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Hypothyroidism is a common disease, and its molecular mechanism still needs further investigation. Lysine succinylation is found to be
involved in various metabolic processes associated with hypothyroidism. We performed quantitative analysis on lysine succinylome in
thyroids of rats with hypothyroxinemia, which was induced through the administration of a high-fat diet. Overall, 129 differentially
expressed proteins were quantified. Downregulated proteins were enriched in the thyroid hormone synthesis and thyroid hormone
signaling pathways and were mainly localized in the mitochondria. In addition, 172 lysine succinylation sites on 104 proteins were
obviously changed. Decreased succinylated proteins were involved in diverse metabolic pathways and were primarily localized in
mitochondria. Finally, the mitochondrial oxygen consumption rates of human normal thyroid epithelial cells were measured to further
verify the role of lysine succinylation. +e mitochondrial oxygen consumption rates were markedly blunted in the cells treated with
palmitic acid (all p< 0.05), and the changes were reversed when the cells were treated with palmitic acid and desuccinylase inhibitor
together (all p< 0.05). +us, we theorize that the thyroid differentially expressed proteins and changed succinylation levels played
potential roles in the mitochondria-mediated energy metabolism in the high-fat diet-induced hypothyroxinemia rat model.

1. Introduction

+yroid hormone, synthesized and secreted by the thyroid
gland, plays a crucial role in the normal development,
differentiation, and metabolism of human beings [1]. Dis-
turbances in thyroid homeostasis may result in several
thyroid disorders such as hypothyroidism. Hypothyroidism
is a disorder of the endocrine system that results from low
production of thyroid hormone thyroxine (TT4) from the
thyroid gland. +is leads to metabolic dysfunction because
thyroid hormone is an essential regulator of glucose-lipid

metabolism and energy homeostasis. Hypothyroidism also
leads to a rise in the concentration of thyrotropin (TSH)
through the negative feedback of the hypothalamus-pitui-
tary-thyroid axis [2]. Primary hypothyroidism, caused by a
dysfunction of the thyroid itself, is the main cause of hy-
pothyroidism [3]. +e onset of hypothyroidism in adults is
often subtle presenting with a range of nonspecific symp-
toms. However, severe untreated hypothyroidismmay result
in poor prognoses, such as heart failure, psychosis, and even
coma [3]. So far, possible measures for the treatment of
hypothyroidism include improvements in symptoms and
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prevention of adverse event. Undoubtedly, hypothyroidism
places a huge burden on the economy and greatly lowers the
quality of the patient’s life. +us, it is essential to investigate
the pathogenesis and explore novel treatment strategies.

Posttranslational modifications (PTMs), which refer to
covalent modifications introduced to amino acids of pro-
teins either enzymatically or nonenzymatically, are key
mechanisms for increasing proteomic diversity and exert
crucial effects on biological function in a variety of species
[4–7]. PTMs modulate protein properties through proteo-
lytic cleavage of regulatory subunits, addition of a modified
group to one or more amino acids, or degradation of entire
proteins, thus determining activity status, localization,
turnover, and interactions with other molecules [8].

Lysine, as the most common posttranslation modified
amino acid residue, is critical for the formation of protein
structures and regulation of protein functions. Lysine res-
idues can be subjected to various PTMs, such asmethylation,
acetylation, biotinylation, ubiquitination, ubiquitin-like
modifications, propionylation, and butyrylation [9–13].
+ese lysine PTMs play important roles in cellular physi-
ology and pathology, thereby influencing almost all aspects
of cell biology and pathogenesis [14–17]. Lysine succinyla-
tion is one of significant posttranslational protein modifi-
cations, which can occur on cytosolic, nuclear, and
mitochondrial proteins by a nonenzymatic chemical reac-
tion [18] and enzymatic catalytic reaction. +e former
succinylation originates directly from succinyl-CoA, which
can be generated from the TCA cycle, lipids, and amino acid
metabolism, and the enzymatic succinylation of lysine takes
place by lysine succinyltransferase. Lysine succinylation has
been identified and verified as an important form of PTM
and is involved in a diverse array of cellular functions as-
sociated with thyroid diseases [19–21]. Cinzia Puppina et al.
have found that acetylated levels of lysine at positions 9–14
of H3 histone (H3K9-K14ac) were significantly higher in
follicular adenomas, papillary thyroid carcinomas, follicular
thyroid carcinomas, and undifferentiated carcinomas than
in normal tissues [22]. Andrea Henze et al. reported that
oxidative modifications of Cys10 seemed to affect the
binding of T3 to transthyretin and provided a sensitive
mechanism for adjusting thyroid hormone availability [23].
+e role of lysine succinylation in thyroid diseases is still
unknown and needs further investigation.

