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Abstract: Scientists want to comprehend and control complex systems. Their success depends on
the ability to face also the challenges of the corresponding computational complexity. A promising
research line is artificial intelligence (AI). In AI, fuzzy logic plays a significant role because it is a
suitable model of the human capability to compute with words, which is relevant when we make
decisions in complex situations. The concept of fuzzy set pervades the natural information systems
(NISs), such as living cells, the immune and the nervous systems. This paper describes the fuzziness
of the NISs, in particular of the human nervous system. Moreover, it traces three pathways to process
fuzzy logic by molecules and their assemblies. The fuzziness of the molecular world is useful for the
development of the chemical artificial intelligence (CAI). CAI will help to face the challenges that
regard both the natural and the computational complexity.

Keywords: fuzzy logic; complexity; chemical artificial intelligence; human nervous system; fuzzy
proteins; conformations; photochromic compounds; qubit

1. Introduction

The scientific method, officially born in the seventieth century with the contributions of Galileo
Galilei and Isaac Newton, has allowed humanity to become acquainted with the natural phenomena
as never before. The acquisition of new scientific knowledge has also promoted an outstanding
technological development in the last three hundred years or so. A mutual positive feedback
relationship subsists between science and technology. To date amazing scientific and technological
achievements have been reached. For example, we can explore the regions of the universe that are
1026 m far apart from us. At the same time, we can detect subatomic particles that have radii of the
order of 10−15 m. We can record microscopic phenomena that occur in 10−18 s, but we can also retrieve
traces of cosmic events happened billions of years ago. Our technology allows us to send robots to
other planets of our solar system (e.g., the NASA Spirit rover on Mars), manipulate atoms and interfere
with the expression of genes in living beings. Despite many efforts, there are still challenges that must
be won. For instance, (I) we cannot predict catastrophic events on Earth (such as earthquakes and
volcanic eruptions); (II) we strive to avoid the climate change; (III) we would like to exploit the energy
and food resources without deteriorating the natural ecosystems and their biodiversity; (IV) there are
diseases that are still incurable; (V) we would like to eradicate the poverty in the world; (VI) we make
efforts to avoid or at least predict both economic and political crisis. Whenever we try to address such
challenges, we experience frustrating insurmountable obstacles. Why? Because whenever we cope
with one of them, we deal with a complex system. A complex system is one whose science is unable to
give a complete and accurate description. In other words, scientists find difficulties in rationalizing and
predicting the behaviors of complex systems. Examples of complex systems are the geology and the
climate of the Earth; the ecosystems; each living being, in particular humans, giving rise to economic
and social organizations, which are other examples of complex systems. The description of complex
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systems requires the collection, manipulation, and storage of big data [1], and the solution of problems
of computational complexity. The description of complex systems from their ultimate constituents,
i.e., atoms, is beyond our reach since the computational cost grows exponentially with the number of
particles [2]. Moreover, many complex systems exhibit variable patterns. These variable patterns are
objects (both inanimate and animate) or events whose recognition is made difficult by their multiple
features, variability, and extreme sensitivity on the context. We still lack universally valid and effective
algorithms for recognizing variable patterns [3]. Therefore, the obvious question is: How can we try to
tackle the challenges regarding complex systems which involve issues of computational complexity?
There are two principal strategies [4,5]. One consists in improving current electronic computers to
make them faster and faster, and with increasingly large memory space. The other strategy is the
interdisciplinary research line of natural computing. Researchers working on natural computing
draw inspiration from Nature to propose: (I) new algorithms, (II) new materials and architecture for
computing, and (III) new models to interpret complex systems. The sources of inspiration are the
natural information systems, such as (a) the cells (i.e., the biomolecular information systems or BIS),
(b) the nervous system (i.e., the neural information systems or NIS), (c) the immune system (i.e., the
immune information systems or IIS), and (d) the societies (i.e., the societal information systems or SIS).
Alternatively, we may exploit any causal event, involving inanimate matter, to make computation. In
fact, in a causal event, the causes are the inputs and the effects are the outputs of a computation whose
algorithm is defined by the laws governing the transformation (see Figure 1).
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Figure 1. The contribution of the natural computing in coping with the challenges of the computational
and natural complexity.

