finite automata (AFAs) was first studied by Chan-
dra, Kozen, and Stockmeyer [1], later by King [15] and Hromkovič [10], and state
complexity trade-offs with NFAs and DFAs were given by Fellah et al. [3]. How-
ever, results on alternating finite automata remain relatively sparse compared
to alternating pushdown automata and alternating (infinite) automata, and lit-
tle effort has been made towards examining restricted computations within the
context of alternation.

Restricted amounts of nondeterminism have been measured in various ways,
including but not limited to ambiguity [19], tree width [11,22], and string path
width [13]. These so-called “measures of nondeterminism” examine some aspect
of an automaton’s computations. For example, the number of partial, or accept-
ing computations on a given string. For a particular regular language and model,
the state complexity is a measure of how complicated it is for that model to cap-
ture that language. The state complexity is combined with these measures of
c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 196–207, 2020.
https://doi.org/10.1007/978-3-030-40608-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_13&domain=pdf
https://doi.org/10.1007/978-3-030-40608-0_13

Limited Universal Branching in AFAs 197

restricted nondeterminism, yielding tradeoffs between the amount of nondeter-
minism and the number of states required.

An automaton is said to alternate when it switches from an existential state to
a universal state (or vice versa) [1]. There exists an exponential state complexity
blow-up between two-way AFAs with at most k alternations and two-way AFAs
with at most k + 1 alternations, and in general this hierarchy is infinite [7]. The
emptiness problem for AFAs was shown to be PSPACE-Complete for general
alphabets [8,12]. More recently, the state complexity of various operations on
AFAs has also been studied [9].

In this paper, we focus on the original model of AFAs (introduced by Chan-
dra, Kozen, and Stockmeyer) where the states are either existential or univer-
sal [1,7,10,12,15,23], rather than the one where states are labeled with boolean
functions [18]. However, both of these models recognize exactly the regular lan-
guages. We also do not consider states or transitions with negation, though
there is only a linear blow-up between our model and the one which can perform
negation [3].

This paper is organized as follows. Section 2 recalls several definitions, and
fixes our model for alternating finite automata. Section 2.1 introduces the notions
of acceptance width and maximal pared tree width, and provides several initial
results and bounds for these new metrics. Section 3 gives a polynomial transfor-
mation for an NFA to simulate an AFA with bounded parallelism, shows that
the decidability of several decision problems for AFAs with finite acceptance
width, and gives algorithms to decide whether an AFA’s maximal pared tree
width or acceptance width is bounded by a given constant. Section 4 presents
unary witness languages with finite acceptance width (with respect to the num-
ber of states) which require only a small number of states to be recognized by
an AFA, but require an exponential number of states to be recognized by an
NFA or DFA. Finally, Sect. 4.1 introduces a non-unary witness language, and
provides another exponential state complexity blow-up; this time between AFAs
with bounded tree width (with respect to the number of states), and NFAs and
DFAs.

2 Preliminaries

An AFA is a 6-tuple, A = (Qe, Qu, Σ, δ, q0, F) where Qe (the existential state set)
and Qu (the universal state set) are finite sets of states such that Qe ∩ Qu = ∅,
Σ is the input alphabet, δ : (Qe ∪ Qu) × Σ → 2Qe∪Qu is the transition function,
q0 ∈ Qe∪Qu is the initial state, and F ⊆ Qe∪Qu is the set of final states. We use
ε to mean the empty string, and Aq to mean A with a different specified starting
state, q ∈ Qe ∪ Qu. Note that the standard NFA model can be seen as an AFA
where Qe contains all of the states, and Qu is empty. We must further specify
the language of an AFA, to account for the differences caused by universal states.
We do this by defining them bottom-up with respect to their states.

Definition 1. Let A = (Qe, Qu, Σ, δ, q0, F) be an AFA, and Aq be a copy of the
AFA with q ∈ Qe ∪Qu as the initial state. We point out that ε ∈ L(Aq) if q ∈ F .