Our previous studies [24, 25] have found that excess
intake of dietary fat induced decreased serum TT4 and FT4
concentrations in parallel with elevated serum TSH con-
centration, as well as abnormal morphology and lipid profile
change of the thyroid gland, providing evidence for the
correlation between lipid profiles and organ function, as well
as a new prospect for understanding the pathogenesis of
hypothyroidism. However, the underlying molecular
mechanism remains unclear and needs further investigation.

Liquid chromatography-tandem mass spectrometry-
(LC-MS/MS-) based proteomic analysis has emerged as a
powerful tool for studying disease mechanisms due to its
high throughput and accuracy [20, 26, 27]. In the present
study, to investigate which PTM played a role in hypo-
thyroxinemia, we detected four types of lysine acylations by

western blotting, including succinylation, crotonylation, 2-
hydroxybutyrylaion, and malonylation. A significant change
in lysine succinylation was observed in the HFD group
relative to the control group.+en, we carried out label-free-
based quantitative analyses on the global proteome and
lysine succinylome of thyroid tissues in the HFD-induced
thyroid dysfunction rat model using LC-MS/MS methods. A
series of bioinformatics analyses were conducted to explore
the underlying molecular mechanisms of hypothyroxinemia
and lysine succinylation’s involvement. We aimed to explore
the association between lysine succinylation and hypothy-
roidism and to evaluate potential diagnostic biomarkers and
therapeutic targets.

2. Materials and Methods

2.1. Experimental Design and Workflow. We compared the
protein expression profile and succinylation level in the rat
thyroid tissue between a high-fat diet (HFD) study group
and a chow-diet (CD) control group. +e experiment
procedures consisted of four key steps as follows: (1) the
establishment and sample collection in a hypothyroxinemia
rat model, as previously described [24, 25]; (2) label-free-
based quantitative proteomics, including protein extraction,
trypsin digestion, high-performance liquid chromatography
(HPLC) fractionation, and antibody-based affinity enrich-
ment of lysine succinylated peptides; (3) LC-MS/MS ana-
lyses; and (4) bioinformatics analyses. +ree biological
replicates were performed for the global proteome and
succinylome analyses.+e procedure is described in detail in
the following paragraphs.

2.2. Animal Model and Ethics Statement. Twenty-six male
SD rats at 6-week-old (Beijing Vital River Laboratory An-
imal Technology Co., Ltd., Beijing, China) weighing
190–210 g were fed in the experimental animal center of
Shandong Provincial Hospital, Shandong University. +e
rats were maintained at a constant temperature and hu-
midity and were rendered a 12 h :12 h light–darkness cycle.
+e rats were randomly and equally divided into the CD
control group (n� 13) and the HFD study group (n� 13)
(the detailed composition of fatty acids in diets is shown in
Supplementary Table S1). +e animals were weighed weekly
and fed for 24 weeks. At the 24th week of feeding, all rats
were fasted for 12 hours before sacrifice. All experiment
protocols were approved by the Animal Ethics Committee of
Shandong Provincial Hospital, Shandong University.

2.3. Serum 8yroid Function Parameters Analysis. Serum
TT4, FT4, and TSH concentrations were measured at the end
of the experiment. Blood samples were collected by inferior
vena cava puncture. Serum TT4, FT4, and TSH were mea-
sured by using ELISA kits (CUSABIO, Wuhan, China). All
procedures were carried out in accordance with the in-
structions provided by the manufacturers.
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2.4. Protein Extraction and Trypsin Digestion. +yroid tissue
samples from 4, 4, and 5 rats were pooled as three biological
replicates, respectively. Each sample was grinded by liquid
nitrogen into cell powder and then transferred to a 5mL
centrifuge tube. Following the addition of four volumes of
lysis buffer (8M urea, 1% protease inhibitor cocktail, 3 μM
TSA, 50mM NAM, and 2mM EDTA) into the centrifuge
tube, sonication on ice was performed three times. After
centrifugation at 12,000 g at 4°C for 10min, the remaining
debris was removed, and the supernatant was collected.
Finally, a BCA kit (Beyotime Institute of Biotechnology,
Shanghai, China) was utilized to determine the protein
concentration according to the manufacturer’s instructions.

In preparation for digestion, the protein solution was
reduced (5mM dithiothreitol, 30min, 56°C) and alkylated
(11mM iodoacetamide, 15min, room temperature in
darkness). +e urea concentration was then diluted to less
than 2M by adding 100mM NH4HCO3. Finally, trypsin
(Promega Corporation, Fitchburg, Wisconsin, United
States) was added at 1 : 50 enzyme-to-substrate mass ratio
and incubated overnight for the first digestion, followed by
the addition of trypsin at 1 :100 enzyme-to-substrate mass
ratio for an additional 4 h digestion.