Among the natural information systems, the attention of many scientists worldwide is focused
on the human nervous system that has human intelligence as its emergent property. The imitation
of human intelligence is having a revolutionary impact in science, medicine, economy, security and
well-being [6]. In fact, conventional quantitative techniques of system analysis are intrinsically unsuited
for dealing with biological, social, economic, and any other type of system in which it is the behavior
of the animate constituents that plays a dominant role. For such “humanistic systems”, the principle
of incompatibility holds [7]: as the complexity of a system increases, our ability to make accurate
and yet significant statements about its behavior diminishes until a threshold is reached beyond
which accuracy and significance (or relevance) become almost mutually exclusive characteristics. An
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alternative approach is based on the human intelligence that has the remarkable power of handling
both accurate and vague information. Information is vague when it is based on sensory perceptions.
Vague information is coded through the words of our natural languages. Therefore, humans compute
by using not only numbers but also and especially words. We have the remarkable capability to
reason, speak, discuss and make rational decisions without any quantitative measurement and any
numerical computation, in an environment of uncertainty, partiality, and relativity of truth. Moreover,
we recognize quite easily variable patterns, such as human faces and voices. Therefore, a major
challenge of the artificial intelligence research line is the comprehension and implementation of the
capabilities of the human intelligence to compute with words [8]. The use of classical, Aristotelian,
divalent logic implemented in electronic circuits and computers has allowed reproducing and even
overcoming the human ability to compute with numbers. The imitation of human ability to compute
with words is still challenging. Fuzzy logic is a good model. In fact, fuzzy logic has been defined
as a rigorous logic of the vague and approximate reasoning [9]. In this paper, after describing the
principal features of fuzzy logic, it is demonstrated that one reason why fuzzy logic is a valid model
of the human power to compute with words can be found at the molecular level. Therefore, we
propose the use of molecular, supramolecular, and chemical systems as an innovative strategy for
implementing fuzzy logic. This article wants to pursue the idea of developing a chemical artificial
intelligence [10], i.e., an artificial intelligence that is based not on electronic circuits and software,
but on chemical reactions in a wetware. Probably, the chemical artificial intelligence will promote
the design of a new generation of computational machines, more similar to the brain rather than to
the electronic computers. These new brain-like “chemical computers” should help to cope with the
challenges regarding the complex systems, aforementioned in this Introduction.

2. Some Features of Fuzzy Logic

Fuzzy logic is based on the theory of fuzzy sets proposed by the engineer Lotfi Zadeh in 1965 [11].
A fuzzy set is different from a classical Boolean set. A classical set, also named as a crisp set, is a
container that wholly includes or wholly excludes any given element. The theory of classical sets is
based on the Law of Excluded Middle formulated by Aristotle in the fourth century BC. The Law of
Excluded Middle states that an element x belongs to either set S or to its complement, i.e., set not-S.
Zadeh proposed a refinement of the theory of the classical sets. In fact, a fuzzy set is more than a
classical set: it can wholly include or wholly exclude elements, but it can also partially include and
exclude other elements. The theory of fuzzy sets breaks the Law of Excluded Middle because an
element x may belong to both set S and its complement not-S. An element x may belong to any set, but
with different degrees of membership. The degree of membership (µ) of an element to a fuzzy set can
be any real number included between 0 and 1. If µ = 0, the element does not belong at all to the set; if
µ = 1, it completely belongs to the set; if 0 < µ < 1, the element belongs partially to the set. The Law of
Excluded Middle is the foundation of the binary logic. In binary logic any variable is partitioned in
two classical sets after fixing a threshold value: one set includes all the values below the threshold,
whereas the other one contains those above. In the case of a positive logic convention, all the values
of the first set become the binary 0, whereas those of the other set become the binary 1. The shape
of a classical set is like that shown in Figure 2A. The degree of membership function for such a set
discontinuously changes from 0 (below the threshold) to 1 (above the threshold). On the other hand,
fuzzy sets can have different shapes. They can be sigmoidal, triangular, trapezoidal, Gaussian (see
Figure 2), to cite a few. For a fuzzy set, the degree of membership function (µ) changes from 0 to 1. µ is
the fuzzy unit of information, called “fit”. It derives that fuzzy logic is an infinite-valued logic.
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Fuzzy logic can be used to describe any non-linear cause and effect relationship by building
a fuzzy logic system (FLS). The construction of an FLS requires three fundamental steps. First, the
granulation of all the variables in fuzzy sets. The number, position, and shape of the fuzzy sets are
context-dependent. Second, the graduation of all the variables. A word, often an adjective, labels
every fuzzy set. Third, the relationships between input and output fuzzy sets are described through
syllogistic statements of the type “IF . . . , THEN . . . .”, called fuzzy rules. The “IF . . . ” part is the
antecedent and involves the linguistic labels chosen for the input fuzzy sets. The “THEN . . . ” part is
the consequent and involves the linguistic labels chosen for the output fuzzy sets.