198 C. Keeler and K. Salomaa

Consider q ∈ Qe ∪ Qu, a ∈ Σ where δ(q, a) = {p1, . . . , pn}. Then for x ∈ Σ∗,
define:

– If q ∈ Qu, then ax ∈ L(Aq) if and only if x ∈ L(Api
) for all 1 ≤ i ≤ n.

– If q ∈ Qe, then ax ∈ L(Aq) if and only if x ∈ L(Api
) for some 1 ≤ i ≤ n.

The language of A is defined as L(A) = L(Aq0).

The computation tree of an AFA A on ε from q ∈ Qe ∪ Qu, denoted TA,q,ε is the
singleton node (q, ε). The computation tree of an AFA A on cv from q, denoted
TA,q,cv, such that q ∈ Qe ∪ Qu, c ∈ Σ, v ∈ Σ∗ is defined inductively as the tree:

– whose internal nodes are labeled by a tuple (p, a), for p ∈ Q, a ∈ Σ (i.e., each
internal node is labeled by a state and character)

– which is rooted by a node (q, c)
– where the trees rooted at the children of (q, c) are

• the computation trees (TA,p1,v, . . . , TA,pn,v) if δ(q, c) = {p1, . . . , pn}, and
• the failure node ⊥ if δ(q, c) = ∅ (that is, if δ(q, c) is undefined).

If a computation tree of an AFA A on a string x starts on the initial state of A,
then we omit the state label, denoting it as TA,x. We use the notation leaves(T)
to mean the (depth-first) ordered tuple of leaves in the computation tree T . The
computation tree of an NFA is defined similarly, except its nodes are always
labeled by existential states [11].

We define the paring of a computation tree, which serves as the transforma-
tion around which our new measures are defined. For an AFA A = (Qe, Qu, Σ, δ,
q0, F) and a string x ∈ Σ∗, a pared computation tree of TA,x is defined as a tree
where for each node (q, a) ∈ TA,x:

– if q ∈ Qe then keep only one child node, and
– if q ∈ Qu then keep all child nodes.

Since there is a choice made on each of the existential nodes, the same compu-
tation tree can result in many different pared computation trees. A pared tree
represents a possible computation of the AFA A. At nodes labeled by existential
states, the pared tree follows one (nondeterministically chosen) way to continue
the computation. The nodes labeled by universal states have children labeled
by all states reachable from that state in the next computation step. Note that
every pared tree of an NFA will only have one leaf, since all of its states are exis-
tential. We denote the set of all pared computation trees on a tree T as ✂(T).
A pared computation tree is accepting if all of its leaves are labeled by accepting
states (implying that no leaf is the failure node), and a string x is accepted by
an AFA if and only if A has an accepting pared computation tree in ✂(TA,x).

Without loss of generality, we assume that all of an AFA’s universal states are
reachable. However, since emptiness for AFAs is PSPACE-Complete, we cannot
assume that all of an AFA’s states are useful in the sense that they can be used
in an accepting computation. Since a universal state with at most one outgoing
transition per character is no different than using an existential state, we also

Limited Universal Branching in AFAs 199

assume that every universal state has multiple outgoing transitions on at least
one character.

For a regular language L, sc(L), (respectively, nsc(L), asc(L)), is the state
complexity, (respectively, nondeterministic and alternating state complexity)
of L.

2.1 Tree Width of Alternating Machines

The tree width [11] of an AFA A on a string x, denoted tw(A, x), is the number
of leaves in the computation tree of A on x. That is, tw(A, x) = |leaves(TA,x)|.

Since the notion of tree width is originally based on the computation tree
of an NFA, and our AFA definition extends the original notion of computation
trees, it seems natural to look at “alternating tree widths”.

