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Abstract: Chimeric antigen receptors (CARs) are among the curative immunotherapeutic approaches
that exploit the antigen specificity and cytotoxicity function of potent immune cells against cancers.
Neuroblastomas, the most common extracranial pediatric solid tumors with diverse characteristics,
could be a promising candidate for using CAR therapies. Several methods harness CAR-modified
cells in neuroblastoma to increase therapeutic efficiency, although the assessment has been less
successful. Regarding the improvement of CARs, various trials have been launched to overcome
insufficient capacity. However, the reasons behind the inadequate response against neuroblastoma
of CAR-modified cells are still not well understood. It is essential to update the present state of
comprehension of CARs to improve the efficiency of CAR therapies. This review summarizes the
crucial features of CARs and their design for neuroblastoma, discusses challenges that impact the
outcomes of the immunotherapeutic competence, and focuses on devising strategies currently being
investigated to improve the efficacy of CARs for neuroblastoma immunotherapy.
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1. Introduction

Neuroblastoma, an extracranial solid tumor that initiates from the sympathetic nervous system’s
neuroendocrine tissue, is one of the most common causes of death in pediatric cancers [1,2]. It is
often diagnosed during the perinatal period, which accounts for 8% in patients under 15 years.
This childhood neoplasm appears each year in more than 600 cases in the United States and 200 in
Japan [3–5]. According to clinical presentation, neuroblastoma is an extremely variant characteristic
tumor. It ranges from an adrenal mass tumor that regresses without treatment to a metastatic tumor
that causes critical illness [6]. At present, while intensive therapies can be beneficial for patients with
localized disease, these therapies have frequently not been useful against patients with high-risk
disease (approximately 40% of cases associated with the extent of metastases and genetic factors)
nor patients with relapse [7,8]. Hence, novel therapies based on immunotherapy were subsequently
developed to improve survival for high-risk patients.
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One such approach is treatment with anti-GD2 monoclonal antibody, which has already been
assessed in a Phase III clinical trial. The use of this antibody-based therapy was compiled into
a therapeutic protocol for high-risk neuroblastoma patients and revealed promising results [9,10].
This effectiveness has led to other immunotherapeutic approaches, even though their integration into
conventional multimodality therapies requires further investigation.

After discovering that GD2, a disialoganglioside highly expressed in most neuroblastomas, is also
targeted by T cells, cellular immunotherapies including genetic engineering of T lymphocytes to express
anti-GD2 chimeric antigen receptors (CARs) have emerged and are now being studied. With the
combination of antigen specificity and cytolytic capacity, anti-GD2 CAR T cells have demonstrated
safety and antitumor efficacy in relapsed neuroblastoma patients [11,12]. Various preclinical studies
have improved the antitumor effects, proliferation, and cytokine release of CAR T cells, and some
approaches have reached clinical trials (Figure 1). Currently, the anti-GD2 CAR T cell approach might
represent a potential therapeutic for pediatric neuroblastoma.

Figure 1. Cumulative publications of chimeric antigen receptor (CAR) immunotherapy in clinical trials.

However, unlike the success of using CAR T cells in hematological malignancies [13–15],
the efficacy of CAR T cells in neuroblastomas has been limited by several factors, including the tumor
microenvironment, T cell exhaustion, and T cells’ persistence and potency, which may lead to therapeutic
resistance [16–18]. Therefore, CAR T cell improvement as a feasible alternative to conventional therapies
for patients with neuroblastoma is still a significant challenge to achieving immunotherapy.

In this review, we provide an updated summary of preclinical and clinical experience of CAR-based
neuroblastoma therapies and discuss the improvements of CAR in different ways that could overcome
clinical problems of applying this approach for treating neuroblastoma. Defining these strategies
would suggest an attractive route of improving the potency of CAR immunotherapy.

2. CARs in Neuroblastoma

The knowledge of tumor immunology has been used in translating this comprehension into
productive cancer therapies. A number of immunotherapy approaches represent a new borderline
in treating cancers. One such strategy to overcome tolerance in cancer is to genetically engineer
immune cells to express CAR. This concept of artificial antigen-specific receptors first originated in
1989–1993 [19,20]. By fusing an antibody-derived binding domain to T cell signaling domains, the CAR
construct gains the tumor antigen specificity and the capacity to induce multiple signals in the response
of immune cells. Over three decades, tremendous progress has been made and CARs were refined into
the first, second, third, and currently fourth generations of their structure. Based on the potential of
CAR T cells directed against the CD19 protein for treatment of hematologic malignancies shown in
clinical trials, cancer immunotherapy was named the “Breakthrough of the Year” in 2013 by Science [21].
In addition, the use of anti-CD19 CAR T cells for relapsed/refractory acute lymphoblastic leukemia
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and in children and young adults was approved by the US Food and Drug Administration (FDA) in
2017 and two licensed products of CAR T cells including tisagenlecleucel and axicabtagene ciloleucel
have been launched [22,23]. This success, therefore, has brought new insights for clinical translation in
treating solid cancers.