When we have multiple inputs, these are connected through the AND, OR, NOT operators [12].
AND corresponds to the intersection (e.g., the intersection of two fuzzy sets, whose membership
functions are µS1 and µS2 , can be µS1∩S2 = min

[
µS1 , µS2

]
or µS1∩S2 = µS1 × µS2); OR corresponds

to the union (e.g., the union of the two sets S1 and S2 can be µS1∪S2 = max
[
µS1 , µS2

]
or µS1∪S2 =

µS1 + µS2 − µS1 × µS2); NOT corresponds to the complement (e.g., the membership function for the
Fuzzy complement of S is µS = 1− µs). Fuzzy rules may be provided by experts or can be extracted
from numerical data. After the granulation, the graduation of all the input and output variables, and
the formulation of the fuzzy rules, we have a FLS that is a predictive tool or a decision support system
for the particular phenomenon it describes. The way an FLS works is schematically depicted through
an example in Figure 3.
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The information flows along the path traced by the arrows. First, the two crisp inputs are
transformed in degrees of membership to the input fuzzy sets. This step is the so-called fuzzification
process. It turns on all the fuzzy rules that involve the input Fuzzy sets “activated” by the crisp inputs.
Second, the logic operators (AND, OR in Figure 3) combine the degrees of membership of the input
fuzzy sets belonging to the two input variables. Third, the fuzzy implication method transforms the
output fuzzy sets of each activated fuzzy rule through either the minimum or the product operator (in
Figure 3, the minimum operator is used). Fourth, the activated output fuzzy sets are in turn aggregated
through the maximum operator. Finally, the defuzzification procedure coverts the output Fuzzy sets in
a crisp output value. The defuzzification method can be “the mean of the maxima”, “the centroid”,
and others (for more information, see the tutorial by Mendel [12]). In a control-system application,
the crisp output corresponds to a control action. In a signal processing application, such a number
corresponds to a forecast or the location of a target. Fuzzy logic systems with adaptive capabilities
are also used to predict chaotic time series [13,14]. The Fuzzy logic rules work as patches covering
the chaotic attractors in their phase space. The rules are established through a learning procedure
requiring a training data set.

The simulation and analysis of the dynamics of complex systems can be accomplished by the
fuzzy cognitive maps (FCMs) [15]. The FCMs are an extension of the cognitive maps introduced by
Axelrod [16]. An FCM is a graph, which consists of nodes and edges. The nodes represent concepts
relevant to a given complex system, and edges represent the causal relationships among the nodes.
Each edge is associated with a number that determines the degree of causal relation. The strengths
of the relationships are usually normalized to the [−1, +1] range. Value of −1 is full negative, +1
full positive, and 0 denotes no causal effect. The structure of an FCM is represented by a square
matrix, called connection matrix, which reports all the weight values for edges between corresponding
concepts represented by rows and columns. A complex system with n nodes will be represented by
n × n connection matrix. The prediction of the evolution of a complex system is carried out after
assigning (I) a vector of initial values to the states of the nodes and (II) a function that transforms
the product of the connection matrix with the vector of the initial values into a vector representing
the values of the nodes at an instant later. The transformation function can be discrete (such as the
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Heaviside function) or continuous (such as the logistic function). In the case of discrete functions, the
complex systems can evolve into an attractor constituted by a stable node or limit cycle. In the case of
continuous functions, even strange attractor can emerge [17].

Both fuzzy logic systems and fuzzy cognitive maps can be built either by human experts or
automatically through learning algorithms. It may happen that the membership functions of the fuzzy
sets are not certain but have definite degrees of uncertainty. For these cases, Zadeh introduced [18] the
concept of type-2 fuzzy sets that is an extension of the concept of an ordinary fuzzy set, i.e., a type-1
fuzzy set. Type-2 fuzzy sets have grades of membership that are themselves fuzzy. At each value of
the primary variable x, the membership is a function and not just a point value: it is the secondary
membership function (w). The domain of w is in the interval [0, 1] and its range is also in [0, 1]
(see Figure 4). Therefore, the membership function of a type-2 fuzzy set is three-dimensional [19]. If
projected on a plane, it gives rise to the footprint of uncertainty, which is bound by a lower membership
function (LB) and an upper membership function (UB). In Figure 4, LB and UB are represented as
continuous black lines. The footprint of uncertainty embeds the type-1 fuzzy set delimited by dashed
lines. Type-2 fuzzy sets find many applications in intelligent control, pattern recognition, intelligent
manufacturing, time series prediction, and other fields [20].Molecules 2018, 23 x  6 of 17 
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3. Fuzzy Logic and the Human Nervous System