Definition 2. Let A = (Qe, Qu, Σ, δ, q0, F) be an AFA. Then the acceptance
width of A on a string x ∈ Σ∗, denoted aw(A, x), is the minimum number of
leaves of any accepting pared computation tree of TA,x. The maximum pared tree
width of A on a string x ∈ Σ∗, denoted mptw(A, x), is the maximum number of
leaves of any pared computation tree of TA,x. Formally, these are:

aw(A, x) = min{|leaves(T)| | T ∈ ✂(TA,x), leaves(T) ⊆ F}

mptw(A, x) = max{|leaves(T)| | T ∈ ✂(TA,x)}

Since the (original) tree width does not perform the paring operation, we
get that for any AFA A and string x, aw(A, x) ≤ mptw(A, x) ≤ tw(A, x). We
also get the following condition for equality between the measures, which occurs
when the paring operation does not change the computation tree.

Remark 1. Let A be an AFA, and x a string. Then mptw(A, x) = tw(A, x) if and
only if each node in TA,x with more than one child is labeled by some universal
state in A.

We extend the acceptance width and maximum pared tree width functions
as functions on integers in the normal manner:

aw(A, �) = max{aw(A, x) | x ∈ Σ�},

mptw(A, �) = max{mptw(A, x) | x ∈ Σ�}.

aw(A) = sup
�∈N

{aw(A, �)}, and mptw(A) = sup
�∈N

{mptw(A, �)}.

If, for a string x, there are no accepting computation trees, then aw(A, x) = 0.
Since the emptiness problem is PSPACE-complete for AFAs [8], and these results
hold even for unary languages, then we get the following equivalence.

200 C. Keeler and K. Salomaa

Remark 2 ([8]). Let A be an AFA. Then it is PSPACE-complete to decide
whether or not aw(A) = 0.

If an m-state AFA has finite tree width, then its tree width is at most 2m−2

[22]. Since, on any string, the acceptance width and maximal pared tree width of
an AFA are upper-bounded by the tree width, we get the following conditional
upper bound.

Corollary 1 ([22]). Let A be an m-state AFA with finite tree width. Then
aw(A) ≤ mptw(A) ≤ 2m−2.

Alternatively, we could replace the computation trees by directed acyclic
graphs by merging any nodes on the same state on the same level. However,
in this case, the acceptance width and maximal pared tree width of an m-state
AFA would be at most m.

3 Decision Problems for Pared Tree Width
and Acceptance Width

Normally, an NFA may require an exponential state blow-up to simulate an
AFA [3]. However, an NFA can simulate any finite acceptance width AFA with
at most a polynomial blow-up in the number of states. An m-state AFA A with
acceptance width k can be simulated by an NFA where the states are k-tuples of
states of A and transitions of the NFA simulate at most k parallel computations
of A.

Lemma 1. Let A be an m-state AFA, such that aw(A) ≤ k, for some constant
k. Then (m + 1)k states are sufficient for an NFA to simulate A.

It is known that the emptiness problem for NFAs can be solved in linear
time, with respect to the number of states, using a breadth first search [4]. The
transformation from Lemma 1 then yields a polynomial-time algorithm to decide
emptiness for a finite acceptance width AFA.

Corollary 2. Let A be an m-state AFA with finite acceptance width k, for some
constant k. Then in O(mk) time we can decide whether L(A) = ∅.

Using the transformation from Lemma 1, but modifying which states of the
NFA are accepting, we can also decide whether the maximal pared tree width
of an AFA is bounded.

Theorem 1. Let A be an m-state AFA and k a constant. Then we can decide
whether or not the maximal pared tree width of A is at most k in O(mk) time.

Using similar ideas from the characterization of NFAs with finite tree width
[22], we are able to characterize AFAs with finite maximal pared tree width.

Corollary 3. Let A = (Qu, Qe, Σ, δ, q0, F) be an AFA. Then mptw(A) > 2m−2

if and only if there exists some state q ∈ Qu and character c ∈ Σ such that
|δ(q, c)| ≥ 2 and q is involved in a cycle.

Limited Universal Branching in AFAs 201

Modifying existing algorithms for deciding finiteness of an NFA’s tree width
[14], we are also able to decide finiteness of an AFA’s maximal pared tree width
in polynomial time.

Corollary 4 ([14]). Let A = (Qu, Qe, Σ, δ, q0, F) be an m-state AFA. Then we
can decide whether or not the maximal pared tree width of A is bounded by some
constant k in O(m3 · |Σ|) time1.