2.5. HPLC Fractionation and Antibody-Based Affinity
Enrichment. +e tryptic peptides were then fractionated
into several fractions by high-pH reverse-phase HPLC using
Agilent 300 Extend C18 columns (5 μmparticles, 4.6mm ID,
250mm length). Briefly speaking, peptides were first sepa-
rated into 60 fractions with a gradient of 8%–32% aceto-
nitrile (ACN, pH 9.0) for over 60min. Afterwards, the
peptide fractions were combined into 4 fractions and dried
by vacuum centrifuging.

Enrichment was implemented by immunoprecipitation
in accordance with previous studies [28, 29]. Briefly, to
enrich lysine-succinylation modified peptides, tryptic pep-
tides were dissolved in NETN buffer (100mM NaCl, 1mM
EDTA, 50mM Tris-HCl, 0.5% NP-40, and pH 8.0) and then
incubated overnight with prewashed antisuccinyl lysine
antibody agarose beads (catlog no. PTM402; PTM Bio,
Hangzhou, China) at 4°C with gentle shaking. Finally, the
bound peptides were eluted from the beads with 0.1% tri-
fluoroacetic acid (TFA), combined, and vacuum-dried.
Before LC-MS/MS analysis, the obtained peptides were
desalted with C18 ZipTips (Millipore) according to the
manufacturer’s instructions.

2.6. LC-MS/MS Detection, Database Search, and Quantifi-
cation Analysis. +e tryptic peptides were resuspended in
solvent A (0.1% formic acid in 2% ACN) and then directly
loaded onto a reversed-phase analytical column (15 cm
length, 75 μm ID; PTM bio, Hangzhou, China). A constant
flow rate of 700 nl/min was established on an EASY-nLC
1000 UPLC system, with a gradient consisting of 9%–25%
solvent B (0.1% formic acid in 90% ACN) for 38min, 25%–
40% for 14min, climbing to 80% for 4min, and holding at
80% for the last 4min.

+e peptides were subjected to a nanospray ionization
(NSI) source, followed by tandem mass spectrometry (MS/
MS) in a Q ExactiveTM Plus (+ermo Fisher Scientific)
coupled online to an ultraperformance liquid chromato-
graph (UPLC). Intact peptides and succinylated peptides
were detected in the Orbitrap at a resolution of 70,000 and a
m/z scan ranging from 350 to 1800. +e peptides were then
selected using 28% normalized collision energy (NCE) for
MS/MS analyses, and the ion fragments were detected using
the Orbitrap at a resolution of 17,500. Data-dependent
acquisition (DDA) procedures that alternated between one
MS scan followed by 15 and 20MS/MS scans were applied to
collect the top 15 and 20 precursor ions of peptides and
succinylated peptides above a threshold ion count of 10,000
in the MS survey scan with 30.0 s and 15.0 s dynamic ex-
clusions, respectively. +e electrospray voltage applied was
2.1 kV. +e automatic gain control (AGC) was utilized to
prevent overfilling of the ion trap, and 50,000 ions were
accumulated for the generation of MS/MS spectra. +e
maximum injection time was set as 200ms and 100ms for
peptides and succinylated peptides, respectively.

+e acquired MS/MS data were processed and ana-
lyzed with the MaxQuant search engine (v.1.5.2.8).
Tandem mass spectra were searched against the UniProt
rat database (29,795 sequences) concatenated with pro-
tein sequences of common contaminants (such as he-
moglobin, keratin, and lactoglobulin) and a reverse decoy
database. Trypsin/P was specified as a cleavage enzyme
allowing up to two missing cleavages, as well as five
modifications per peptide. +e mass error was set as
20 ppm in the first search and 5 ppm in the main search
for precursor ions and 0.02 Da for fragment ions. Car-
bamidomethyl on cysteine was specified as a fixed
modification, whereas acetylation on the protein N-ter-
minal and oxidation on methionine were specified as
variable modifications. For succinylome analysis, succi-
nylation on lysine was also set as variable modifications.
+e false discovery rate (FDR) thresholds for the iden-
tification of PTM levels, peptides, and proteins were
adjusted to 0.01. +e minimum length of peptide was set
as 7 amino acid residues.