Fuzzy logic is a valid model of the human capability to compute with words because there are
structural and functional analogies between the human nervous system (HNS) and a Fuzzy logic
system [21,22]. The HNS is a complex network of billions of nerve cells distributed throughout
our organism [23]. It monitors the environment and our body, and it masters our behavior after
collecting information, processing it, taking decisions. The HNS comprises three elements: (I) the
sensory system; (II) the central nervous system; (III) the effectors’ system. The sensory system catches
physical and chemical signals and transduces them in electrochemical information that is sent to the
brain. Into the brain, information is integrated, stored and processed. The outputs of the cerebral
computations are electro-chemical commands sent to the components of the effectors’ system, i.e.,
glands and muscles. Our sensory system encompasses eight sensory subsystems: a visual system to
detect light; an olfactory and a gustatory system to probe chemicals in the air we breathe and in what
we uptake through our mouth, respectively; an auditory, tactile, and proprioceptive system provided
with mechanoreceptors that perceive either steady or vibrating or instantaneous mechanical forces;
thermoreceptors to distinguish cold from warm stimuli; nociceptors to alert our body in the presence
of noxious situations. Each sensory subsystem has a hierarchical structure. At the lowest level, there is
a collection of receptor proteins. At an upper level, there are receptor cells that contain several replicas
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of the receptor molecules. We have many copies of the receptor cells properly distributed in space,
often covering a tissue. The tissue may be located in an organ provided with an accessory structure
that conveys the stimuli to the receptor cells. Every sensory subsystem encodes four aspects of a
stimulus: its modality (M), intensity (IM), spatial distribution (IM(x, y, z)), and time evolution (IM(t)).
This multiple information is encoded hierarchically. In fact, the modality is encoded at the molecular
level. The ensemble of the molecular receptors of a specific sensory subsystem works as a collection of
molecular fuzzy sets: they granulate the modality of the kind of stimulus they sense. Signals that are
perceived by the same sensory subsystem but have distinct modalities belong to the collection of the
molecular fuzzy sets at different degrees. In other words, the modality of the signals is encoded as
fuzzy information at the molecular level through the molecular Fuzzy sets that work in parallel.

An example is shown in Figure 5. It regards our visual system. The modality is the spectral
composition of the light. We have three types of photoreceptor proteins, labeled as “Blue”, “Green”,
and “Red”, respectively. They allow us to distinguish colors. Their absorption spectra granulate the
visible spectral region in three molecular fuzzy sets. Each band is due to the vibrational energies of the
lowest excited π∗ state of the retinal chromophore. Light beams having distinct spectral compositions
belong to the three molecular fuzzy sets at different degrees (in Figure 5, the memberships of a green
and a red light are depicted).Molecules 2018, 23 x  7 of 17 
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Figure 5. Absorption spectra of the “Blue”, “Green”, and “Red” photoreceptors that partition the
visible spectral region in three fuzzy sets. Beams having different colors belong to the three molecular
Fuzzy sets at different degrees. The degrees of membership of one pure green and one pure red beam
to three Fuzzy sets are shown (see the arrows).

In living cells, when a stimulus actively interplays with a molecular receptor that is a protein,
it promotes its structural change. Within cells, there are several copies of the molecular sensors
(see Figure 6A). The number of molecular receptors that are activated in a cell depends on the
intensity of the stimulus. Each cell plays like a cellular fuzzy set, and the degree of membership of
a stimulus to a cellular fuzzy set encodes the intensity of the stimulus. The molecular structural
modifications induced by the stimulus trigger intracellular cascade reactions, finally modifying
the electrochemical permeability of the receptor cells membranes. The extent of the change in the
electrochemical permeability depends on how many molecular receptors have changed their structure
and hence on the intensity of the stimuli. The receptor cells produce graded potentials that are analog
signals. The information of such signals is usually converted in the firing rate of the action potential
trains. Often, the action potentials are produced by an architecture of afferent neurons that integrate
the information regarding the spatial distribution of the stimuli (see Figure 6B). In fact, every afferent
neuron has a receptive field that works as a fuzzy set encompassing specific receptor cells. For instance,
in the visual subsystem, the photoreceptor cells are granulated by the bipolar cells. Light shining on
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the center of a bipolar cell’s receptive field and light shining on its surround produce opposite changes
in the cell’s membrane potential. The purpose of the bipolar fuzzy sets is to improve the contrast and
definition of the visual stimuli. The center-surround structure of the receptive fields of the bipolar cells
is transmitted to the ganglion cells. The accentuation of contrasts by the center-surround receptive
fields of the bipolar cells is thereby preserved and passed on to the ganglion cells. The presence of
overlapping receptive fields (like overlapping fuzzy sets) allows processing the information of a light
stimulus in parallel and increasing the acuity by highlighting the contrasts in space and time. The
action potentials generated by the afferent neurons are the ideal code for sending the information up
to the brain. In the cerebral cortex, there are areas having different intrinsic rhythms [24–26]. They
form a neural dynamic space partitioned in overlapped cortical fuzzy compartments (see Figure 6C).
Such cortical fuzzy sets are activated at different degrees by separate attributes of the perceptions and
produce a meaningful experience of the external and internal worlds.Molecules 2018, 23 x  8 of 17 
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Figure 6. Scheme of the action of a sensory subsystem made of three principal elements described as
three collections of fuzzy sets. First, the sensory cellular Fuzzy sets (A) that encode the information of a
signal as graded potentials. Second, the afferent neurons (B) whose receptive fields are fuzzy sets: they
encode the information as firing rates of the action potential trains. Third, the cortical areas (C) that are
partitioned in different dynamic regimes giving rise to an infrastructure of fuzzy sets encoding distinct
syntactic and semantic attributes of the original signals.