The general membership problem is P-complete for AFAs [12], and this holds
even for finite unary languages. In fact, this P-completeness is even stronger, as
it holds for all cycle-free AFAs.

Since an m-state cycle-free AFA has at most m − 1 states being evaluated in
parallel, then the membership problem for AFAs with bounded parallel compu-
tations is also P-complete.

Corollary 5 ([12]). Let A be a finite maximal pared tree width AFA. Then for
a string x, it is P-complete to decide whether x ∈ L(A).

We can also decide whether the pared acceptance width of an AFA is finitely
bounded by some number.

Theorem 2. Let A be an AFA, and k ∈ N. Then it is decidable whether the
acceptance width of A is bounded by k.

While it is decidable whether the acceptance width of an AFA is bounded by
an integer k, the algorithm presented in Theorem2 is not an efficient one and we
cannot expect to have an efficient algorithm for this problem2. For a given AFA A
and k ∈ Nwe can construct an AFA A′ that begins the computation by a universal
step with k+1 choices, where the first computation simulates A and the remaining
k computations always accept deterministically. Then aw(A′) ≤ k if and only if
L(A) = ∅ and deciding the emptiness of an AFA is PSPACE-complete [8].

For any AFA A with finite tree width, the acceptance width of A must also
be finite. Under this restriction, we can decide whether the acceptance width of
A is finite using the construction from Theorem2.

Corollary 6. Let A be an m-state AFA with finite tree width. By Corollary 1,
the acceptance width is then at most 2m−2. Since the acceptance width of A is
finite if and only if it is at most 2m−2, then it is decidable whether the acceptance
width of A is finite. We do this by using Theorem2 with an input value of 2m−2.

Since the acceptance width of an AFA is only upper bounded by its tree
width, it is possible that an AFA has infinite tree width and finite acceptance
width. In this case, we do not have an upper bound for the acceptance width.

1 The DCFS proceedings has a slightly worse bound of O(m4 · |Σ|), and the specifics
of the improved version will appear in a future paper.

2 This observation, with a justification different from the below one, was suggested by
an anonymous referee.

202 C. Keeler and K. Salomaa

Question 1. Let A be an m-state AFA with infinite tree width and finite accep-
tance width k. Is there any expression in m which bounds k?

As a result, it is not immediately obvious whether the finiteness of an AFA’s
acceptance width is decidable in general.

Question 2. For an AFA A such that tw(A) /∈ O(1), does there exist an algo-
rithm to decide whether or not aw(A) ∈ O(1)?

4 State Complexity

Let I be a set of integers, and LCM(I) be the least common multiple of all
elements in I. We define L∀I as the set of all unary strings whose lengths are
the product of all integers in I.

L∀I = {ay | (∀i ∈ I) y ≡ 0 (mod i)} (1)

Equivalently, we have L∀I = {ay·z | z ≥ 0, y = LCM(I)}.

Lemma 2. Let I be a set of integers. Then sc(L∀I) = nsc(L∀I) = LCM(I).

The state complexity is, of course, maximal with respect to the size of the
input set when its elements are pairwise coprime.

Lemma 3. Let I = {p1, . . . , pn} be a set of n integers. If the elements of I are

pairwise coprime, then there exists an AFA A recognizing L∀I with 1 +
n∑

i=1

pi

states and tree width n such that sc(L(A)) = nsc(L(A)) =
n∏

i=1

pi.

0, u

1

2

n

f1

f2

fn

...
...

a

a

a

a

a

a

a

ap1−1

ap2−1

apn−1

Fig. 1. AFA for L∀P where P = {p1, . . . , pn}. Universal states are marked with an
additional label ‘u’, and existential states are given as normal.