+e quantitative values of each sample in three replicates
were obtained by LFQ intensity. +e first step is to calculate
the differential concentration of the protein between the two
samples. First, calculate the average value of the quantitative
values of each sample in multiple replicates, and then,
calculate the ratio of the average values between the two
samples. +e ratio is used as the final quantitation. For
normalization to succinylated peptides, the naked intensities
of succinylated peptides were first measured and then were
divided by the corresponding protein intensities [30]. To
calculate the significant p value of differential concentration
between two samples, the relative quantitative values of each
sample were taken as log2 transform (so that the data
conform to the normal distribution), and p value was cal-
culated by the two-sample two-tailed t-test method. p val-
ue< 0.05 and protein ratio >1.5 were regarded as
upregulation. p value< 0.05 and protein ratio <1/1.5 were
regarded as downregulation.
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2.7. Bioinformatics Analysis. +e raw proteome and succi-
nylome mass spectrometric data have been deposited to the
ProteomeXchange (https://www.ebi.ac.uk/pride) with
identifier PXD012814. Gene ontology (GO) analyses were
derived from the UniProt-GOA database (http://www.ebi.
ac.uk/GOA/) and GO annotation (http://geneontology.org/)
to classify all identified proteins into three categories: bio-
logical process, cellular component, and molecular function.
A cutoff of absolute fold change ≥1.5 was employed to
identify the differentially expressed proteins. +e functional
pathways of all quantified proteins or succinylated proteins
were annotated by performing the Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysis (http://www.genome.
jp/kegg/). +e functional enrichment analyses were carried
out to reveal the differentially expressed proteins enriched in
all identified proteins and succinylated proteins. When
performing bioinformatics analysis, a two-tailed Fisher’s
exact test was performed, and a corrected p value< 0.05 was
considered significant. Protein-protein interactions were
analyzed by STRING (http://string-db.org/) using differ-
ential proteins and succinylated proteins with significant
abundance changes as input. +e required confidence score
was set as >0.700 for highly confident interactions. +e
results were visualized using the Cytoscape package.

2.8. Cell Culture and Reagents. +e human normal thyroid
epithelial cell line Nthy-ori3-1 (ECACC, Wiltshire, UK) was
cultured in RPMI-1640 (Gibco, +ermo Fisher Scientific,
Inc., Waltham, MA, USA) supplemented with 10% fetal
bovine serum (FBS; ExCell Bio, Shanghai, China), penicillin
(100 IU/ml), streptomycin (100 IU/ml), and L-glutamine
(2mM) at 37°C in a humidified atmosphere containing 5%
CO2.

For the measurement of mitochondrial functions,
briefly, palmitic acid (PA) from 50mM stock solution was
warmed and freshly diluted in 2.5mM BSA-PBS.+e diluted
PA solution was warmed to clear in a 55°C water bath. +en,
the solution of PA and nicotinamide (NAM) was added to
the cultures, respectively. Cells were divided into three
groups according to different treatments (the NC group, the
PA group, and the PA+NAM group).

For immunoprecipitation, cells divided into four groups
(the control group, the NAM group, the PA group, and the
NAM+PA group). NAM, PA, and NAM+PA groups were
treated with NAM, PA, and both NAM and PA, respectively.
All reagents were purchased from Sigma-Aldrich (Saint
Louis, USA) unless otherwise stated.

2.9. Measurement of Mitochondrial OCR. +e measurement
of OCR was performed using an XF96 Analyzer (Seahorse
Bioscience, USA) according to the manufacturer’s instruc-
tions. In brief, approximately 7×103 cells per well were
seeded onto the Seahorse XF96 cell culture microplate
(Seahorse Bioscience, USA) and cultured for 24 hours. After
the administration of PA (0.2mM) and NAM (10mM), the
cells were cultured for another 24 hours. +en, the micro-
plate was incubated in the low-buffered and non-
bicarbonated assay medium (XF base medium with 2mM

glutamine, 1mM sodium pyruvate, and 25mM glucose) in a
non-CO2 incubator at 37°C for 1 hours. +en, OCRs were
measured in an XFe 96 extracellular flux analyzer (Seahorse
Bioscience) for 3 periods with 3min of mixing in each cycle.
+e results were normalized to the corresponding total
protein concentration per well.

2.10. Immunoprecipitation. Cells were cultured for 24 hours.
After the administration of PA (0.2mM) and NAM
(10mM), the cells were cultured for another 24 hours. +en,
cells were washed three times with ice-cold PBS and lysed in
1ml ice-cold RIPA lysis buffer (50mM Tris, 150 nM NaCl,
1% sodium deoxycholate, 1% Triton-X-100, 1mM EDTA,
0.1% SDS, 10mM NaF, 1mM sodium orthovanadate, 1mM
PMSF, and 10mM NAM). Cells were scraped off from
plates, and cell lysates were centrifuged at 12,000 g for 15
minutes. Supernatants were collected, and protein con-
centration was measured by a BCA kit. 500 μg of total
protein was used for IP. Proteins were incubated with the
primary antibody overnight at 4°C with gentle rocking.
Immunocomplexes were immunoprecipitated using protein
A-agarose beads. +e immunoprecipitate was washed four
times with lysis buffer. Finally, each bead pellet was
resuspended in 20 μl of 2× reducing loading buffer (130mM
Tris pH 6.8, 4% SDS, 0.02% bromophenol blue, 20% glycerol,
and 100mM DTT) and boiled at 100°C for 5min. Samples
were stored at −80°C, followed by Western blotting.