Based on this description, it might seem that sensory perception is objective, universal,
reproducible, and deterministic. However, this is not the case. In fact, sensory perception depends on
the physiological state of the perceiver, his/her past experiences, and each sensory system is unique
and not universal. Moreover, every human brain must deal with the uncertainty in the perception.
Under uncertainty, an efficient way of performing tasks is to represent knowledge with probability
distributions and acquire new knowledge by following the rules of the probabilistic inference [27,28].
Therefore, it is reasonable to assume that the human brain performs probabilistic reasoning, and the
human perception can be described as a subjective process of Bayesian probabilistic inference [29,30].
In fact, the frequentist probability can be used only in the case of a large number of trials. According
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to the Bayesian probabilistic inference, the perception of a signal IM(x, y, z, t) by cortical cells CCM is
given by the “posterior probability” p(IM|CCM) :

p(IM|CCM) =
p(CCM|IM)p(IM)

p(CCM)
, (1)

In (1), p(CCM|IM) is the “likelihood”, p(IM) is the “prior probability”, and p(CCM) is the
“plausibility”. The plausibility is only a normalization factor. In agreement with the theory of Bayesian
probabilistic inference generalized in fuzzy context [31], the likelihood may be identified with the
hierarchical and deterministic fuzzy information described previously in this paragraph (see also
Figure 7). The prior probability p(IM) comes from the knowledge of the regularities of the signals and
represents the influence of the brain on human perception. In fact, human perception is a trade-off
between the likelihood and the prior probability [32]. If the likelihood represents the deterministic and
objective part of the human perception, on the other hand, the prior probability represents its subjective
contribution. The noisier and ambiguous are the features of a signal, the more prior probability driven
will be the perception, and the less reproducible and universal will be the sensation.
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Figure 7. Hierarchical mechanism of encoding the information of a stimulus.

Sometimes, we receive multimodal signals that interact with more than one sensory subsystem.
Each activated sensory subsystem produces its own mono-sensory fuzzy information. Physiological
and behavioral experiments have shown that the brain integrates the mono-sensory perceptions to
generate the final sensation [33]. Multisensory processing pieces signals of different modality if stimuli
fall on the same or adjacent receptive fields (according to the “spatial rule”) and within close temporal
proximity (according to the “temporal rule”). Since sensory modalities are not equally reliable, and
their reliability can change with context, multisensory integration involves statistical issues, and it
is often assumed to be a Bayesian probabilistic inference [34]. Clearly, the experience of the world is
influenced by the past perceptive events, stored in the memory presumably under the shape of fuzzy
rules. These stored events and rules confer to the humans the remarkable power of making decisions
in complex situations and recognizing variable patterns.

4. The Methodologies to Implement Fuzzy Sets and Process Fuzzy Logic at the Molecular Level

Fuzzy logic is routinely implemented in digital electronic circuits. However, the best
accomplishments of FLSs have been achieved through analog electronic circuits. Whereas the digital
circuits are based on electrical signals that vary steeply in sigmoid manner, the analog circuits are
based on signals that vary smoothly in hyperbolic or linear manner. The analog circuits guarantee the
best implementations of an infinite-valued logic that is fuzzy logic.
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In the recent years, fuzzy logic has been implemented by using even molecules and chemical
reactions. Three principal strategies can be outlined:

The first strategy is an imitation of the sensory subsystems described in the previous paragraph.
In every sensory subsystem, there is a collection of distinct sensory cells that works as an ensemble
of cellular fuzzy sets embedding molecular fuzzy sets. The cellular fuzzy sets work in parallel. The
information of a stimulus is encoded as a vector of degrees of membership of the stimulus to the
cellular fuzzy sets. This strategy will be called the “fuzzy parallelism” approach.

The second strategy is an imitation of how the proteins work in the immune and the biomolecular
information systems. Almost every protein is a fuzzy set because it exists as an ensemble of many
conformers that have context-dependent dynamic behavior. The macromolecular conformers are
adaptable and subjected to the laws of the natural selection. They are the “words” of the cellular
language. The imitation of the proteins of the cells and the immune system allows to implement the
so-called “conformational fuzziness” strategy.