Limited Universal Branching in AFAs 203

Proof. Let I = {p1, . . . , pn} be a set of integers whose elements are pairwise
coprime. We give the AFA recognizing L∀I in Fig. 1, whose tree width and
number of states matches the claim. Since I’s elements are pairwise coprime,

LCM(I) =
n∏

i=1

pi. And by Lemma 2, sc(L∀I) = nsc(L∀I) = LCM(I). �

Recognizing that the state complexity blow-up in Lemma 3 is exactly Lan-
dau’s function [2,21], we get the following exponential state complexity trade-off
between AFAs with finite tree width (and therefore also finite acceptance width)
and NFAs. A similar idea and result was also given by Kupferman et al. [17],
though it was formulated to capture the unary language an+i, for i ≥ 0.

Theorem 3 ([2,17,21]). Let I be a set of pairwise coprime integers, and A
be an (m − 1)-state AFA recognizing L∀I with tree width |I|. Then any NFA
equivalent to A will require at least e(1+o(1))·√m lnm states.

While Landau’s function gives a lower bound for the state complexity blow-
up of simulating a restricted tree width AFA with an NFA, it is only given in
terms of the number of states.

Lemma 4. Let I = {p1, . . . , pn} be a set of pairwise coprime integers, for some
n ∈ N. Let A be an m-state AFA such that A has acceptance width n and
recognizes L∀I . Then any NFA equivalent to A will require at least (m

n·pn
)n states.

In the general case, for every m, there exists an m-state AFA which cannot
be simulated by any NFA with fewer than 2m states [3], and any equivalent DFA
needs 22

m

states [1]. However, to get this double-exponential state complexity
blow-up, the m-state AFA needs a tree width much larger than m.

Let P = {p1, . . . , pn} be a set of n prime numbers. We define L2P , the set
of all unary strings whose lengths are a product of at least two distinct primes
from P.

L2P = {ax | (∃i, j) 1 ≤ i < j ≤ n, such that pi and pj divide x} (2)

Lemma 5. There exists an AFA A recognizing L2P with 1+ n(n−1)
2 +

n∑

i=1

(pi −1)

states3 and a maximal pared tree width of 2.

We extend L2P , defining LkP as the set of all unary strings whose lengths
are a product of at least k distinct primes from P, for some constant k.

LkP ={ay | (∃r1, . . . , rk) {r1, . . . , rk} ⊆ P, (3)
such that (∀i) 1 ≤ i ≤ k, y ≡ 0 (mod ri)

Using similar ideas as the proof from Lemma 5 but operating on an arbitrary
number of elements instead of only two, we get the following result.

Lemma 6. For every k ≥ 2, there exists an AFA A recognizing LkP with 1 +
(
n
k

)
+

n∑

i=1

(pi − 1) states and a maximal pared tree width of k.

3 We need one extra state each if 2 or 3 ∈ P.

204 C. Keeler and K. Salomaa

4.1 Universal Infix Language

For two strings v, v′ ∈ Σ∗, we say that v and v′ are disjoint if they do not share
any symbols. We extend this notion to tuples of strings, such that a tuple of
strings W is disjoint if and only if all pairs of strings x, x′ ∈ W are disjoint.

A bitstring b1 · · · bn ∈ {0, 1}n is a string for representing some boolean value
across a set of n elements. We define the cardinality of a bistring as the number
of 1s appearing in that bitstring.

The universal infix language of an ordered string tuple W consists of strings
that contain each x ∈ W as an infix. We define a labeling function hW : Σ∗ →
{0, 1}n which takes as input a string s ∈ Σ∗ and an n-tuple W, and produces
the bitstring b1 · · · bn, where bi = 1 if and only if the ith element of W is an infix
of s, for 1 ≤ i ≤ n. More formally, the universal infix language over a tuple of
strings W and an alphabet Σ is defined as:

LαW = {s ∈ Σ∗ | (∀x ∈ W) x is a substring of s} (4)

An AFA with small amounts of alternation can recognize this language with
relatively few states, and limited universal branching.

Lemma 7. Let W = (x1, . . . , xn) be an ordered, disjoint tuple of strings. Then

there exists an AFA recognizing LαW with 2 +
n∑

i=1

|xi| states and tree width n.

Proof. Let W = (x1, . . . , xn) be an ordered, disjoint tuple of strings, and let xi[j]
be the jth character of the ith string. We give the general structure for an AFA in

Fig. 2, which recognizes LαW with 1 universal and 1 +
n∑

i=1

|xi| existential states.