2.11. Western Blotting. Equal amounts of protein from
different samples were subjected to 8% SDS-PAGE, followed
by electrotransfer from the gel to polyvinylidene difluoride
membranes (Millipore).+emembrane was blocked with 5%
(w/v) skim milk in TBST and incubated overnight at 4°C
with the pan antisuccinyl lysine antibody (1 :1000 dilution;
PTM Biolabs), anti-sirt5 antibody (1 :1000 dilution; CST),
and anti-GAPDH antibody (1 : 5000; Proteintech, 66009-1-
l g). Following the primary antibodies, the membranes were
incubated with the corresponding secondary antibodies at 1 :
5000 dilution for 1 h at room temperature. Immune com-
plexes were detected using an Amersham Imager 600
(General Electric Company). +e same membrane was
reincubated with anti-GAPDH antibodies. +e GAPDH
protein was used as a loading control for total proteins.

2.12. StatisticalMethods. Quantitative data were presented as
the mean± SEM and were processed using GraphPad Prism
6.0 (La Jolla, CA, USA) and SPSS version 22.0 (Chicago, IL,
USA). One-way ANOVA followed by Turkey’s post hoc test
was performed for multiple comparisons. A p value< 0.05
was considered significant when comparing HFD thyroid
samples with their corresponding CD thyroid samples.

3. Results

3.1. HFD-Induced Hypothyroxinemia. To observe the thy-
roid function, we measured serum TT4, FT4, and TSH. As
shown in Figure 1, the HFD group exhibited decreased
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concentration of TT4 (p< 0.01) and FT4 (p< 0.01) in parallel
with elevated concentration of TSH (p< 0.01). +ese results
indicate that the establishment of the hypothyroxinemia rat
model was successful.

3.2. General Characterization of the Quantitative Proteome in
Rat 8yroid Tissues. Label-free-based quantitative proteo-
mics was performed using HPLC fractionation and high-
resolution LC-MS/MS analysis. Pairwise Pearson’s corre-
lation coefficients displayed sufficient reproducibility of the
experiment (Supplementary Figure S1A in the Supple-
mentary Material for comprehensive image analysis). A
total of 3869 proteins were identified, among which 2982
proteins were quantitative (Supplementary Table S2).
Differentially expressed proteins were filtered with a fold-
change threshold >1.5 (p value <0.05) for upregulation and
a ratio < 1/1.5 (p value <0.05) for downregulation in the
thyroid of the rats with HFD relative to the control. A total
of 129 proteins were quantified as differentially expressed
proteins between the two groups, including 69 upregulated
and 60 downregulated proteins, which is exhibited by
volcano plot (Figure 2(a)). +en, these differentially
expressed proteins were annotated by performing intensive
bioinformatics analyses.

Comparing rat thyroid proteome data with Protein Atlas
Publica database, some hallmark proteins in the thyroid
tissue can be found in our detected results (Figure 2(b)). For
example, thyroglobulin (Tg) is the most abundant among all
proteins in MS detected, which acts as a substrate for the
synthesis of the thyroid hormones, thyroxine (T4) and
triiodothyronine (T3). +yroid peroxidase is also high level
expressed, which is involved in the pathway of thyroid
hormone biosynthesis. Other specific proteins such as
iodotyrosine deiodinase 1 and calcitonin gene-related
peptide 2 in Protein Atlas thyroid database exist in our
protein detected table too (Supplementary Table S2). All of
these proved our mass spectrum proteomics qualification,
and quantification is credible.

GO biological process and molecular function enrich-
ment analysis were performed to all quantified proteins. GO
biologic process enrichment analysis shows that the most
significant enrichment is metabolic process, including sin-
gle-organism metabolic process, small molecule metabolic
process, and organonitrogen compound metabolic process
(Figure 2(c)). For GO molecular function enrichment,
poly(A) RNA binding, protein binding, and cadherin
binding involved in cell-cell adhesion are top three GO
items.

3.3. Enrichment Analysis of the Differentially Expressed
Proteins. Enrichment analyses were performed to identify
GO terms, KEGG pathways, and domains that were sig-
nificantly enriched.