Finally, the third strategy derives from the fuzziness of the quantum world and it will be called
“quantum fuzziness”. When superimposed quantum states undergo decoherent phenomena, it is
possible to exploit heaps of molecules to process fuzzy logic through macroscopic, smooth, analog
input and output variables.

Examples of the three strategies are described in the following three subparagraphs.

4.1. The “Fuzzy Parallelism” Approach

In Section 3, we have discovered that the absorption bands of the three photoreceptor proteins
present on the fovea of the retina play as three molecular fuzzy sets. Lights that differ in their spectral
compositions belong to the three bands at distinct degrees, and they are perceived as different colors.
Moreover, the millions of replicas of the three photoreceptor proteins within each photoreceptor cell
allow determining the intensity of the signals at every wavelength. The imitation of the way we
distinguish colors has allowed the design and implementation of chemical systems that extend human
vision to the UV [35,36]. Such chemical systems are based on direct thermally reversible photochromic
compounds. A thermally reversible photochromic compound is a species that in the absence of any
radiation, it exists in a structure (i.e., A in Figure 8) that absorbs just in the UV and it is uncolored.
Upon UV, it transforms in B that also absorbs in the visible region. When B is formed, the system
becomes colored (see Figure 8). The transformation of A into B is thermally reversible. In other
words, if we discontinue the UV irradiation, the color bleaches because the B molecules transform
back to the original structure A, spontaneously at room temperature. Mixtures of properly chosen
direct thermally reversible photochromic compounds extend the human capability of distinguishing
electromagnetic spectra to the UV region. Such mixtures, called biologically inspired photochromic
fuzzy logic (BIPFUL) systems, are designed by the following procedure. First, the absorption bands
of the uncolored forms, Ai, are assumed to be input fuzzy sets. Second, the absorption bands of the
colored forms, Bi, are assumed to be output fuzzy sets. Third, the algorithm expressing the degree of
membership of the UV radiation, having intensity I0(λirr) at the wavelength λirr, to the absorption
band of the Ai compound is:

µUV,Ai = ΦPC,Ai (λirr)I0(irr)
(

1− 10−εAi
C0,i l

)
, (2)
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In Equation (2), ΦPC,Ai (λirr) is the photochemical quantum yield of photo-coloration for Ai, εAi is
the absorption coefficient at irr for the Ai photochromic species, and C0,i is its analytical concentration.
Finally, the equation expressing the activation of the Bi output fuzzy sets is:

ABi =
εBi (λan)

k∆,i
µUV,Ai . (3)

In Equation (3), ABi is the absorbance at the wavelength λan into the visible and due to the
coloured form of the i-th photochromic species; εBi (λan) is its absorption coefficient, and k∆,i is
the kinetic constant of the bleaching reaction for Bi. Each absorption spectrum recorded at the
photo-stationary state will be the sum of as many terms represented by equation (3) as there are
photochromic components within the BIPFUL system. The BIPFUL systems that have been devised
are made of naphthopyrans and spiroxazines, and they allow to discriminate the three regions of the
UV spectrum, i.e., UV-A, UV-A, UV-B, and UV-C.

The imitation of all the other sensory subsystems, conceived as hierarchical fuzzy systems where
a collection of distinct molecular and cellular fuzzy sets work in parallel (see Section 3), should allow
to devise artificial sensory systems that have the power of extracting the essential features of stimuli
and recognizing variable patterns.

4.2. “Conformational Fuzziness”

Within every living cell, there are many proteins that work as if they were the neurons of the
“cellular nervous system”. They participate in the signaling and genetic networks and allow the cell
to respond to the ever-changing environmental conditions. Specific proteins, called antibodies, are
also the fundamental ingredients of the immune system that protects our bodies from intruders. A
limited set of flexible antibodies can bind a wide range of antigens. Proteins are ubiquitous in living
beings and they play multiple roles, due to their “dynamism and evolvability” [37]. In fact, proteins
are conformationally dynamic and exhibit functional promiscuity. Conformational dynamism and
heterogeneity enable context-specific functions to emerge in response to changing environmental
conditions and, furthermore, allow a single structural motif to be used in multiple settings [38]. The
conformational flexibility and heterogeneity of proteins represent their fuzziness.

Conformational fuzziness is not a prerogative feature of proteins. Even the long polymer of
chromatin in the nucleus of eukaryotic cells is Fuzzy. Some portions contain heterochromatin made
of DNA packed tightly around histones. Some other areas contain euchromatin that is DNA loosely
packed. Usually, genes in euchromatin are active, whereas those in heterochromatin are inactive.
Euchromatin exposes a broader and rougher surface to the proteins scanning for their target sequences.
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Heterochromatin is flatter, smoother, and with a less extended surface [39]. Chromatin organization is
highly dynamic, varying both during the cell cycle and among different cell types [40].