CARs have been developed to fulfill the applicability of adoptive cellular immunotherapy for
neuroblastoma in a major histocompatibility complex (MHC)-unrestricted manner in effector T cells.
Effector immune cells, commonly T lymphocytes, have been genetically engineered to express an
extracellular antigen-binding domain that is mostly a single-chain variable fragment (scFv) joined
with a transmembrane domain and an intracellular signaling domain. The first-generation CARs were
designed to have a single CD3-ζ intracellular signaling domain. The second- and third-generation
CAR products were improved by adding one or two costimulatory endodomains to the CD3-ζ motif to
achieve the optimal activation and survival of CAR cells. Current intracellular endodomains based
on the costimulatory receptors include CD27, CD28, 41BB, ICOS, and OX40 [17,24]. Each of the CAR
design components reflects the variations of therapeutics achievement, and novel CAR engineering
has been developed for decades to broaden CAR therapeutics in solid tumors like neuroblastoma [25].

2.1. Summary of CAR Experience

Several CAR approaches in neuroblastoma have been developed according to discovered putative
cancer antigens. There are some novel target antigens for CAR T cell therapy in neuroblastoma that
have been investigated in the preclinical phase (Figure 2).

Figure 2. Target antigens conducted on the safety and efficacy of CAR therapy for neuroblastoma.
Six surface antigens of neuroblastoma, including L1-CAM, GPC2, NCAM, GD2, ALK, and B7H3, are
under development and investigation. L1-CAM and GD2 are the only two target antigens currently in
completed clinical trials for neuroblastoma (labeled with star).

Anaplastic lymphoma kinase (ALK), an oncogene expressed in neuroblastoma cells, is associated
with familial neuroblastoma cases [26,27]. Anti-ALK CAR has demonstrated its effectiveness against
this neuroblastoma subtype in vitro and in vivo [28,29]. This line of research also suggested that
antigen density must be considered to achieve CAR T cell potential. Another tyrosine kinase receptor
that may be rendered an ideal target for CAR therapies is glypican 2 (GPC2). The high expression of
GPC2 on the neuroblastoma cell surface brought promising clearance of disseminated neuroblastoma
in the mouse model by anti-GPC2 CAR T cells [30]. B7H3 (CD276), a checkpoint molecule expressed in
neuroblastomas, is another candidate for CAR therapies of neuroblastoma [31,32]. This attractive target
brought useful immunotherapeutic strategies, including monoclonal antibodies and CARs targeting
B7H3. Recently, the efficacy of anti-B7H3 CAR has been demonstrated in vivo [33,34]. Many target
antigens that are specific to neuroblastoma cells have also been more characterized. Such antigens,
including neural cell adhesion molecule (NCAM or CD56), New York esophageal squamous cell
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carcinoma 1 (NY-ESO1), and preferentially expressed antigen in melanoma (PRAME), were investigated
both in vitro and in vivo for safety and efficacy, which gained attention for further development as
CAR features [35–38].

To date, only CAR T cells targeting L1-CAM (CD171) and GD2 have reached the early phase
of clinical trials (Table 1). L1-CAM, an adhesion molecule in the immunoglobulin superfamily,
is another suitable target in neuroblastoma [39]. Because of the specificity of CE7, the monoclonal
antibody that can bind to the L1-CAM epitope, the anti-L1-CAM CAR with the scFv from CE7 was
generated. The first-generation anti-L1-CAM CARs’ efficacy and safety were investigated in patients
with relapsed/refractory neuroblastoma in a Phase 1 clinical trial [12]. To augment the persistence
of anti-L1-CAM CAR, second-generation CAR was generated using a 41BB costimulation domain,
followed by third-generation CAR, including CD28 costimulation addition, which is currently being
investigated in phase 1 clinical trials [40,41]. Until now, the most critical target antigen in neuroblastoma
has been GD2, a disialoganglioside highly expressed on neuroblastoma tissue [42]. Owing to the
presence of this antigen during chemotherapy and the success of anti-GD2 monoclonal antibody
therapy, this antigen has been the most studied targeted for CAR T cell therapy in neuroblastoma [43].
Many approaches of first-generation anti-GD2 CAR have been reported, including anti-GD2 CAR
containing a single-chain variable fragment (scFv) derived from 14g2a monoclonal antibody or
Epstein–Barr virus-specific cytotoxic T cell transduced CARs (so-called GD2 CAR-CTL), with the
knowledge that the prolonged persistence in vivo was associated with the costimulation domain
of CAR [44–47]. Anti-GD2 CAR constructs are now considered on costimulatory endodomains.
The second and third generations of CAR were then generated for in vitro and in vivo assessments of
CAR T cell survival [48,49]. The third-generation anti-GD2 CAR, containing an inducible caspase 9 (iC9)
safety switch, has been tested in clinical trials for its safety (clinicaltrials.gov identifier NCT01953900
and NCT01822652). Various clinical trials based on CAR therapy are underway to augment the
reliable therapeutic outcomes. However, improving the efficacy and persistence of CAR is still a
significant issue.
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Table 1. An outline of clinical trials for CAR immunotherapy in neuroblastoma.