GO analyses were conducted to characterize the bio-
logical processes and molecular functions of the differen-
tially expressed proteins. As shown in Figures 3(a) and 3(b),
among cellular components, the expression of proteins lo-
calized to the ribosome and ribosome subunit increased,
while the expression of proteins localized to the mito-
chondrion and ATPase complex significantly decreased.
Among the molecular functions, the structural constituents
of ribosomes and the structural molecule activity were
upregulated, while the ATPase activity was downregulated.
In the biological process category, the upregulated proteins
were markedly enriched in several metabolic processes
(including peptide, cellular amide, and macromolecule
metabolism), biosynthetic processes (such as peptide, amide,
macromolecule, and organic substance biosynthesis), and
translation. In contrast, some downregulated proteins were
enriched in a number of metabolic processes including the
nitrogen cycle and sulfur metabolism.

+e KEGG pathway enrichment analyses were also
performed to further investigate the functions of these
differentially expressed proteins. Consistent with the results
of GO analyses, the results show that the ribosome pathway
was the most prominent enriched pathway for upregulated
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proteins (Figure 3(c)). Meanwhile, downregulated proteins
were observed to be enriched in the thyroid hormone sig-
naling pathway and thyroid hormone synthesis, indicating
that these pathways may play essential roles in the devel-
opment of hypothyroxinemia (Figure 3(d)).

3.4. General Characterization of Quantitative Succinylome in
Rat 8yroid Tissues. Label-free-based quantitative lysine
succinylome analysis was performed using antibody-based
affinity enrichment, followed by LC-MS/MS analysis. Al-
together, 685 succinylation sites in 250 proteins were
identified, among which 621 succinylation sites on 229
proteins were quantified and normalized to the proteome
data (Supplementary Table S3). With a quantification ratio
of >1.5 (p value< 0.05) as the upregulation threshold and
<1/1.5 (p value< 0.05) as the downregulation threshold, 172
succinylation sites corresponding to 104 proteins showed

different succinylation levels in three repeated experiments
(7 upregulated succinylated sites on 5 proteins, 165
downregulated succinylated sites on 99 proteins, and the
HFD group compared with the CD group), which is
exhibited by volcano plot (Figure 4(a)).+e average peptides
mass error was <10 ppm, indicating a high mass accuracy of
the MS data (Supplementary Figure S1B in the Supple-
mentary Material for comprehensive image analysis). +e
lengths of the most identified peptides were 8–20 amino acid
residues (Supplementary Figure S1C in the Supplementary
Material for comprehensive image analysis).

Compared with the CD group, most lysine succinylation
on different proteins undergo downregulated change in the
HFD group, moreover, these succinylated proteins are lo-
cated in mitochondria, including ATP synthase complex and
isocitrate dehydrogenase (IDH2). However, several lysine
sites succinylation are upregulated on thyroglobulin
(Figure 4(b)). GO biologic process enrichment analysis
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Figure 2: General characterization of the quantitative proteome. (a) Volcano plot illustrating significantly differential abundant proteins in
proteome analysis. +e −log10 (p value) is plotted against the log2 (ratio HFD/control). (b) Table illustrating the specific proteins in thyroid
detected. (c, d) GO biologic process andmolecular function enrichment analysis, respectively; bars length represents genes number and dots
indicate −log10 (p value) corresponding GO items.
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reveals that the tricarboxylic acid cycle, fatty acid beta-ox-
idation using acyl-CoA dehydrogenase, oxidation-reduction
process, fatty acid beta-oxidation, and lipid homeostasis are
top five significant GO items (Figure 4(c)). And, molecular
function enrichment analysis (Figure 4(d)) shows that fatty-
acyl-CoA binding and related metabolism are enriched
significantly.

3.5. Enrichment Analysis of the Differentially Changed Suc-
cinylated Proteins. As shown in Figures 5(a) and 5(b),
among cellular components, the downregulated succinylated
proteins mainly exhibited the tricarboxylic acid cycle (TCA
cycle) enzyme complex. +e most enriched molecular
function was the ligase activity. In the biological process

category, proteins related to the system process that
responded to the lipids were enriched among the upregu-
lated succinylated proteins, while proteins related to the
TCA metabolic process, cellular respiration, TCA cycle,
citrate metabolic process, energy derivation by oxidation of
organic compounds, and aerobic respiration were enriched
among the downregulated succinylated proteins.

+e KEGG pathway enrichment analysis indicated
that the citrate cycle (TCA cycle) was the most enriched
pathway among the downregulated succinylated proteins.
In addition, propanoate metabolism and pyruvate
metabolism related pathways were also enriched
(Figure 5(c)). Protein domain analysis revealed that the
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Figure 3: Enrichment analyses of the differentially expressed proteins: (a) upregulated and (b) downregulated proteins were examined by
the GO functional enrichment; (c) upregulated and (d) downregulated proteins were examined by the KEGG pathway analysis. Upregulated
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top two significantly enriched terms were biotin/lipoyl
attachment and single hybrid motif (Figure 5(d)).