Conformational fuzziness is not unique to macromolecules, but it can be experienced even with
simple molecules. An example is the fuzziness of the merocyanine (MC) that is generated by UV
irradiation of the spirooxazine (SpO) shown in Figure 9 [41]. Since MC has a flexible molecular skeleton,
it gives rise to many conformers. The number and type of conformers depend on the physical and
chemical context (for example, temperature, solvent, and the presence of a docking glycine).
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Whatever the compound is, being either a macromolecule or a molecule, the ensemble of its
conformers plays like a molecular Fuzzy set. Its fuzziness may be quantified by determining its fuzzy
entropy. A definition of fuzzy entropy based on Shannon’s function of information entropy is [42,43]:

H = −K
n

∑
i=1

(µi log10(µi) + (1− µi) log10(1− µi)), (4)

where µi is the relative weight of the i-th conformer, n is the total number of conformers, and K = (1/n)
is a normalization factor. The fuzzy entropy of a compound is context-dependent, like the meaning of
a word in natural language. In fact, conformationally heterogeneous structures are adaptable to many
different contexts. Of course, the fuzzy entropy of a macromolecule is significantly larger than that of a
simple molecule. Among proteins, those completely or partially disordered [44] are the fuzziest. Their
pronounced fuzziness makes them multifunctional and even able to moonlight [45], i.e., play distinct
functions, depending on their context.

4.3. “Quantum Fuzziness”

Isolated microscopic systems exist in a superposition of states. For instance, if there are two
accessible states, indicated as |0〉 and |1〉, the isolated microscopic system exists in a quantum state |Ψ〉
that is a linear combination of |0〉 and |1〉:

|Ψ〉= a|0〉+b|1〉, (5)
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where a and b are complex numbers that verify the normalization condition |a|2 + |b|2 = 1. The states
|0〉 and |1〉 can be imagined as two fuzzy sets. Their vagueness, i.e., their fuzziness is outlined by the
Heisenberg’s Uncertainty Principle. The |Ψ〉 state belongs to |0〉 and |1〉 with degrees that are |a|2 and
|b|2, respectively. |Ψ〉 is a qubit, i.e., the elementary unit of the quantum information. The qubit can
be described as a unit vector in a two-dimensional Hilbert space. The state of the qubit can be also
represented by the following equation:

|Ψ〉 = cos
(

θ

2

)
|0〉+ eiϕsin

(
θ

2

)
|1〉 (6)

where θ and ϕ define a point on the unit three-dimensional sphere, called the Bloch sphere. Logic
operations on qubits can be visualized as rotations of the unit vectors on the Bloch sphere, preserving
the norm of the quantum states. If a microscopic system is a superposition of n qubits, it has 2n

accessible states, simultaneously. If we make an operation on this system, we manipulate 2n states, at
the same time. Therefore, it is evident the alluring computational power of quantum logic. However,
the main difficulty is to avoid the decoherence of the superimposed quantum states, which can be
induced by deleterious interactions with the surrounding environment [46]. The decoherence induces
the collapse of a qubit in one of its two originally accessible states, either |0〉 or |1〉, with probabilities
|a|2 and |b|2, respectively. Whenever the decoherence is unavoidable, the single particles can be used to
process discrete logics, i.e., binary or multi-valued crisp logics [47,48]. Of course, specific microscopic
techniques, reaching the atomic resolution, are needed to carry out the computations. Alternatively,
we may think of making computations by exploiting large assemblies of particles, e.g., molecules.
Vast collections of molecules (amounting to the order of the Avogadro’s number) appear as bulky
materials. The inputs and outputs for making computations become macroscopic variables that can
change in a continuous manner. The relations establishing between the inputs and the outputs can be
either steep or smooth. Steep, sigmoid functions are suitable to implement discrete logics, whereas
both linear and nonlinear smooth functions are suitable to build fuzzy logic systems [49]. Some fuzzy
logic gates and operations have been implemented by the hybridization reaction of DNA [50,51] and
the supramolecular interactions between carbohydrates and proteins [52]. Other fuzzy logic systems
have been built by exploiting the dependence of the fluorescence quantum yield on physical and
chemical inputs. One example is the dependence of the fluorescence of 6(5H)-phenanthridinone (see
Figure 10A) on the hydrogen bonding donation ability of the solvent (HBD) and the temperature [53].
Another example is given by tryptophan, both as isolated molecule and bonded to the serum albumin,
whose fluorescence depends on the temperature and the amount of the quencher flindersine (see
Figure 10B) [54]. A further example is a ruthenium complex, whose fluorescence depends on Fe2+ and
F− (see Figure 10C) [55]. A final example is the fluorescence of europium bound to a metal-organic
framework, which depends on metal cations, such as Hg2+ and Ag+ (see Figure 10D) [56]. The emission
of light is a preferable output because it bridges the gap between the microscopic and the macroscopic
world. A multi-responsive chromogenic compound, belonging to the class of spirooxazine, has been
used for the implementation of the all fundamental fuzzy logic gates, AND, OR, and NOT [57].
The protons, Cu2+, and Al3+ ions were used as inputs, and the color coordinates (R, G, B) or the
colorability [41] of the chromogenic compound as outputs. Then, other platforms have been proposed.
For example, a multi-state tantalum oxide memristive device [58] and an anthraquinone-modified
titanium dioxide electrode [59]. Even, the Belousov-Zhabotinsky reaction, carried out in oscillatory
regime and in an open system [60], allows to implement all the fundamental fuzzy logic gates by using
bromide and silver ions as chemical inputs and the period of the oscillations as outputs. Finally, the
“hydrodynamic photochemical oscillator”, which is a thermally reversible photochromic compound
combined with the convective motion of the solvent, is suitable to implement fuzzy logic systems
when it works in chaotic regime [61]. All these examples show that fuzzy logic can be processed not
only by conventional electronic circuits but also by unconventional chemical systems exhibiting analog
input-output relationships in either the liquid or the solid phase.
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5. Perspectives of the Fuzziness of the Molecular World