This AFA has tree width n, and only alternates between universal and existential
states once. The only final state is the one at the end of all the branches. And,
excepting the initial state, we define the transition function deterministically.
If the machine is reading xi, has read up to xi[j], and then encounters some
mismatched symbol, then the computation path currently in state i.j will return
to state i, indicating that the infix must be restarted. �

However, a DFA for L∀W needs exponentially more states than an AFA.

Lemma 8. Let W = (x1, . . . , xn) be a disjoint tuple of strings. Then

sc(LαW) = 2n + 2n−1 ·
n∑

i=1

(|xi| − 1).

Furthermore, the addition of nondeterminism does not improve this bound.

Lemma 9. Let W = (x1, . . . , xn) be a disjoint tuple of strings. Then

nsc(LαW) = 2n + 2n−1 ·
n∑

i=1

(|xi| − 1).

Limited Universal Branching in AFAs 205

0, u f

1

n

· · · · · ·

1.1

n.1

1.2

n.2

Σ \ {x1[1]}

Σ \ {xn[1]}

x1[1]

xn[1]

Σ \ {x1[1]}

Σ \ {xn[1]}

x1[1]

xn[1]

Σ \ {x1[2]}

Σ \ {xn[2]}

Σ \ {x1[3]}

Σ \ {xn[3]}

x1[2]

xn[2]

· · ·

· · ·

Σ

Fig. 2. AFA for a universal infix language over (x1, . . . , xn)

Combining Lemmas 7, 8, and 9, we get the following theorem.

Theorem 4. There exists an m-state AFA A (where m can be arbitrarily large)
with tree width n such that any equivalent NFA needs (m − n) · 2n−1 states. The
AFA A can be chosen to alternate only once between universal and existential
states. We note that the alphabet size of A depends on n.

We give the following constructive example to help clarify the state blow-up
from Theorem 4.

Example 1. Let W = (aa, b, c), and A = (Q, {a, b, c}, δ, q0, {111}) be the DFA
given in Fig. 3, which recognizes Lα(aa,b,c).

To make counting of states easier, below we assume that an AFA computation
step always has at most two choices (i.e. computation step is either undefined, is
deterministic, or has exactly two existential or universal choices). This assump-
tion can be made with only a constant factor blow-up of the automaton’s state
complexity [16].

Lemma 10. Let A be an m-state AFA with tree width n. Then A has an equiv-
alent DFA B with at most (m + 1)n · (2n − 1) states.

Combining the upper and lower bounds from Lemmas 8, 9 and 10, we get the
following state complexity range for simulating a finite tree width AFA with a
DFA.

206 C. Keeler and K. Salomaa

000

a

100

010

001

ba

ca

011 bca

110

101

111

a

a

b

c

b

c

b

c

a

a

b
c

c

b

a

a

c
b

a

b

c

a, b

b, c

a, c

a, b, c

c

b

a

b, c

a

Fig. 3. 12-State DFA for Lα(aa,b,c)

Corollary 7. Let A be an m-state AFA with tree width n. Then

2n−1 · (m − n) ≤ sc(L(A)) ≤ (2n − 1) · (m + 1)n.

Acknowledgments. Research supported by NSERC grant OGP0147224.
We thank the referees for their helpful and thoughtful comments. But, due to the

short deadline for submitting the proceedings version, we will try to implement some
revisions for a later journal version.