3.6. Differential Proteins and Succinylated Proteins PPI
Analysis. To better understand the function of lysine suc-
cinylation and hypothyroidism pathology, the differential
proteins and succinylated proteins were subjected to a
protein-protein interaction (PPI) network analysis using the
STRING database (Vision 11.0). STRING defines a metric
called “confidence score” to define interaction confidence;
we fetched all interactions that had a confidence score ≥0.7
(high confidence). A network of protein-protein interactions
was generated and clustered with the Markov cluster (MCL)
algorithm [31], which was then visualized using the Cyto-
scape program (Vision 3.7).

Differential protein-protein net analysis reveals that
ribosome proteins interaction is highly clustered, and the
proteins of this PPI net cluster is characterized with
upregulated coexpression (Figure 6(a)). +e differential
succinylated proteins interacting net (Figure 6(b)) shows
three function clusters: the citrate cycle (TCA cycle), ATP
synthase complex, and valine, leucine, and isoleucine
degradation, and all of them are downregulated
succinylation.

3.7. Measurement of Mitochondrial OCR. To further inves-
tigate the role of fatty acids in mitochondrial function and to
avoid cofounding factors in vivo, OCR representing levels of
mitochondrial function were measured in normal human
thyroid epithelial cells. As shown in Figure 7, mitochondrial
OCRs related to basal respiration, ATP production, and
maximal respiration are markedly blunted by palmitic acid
exposure (all p< 0.05), and the changes were reversed when
the cells were treated with palmitic acid and desuccinylase
inhibitor together (all p< 0.05).

3.8. Verification of Protein Succinylation Levels. To deter-
mine the variation of protein succinylation in cell line, we
performed protein immunoprecipitation assays coupled
with Western blotting to detect isocitrate dehydrogenase 2
(IDH2) succinylation levels. IDH2 was known as a critical
enzyme in the tricarboxylic acid cycle. Nthy-ori3-1 cells were
treated with NAM or PA or both NAM and PA, respectively.
+e result showed that IDH2 was indeed succinylated, and
its succinylation was inhibited by PA treatment. Although
IDH2 succinylation did not show obvious change in re-
sponse to NAM, both PA and NAM treatment made IDH2
succinylation level recovered compared with PA treatment
(Figure 8).
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Figure 5: Enrichment analyses of the differentially changed succinylated proteins: (a) upregulated and (b) downregulated succinylated
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4. Discussion

In present study, a HFD-induced hypothyroxinemia rat
model was constructed according to our previous studies
[24, 25]. Excess intake of dietary fat induced significant
thyroid dysfunction and hypothyroxinemia in rats by de-
creasing the expression of thyroid hormone synthesis-re-
lated proteins, providing evidence for the correlation
between lipid profiles and organ function. +en, we
employed a quantitative proteomics strategy and LC-MS/
MS-based enrichment to investigate global protein and
succinylation profiles in thyroid tissues. We identified 129

differentially expressed proteins and 172 differentially
expressed succinylation sites, among which several proteins
and succinylation sites were localized in the mitochondria
and associated with mitochondrial function. To confirm the
alterations in mitochondrial respiratory activities, OCR was
further employed to verify the LC-MS/MS results.

+e proteome data demonstrated changes in the met-
abolic processes in the HFD-induced hypothyroxinemia rat
model. Benard et al. presented a proteome-wide study in
HFD-fed mice and detected that fifty-four percent of those
differentially expressed proteins were involved in metabolic
processes [32]. In addition, Yang et al. revealed that the
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Figure 7: Human normal thyroid epithelial cells were isolated and cultured. +e cells were treated with and without palmitic acid (PA) in
the presence and absence of a desuccinylation inhibitor (NAM) for 24 hours, respectively. Mitochondrial OCRs were measured using the
Seahorse XF96 analyzer (mean± SEM, n� 7–8). OCRs related to the mitochondrial basal respiration, ATP production, maximal respiration,
and spare capacity were analyzed and normalized to the corresponding total protein concentration per well, respectively, (ns p> 0.05,
∗p< 0.05, ∗∗p< 0.01). Each datum was obtained from independent three days. One-way ANOVA followed by Turkey’s post hoc test was
performed for multiple comparisons.
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Figure 8: Human normal thyroid epithelial cells were isolated and cultured. +e cells were treated with and without palmitic acid (PA) in
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metabolic pathways of differentially expressed proteins were
possibly related to the HFD-induced decline in male rats’
fertility [33]. Furthermore, Tu et al. found that the protein
expression levels of intracranial and extracranial athero-
sclerosis in HFD-fed rabbits were different, which facilitated
the diagnosis and treatment of cerebral arteriosclerosis [34].
+ese proteomics studies provided molecular understand-
ings of HFD-induced pathology and identified potential
targets for the development of therapeutics for metabolic
syndromes. +us, we theorize that HFD may play an im-
portant role in the formation of hypothyroidism [35, 36].