Fuzzy logic is a valid model of the human power to compute with words and take decisions
in complex situations. The closer one looks at the real-world problems, the fuzzier become their
solutions. Fuzzy logic is playing a relevant role in the field of artificial intelligence when we deal with
complex systems.

This work highlights that even the molecular world is fuzzy. In fact, quantum logic is fuzzy
(“quantum fuzziness”). A qubit is a superposition of two distinct quantum states that are like fuzzy
sets. Therefore, quantum logic might be considered a particular kind of fuzzy logic. When decoherent
phenomena induce the collapse of qubits, it is not possible to process quantum logic. However, by
working with large collections of molecules, it is feasible to implement fuzzy logic systems, when
causal, macroscopic, smooth, analog input-output relationships are found.

In the human sensory system, the sensory cells that are fuzzy sets, containing molecular fuzzy
sets, collect a large amount of data. The hierarchical architecture of the afferent and cortical neurons,
which is based on the overlapping of their receptive fields, allows extracting only the meaningful
information of the big data contained in the stimuli. The imitation of the principal features of the
sensory system, in particular of what we called as “fuzzy parallelism”, should allow devising artificial
sensory system able to extract the essential characteristics of the complex stimuli. Hence, such artificial
sensory systems should be suitable to recognize variable patterns.

The computational power of the cells and the human immune system derives from the
“conformational fuzziness” of their macromolecules. By exploiting the conformational elasticity
of molecules, especially proteins, it is possible to process fuzzy logic. In fact, the “conformational
fuzziness” makes molecules adaptable to their microenvironment. This feature is suitable to implement
the dependence of the information on the context.

By processing fuzzy logic at the molecular level, we want to promote the development of
the chemical artificial intelligence. The purpose of chemical artificial intelligence is to mimic the
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performances of the human intelligence by using not software or hardware, but rather chemical and
photochemical reactions in wetware. In fact, there exist chemical systems that can work as surrogates
of the neural dynamics [62–65]. These systems can interact and communicate by exploiting both
chemical and electrical and optical signals. They are the fundamental components of a futuristic
opto-/electro-brain-like computing machine that should be suitable to recognize variable patterns and
compute with words. There is a long path before the concrete implementation of this new generation
of computing machines, more similar to the brain rather than to the electronic computer from both
the structural and the functional point of view. Further analysis of the human nervous system and
further development of the theory of fuzzy logic are needed. For example, the receptive field of a
neuron can inspire a new kind of fuzzy set (i.e., Type-III fuzzy set) where we distinguish inhibitory and
excitatory actions. With this new kind of fuzzy set, implemented somehow artificially, the recognition
of variable patterns should become easier. Moreover, the chemical artificial intelligence will boost the
development of the soft robotics. Soft robots, also called “chemical robots”, will be easily miniaturized
and implanted in living beings [66–71]. They will interplay with cells and organelles for biomedical
applications. They will become auxiliary elements of the human immune system to defeat diseases
that are still incurable.

Finally, this field of research could give clues about the origin of the life on Earth. In fact, the
appearance of the life on Earth, occurred roughly 3.5 billion of years ago, was like a “phase transition”.
It was a transition from inanimate chemical systems, unable to encode, process, communicate and
store information, to the living chemical systems, able to exploit the matter and energy to encode,
process, send, and store information. The development of chemical artificial intelligence could unveil
how that unique “phase transition” happened.
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