References

1. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–
133 (1981)

2. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47,
149–158 (1986)

3. Fellah, A., Jürgensen, H., Yu, S.: Constructions for alternating finite automata.
Int. J. Comput. Math. 35(1–4), 117–132 (1990)

4. Fernau, H., Krebs, A.: Problems on finite automata and the exponential time
hypothesis. Algorithms 10(1), 24 (2017)

5. Fijalkow, N.: The state complexity of alternating automata. In: Proceedings of the
33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018,
Oxford, UK, 09–12 July 2018, pp. 414–421 (2018)

Limited Universal Branching in AFAs 207

6. Finkbeiner, B., Sipma, H.: Checking finite traces using alternating automata. For-
mal Methods Syst. Des. 24(2), 101–127 (2004)

7. Geffert, V.: An alternating hierarchy for finite automata. Theor. Comput. Sci. 445,
1–24 (2012)

8. Holzer, M.: On emptiness and counting for alternating finite automata. In: Devel-
opments in Language Theory II, At the Crossroads of Mathematics, Computer
Science and Biology, Magdeburg, Germany, 17–21 July 1995, pp. 88–97 (1995)

9. Hospodár, M., Jirásková, G., Krajňáková, I.: Operations on boolean and alternat-
ing finite automata. In: Fomin, F.V., Podolskii, V.V. (eds.) CSR 2018. LNCS, vol.
10846, pp. 181–193. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
90530-3 16

10. Hromkovič, J.: On the power of alternation in automata theory. J. Comput. Syst.
Sci. 31(1), 28–39 (1985)

11. Hromkovič, J., Seibert, S., Karhumäki, J., Klauck, H., Schnitger, G.: Communica-
tion complexity method for measuring nondeterminism in finite automata. Inform.
Comput. 172(2), 202–217 (2002)

12. Jiang, T., Ravikumar, B.: A note on the space complexity of some decision prob-
lems for finite automata. Inf. Process. Lett. 40(1), 25–31 (1991)

13. Keeler, C., Salomaa, K.: Branching measures and nearly acyclic NFAs. In:
Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017. LNCS, vol. 10316, pp. 202–213.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60252-3 16

14. Keeler, C., Salomaa, K.: Nondeterminism growth and state complexity. In: Hos-
podár, M., Jirásková, G., Konstantinidis, S. (eds.) DCFS 2019. LNCS, vol. 11612,
pp. 210–222. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23247-
4 16

15. King, K.N.: Alternating multihead finite automata (extended abstract). In: Even,
S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 506–520. Springer, Heidelberg
(1981). https://doi.org/10.1007/3-540-10843-2 40

16. King, K.N.: Measures of parallelism in alternating computation trees (extended
abstract). In: Proceedings of the 13th Annual ACM Symposium on Theory of
Computing, 11–13 May 1981, Milwaukee, Wisconsin, USA, pp. 189–201 (1981)

17. Kupferman, O., Ta-Shma, A., Vardi, M.Y.: Counting with automata. Short Paper
Presented at the 15th Annual IEEE Symposium on Logic in Computer Science
(LICS 2000) (2000)

18. Leiss, E.L.: Succinct representation of regular languages by boolean automata.
Theor. Comput. Sci. 13, 323–330 (1981)

19. Leung, H.: Descriptional complexity of nfa of different ambiguity. Int. J. Found.
Comput. Sci. 16(5), 975–984 (2005)

20. Moriya, E.: A grammatical characterization of alternating pushdown automata.
Theor. Comput. Sci. 67(1), 75–85 (1989)

21. Okhotin, A.: Unambiguous finite automata over a unary alphabet. Inf. Comput.
212, 15–36 (2012)

22. Palioudakis, A., Salomaa, K., Akl, S.G.: State complexity of finite tree width nfas.
J. Autom. Lang. Comb. 17(2–4), 245–264 (2012)

23. Ruzzo, W.L.: Tree-size bounded alternation. J. Comput. Syst. Sci. 21(2), 218–235
(1980)

https://doi.org/10.1007/978-3-319-90530-3_16
https://doi.org/10.1007/978-3-319-90530-3_16
https://doi.org/10.1007/978-3-319-60252-3_16
https://doi.org/10.1007/978-3-030-23247-4_16
https://doi.org/10.1007/978-3-030-23247-4_16
https://doi.org/10.1007/3-540-10843-2_40

	Alternating Finite Automata with Limited Universal Branching
	1 Introduction
	2 Preliminaries
	2.1 Tree Width of Alternating Machines

	3 Decision Problems for Pared Tree Width and Acceptance Width
	4 State Complexity
	4.1 Universal Infix Language

	References