Recent studies have focused on protein PTMs to identify
the potential mechanisms of several diseases. Various types
of PTMs such as phosphorylation, lysine acetylation,
ubiquitination, propionylation, crotonylation, and succi-
nylation have been discovered with the development of mass
spectrometry technology [7, 12, 37]. Particularly, the role of
PTMs in regulating cellular energy metabolism has been
demonstrated. To investigate which PTM played a role in
hypothyroxinemia, we detected four types of lysine acyla-
tions by western blotting, including succinylation, croto-
nylation, 2-hydroxybutyrylaion, and malonylation. A
significant change in lysine succinylation was observed in
the HFD group relative to the control group. Lysine suc-
cinylation, as a newly identified PTM in proteins, is wide-
spread in diverse organisms and impacts various metabolic
pathways [38–41]. +us, we investigated the quantitative
protein succinylome in the HFD-induced hypothyroxinemia
rat model, with the goal of exploring the possible role of
lysine succinylation in HFD-induced hypothyroxinemia.

At the succinylome level, our data indicated a close
relationship between lysine succinylation andmitochondria-
mediated metabolic regulation. As we all know, mito-
chondria participate in the metabolism of amino acids,
lipids, cholesterol, steroids, and nucleotides. Perhaps, most
importantly, mitochondria play a fundamental role in cel-
lular energy metabolism (including the fatty acid β-oxida-
tion and the respiratory chain), which is essential to diverse
cellular functions and developmental processes [35, 36].
Recent protein succinylome studies in human renal cell
carcinoma tissues have shown that the glycolysis pathway
might be regulated through lysine succinylation and play a
potential role in renal cell carcinoma progression [42].
Additionally, Song et al. identified that the TCA cycle and
pentose phosphate pathway were potential mechanisms of
the energy metabolism in human gastric cancer, which
might be regulated through lysine succinylation in their core
enzymes [43]. Furthermore, it is well known that thyroid
hormone participates in energy regulation and metabolic
processes, and the loss of thyroid hormone homeostasis is
highly associated with various thyroid dysfunctions in-
cluding hypothyroidism and hyperthyroidism [44, 45].+us,
lysine succinylation may play a vital role in mitochondrial
function and energy metabolism in the HFD-induced
hypothyroxinemia rat model [38–41].

Fatty acids, as the major components of triglycerides,
were found in increased contents in thyroid tissues of the
HFD-induced rat model in previous studies. To further
investigate the role of fatty acids in the mitochondrial

function and to avoid cofounding factors in vivo, fatty acids
were used to treat normal human thyroid epithelial cells,
thus decreasing the succinylation level. Mitochondrial
functions were then investigated in vitro in the present study.
Palmitic acid, as the most common saturated fatty acid in
animals, plants, and microorganisms, was applied. Nico-
tinamide (NAM), as an inhibitor of SIRT5, which has been
reported to catalyze the removal of succinylation [46–48],
was then treated to palmitic acid-stimulated cells to inhibit
the desuccinylase activity of sirtuins. Mitochondrial OCR
was then used to examine the mitochondrial function of
normal human thyroid epithelial cells with altered succi-
nylation levels. +e results in vitro were in accordance with
the results in vivo, further suggesting that fatty acids might
directly influence energy metabolism and play an important
role in the formation of hypothyroidism.

To the best of our knowledge, the present study is the first
to investigate the succinylome in an HFD-induced hypo-
thyroxinemia rat model. Succinylation level shows signifi-
cant downregulation in many important proteins, mainly
localized in mitochondria. We suppose that the significant
succinylation downregulated mitochondrial ATP synthase
complex, and mitochondrial IDH2 protein is more likely to
accompany with the depressed tricarboxylic acid cycle ac-
tivity because succinylation depends on intracellular suc-
cinyl-CoA levels, and succinyl-CoA can be generated from
the TCA cycle, lipids, and amino acid metabolism, for
succinylation can occur by a nonenzymatic chemical
reaction.

5. Conclusions

+is research reveals significant downregulated lysine suc-
cinylated proteins mainly localized in mitochondria and co-
occur with the depressed mitochondria activity in the HFD-
induced hypothyroxinemia rat model. +ese results expand
our understanding of the underlying mechanism of hypo-
thyroidism progression and provide new avenues of ex-
ploration with regard to potential treatment strategies for
hypothyroidism.
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