Clinicaltrials.Gov
Identifier

Type of Study Status Title Interventions Target/ScFv/Signaling Domain Date Key Result Reference

N/A Phase I
N = 6

Completed N/A Anti- L1-CAM CAR T
cells

L1-CAM/CE7R/
CD3ζ

N/A Partial response
in one patient

[12]

NCT02761915 Phase I
N = 27

Recruiting A UK cancer research trial of
anti-GD2 T cells (1RG-CART)

Anti-GD2 CAR
T cells

GD2/KM8138/
CD28.CD3ζ

Study start:
February 2016
Primary
completion:
February 2023

On target
activity in bone
and bone
marrow were
detected

[47]

NCT01822652 Phase I
N = 11

Active, not
recruiting

Third generation GD-2 chimeric
antigen receptor and icaspase
suicide safety switch,
neuroblastoma, GRAIN

iC9-GD2 CAR
T cells

GD2/14g2a/
CD28.OX40.CD3ζ

Study start:
August 2013
Primary
completion:
December 2015

Modest early
antitumor
responses were
detected

[49]

NCT00085930 Phase I
N = 19

Active, not
recruiting

Blood T-cells and EBV specific
CTLs expressing GD-2 specific
chimeric T Cell receptors to
neuroblastoma patients

EBV-specific CTLs GD2/14g2a/
CD3ζ

Study start:
April 2003
Primary
completion:
January 2010

Complete
response in one
patient

[18,50]

NCT01460901 Phase I
N = 5

Completed Study of donor-derived,
multi-virus-specific, cytotoxic
T-lymphocytes for
relapsed/refractory
neuroblastoma (STALLONe)

GD2 CAR modified
Tri-virus-specific
cytotoxic t-cells

GD2/14g2a/CD3ζ Study start:
October 2012
Primary
completion:
January 2015

Partial response
in 30% of
patients

[51]

NCT03294954 Phase I
N = 24

Recruiting GD2-specific CAR and
interleukin-15 expressing
autologous NKT cells to treat
children with neuroblastoma
(GINAKIT2)

GINAKIT Cells GD2/14g2a/
CD28.CD3ζ

Study start:
18 January 2018
Primary
completion:
1 September
2021

N/A [52]

NCT02765243 Phase II
N = 34

Recruiting Anti-GD2 fourth generation
CART cells targeting refractory
and/
or recurrent neuroblastoma

Anti-GD2 CAR T cells GD2/N/A/CD28.4-1BB.CD27.CD3ζ Study start:
23 March 2016
Primary
completion:
12 May 2019

Partial response
in 15% of
patients

[53]

NCT03618381 Phase I
N = 36

Recruiting EGFR806 CAR T cell
immunotherapy for
recurrent/refractory solid tumors
in children and young adults

Anti-EGFR806-EGFRt
CAR T cells

EGFR/N/A/4-1BB.CD3ζ Study start:
18 June 2019
Primary
completion:
June 2021

N/A [54]

NCT01953900 Phase I
N = 26

Active, not
recruiting

iC9-GD2-CAR-VZV-CTLs/refractory
or metastatic GD2-positive
sarcoma and neuroblastoma

Anti-GD2 CAR T cells GD2/14g2a/
CD28.OX40.CD3ζ

Study start:
April 2014
Primary
completion:
April 2021

N/A [54,55]
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Table 1. Cont.

Clinicaltrials.Gov
Identifier

Type of Study Status Title Interventions Target/ScFv/Signaling Domain Date Key Result Reference

NCT03635632 Phase I
N = 94

Recruiting C7R-GD2.CAR T cells for
patients with relapsed or
refractory neuroblastoma and
other GD2 Positive cancers
(GAIL-N)

C7R-GD2 CAR T cells GD2/14g2a/
CD28.OX40.CD3ζ

Study start:
23 April 2019
Primary
completion:
June 2022

N/A Unpublished

NCT03373097 Phase I/II
N = 42

Recruiting Anti-GD2 CAR T cells in
pediatric patients affected by
high risk and/or
relapsed/refractory
neuroblastoma or other
GD2-positive solid tumors

Anti-GD2 CAR T cells GD2/14g2a/
CD28.4-1BB.CD3ζ

Study start:
January 2018
Primary
completion:
December 2024

N/A Unpublished

NCT03721068 Phase I
N = 18

Recruiting Study of CAR T cells targeting
the GD2 with IL-15+icaspase9
for relapsed/refractory
neuroblastoma

iC9-GD2 CAR T cells GD2/N/A Study start:
19 February
2019
Primary
completion:
19 June 2024

N/A Unpublished

NCT04637503 Phase I/II
N = 100

Recruiting 4SCAR-T therapy targeting GD2,
PSMA and CD276 for treating
neuroblastoma

4SCAR T cell GD2, PSMA, CD276/N/A Study start:
18 November
2020
Primary
completion:
19 November
2020

N/A Unpublished

NCT04539366 Phase I
N = 67

Not yet
recruiting

Testing a new immune cell
therapy, GD2-targeted modified
T-cells (GD2CART), in children,
adolescents, and young adults
with relapsed/refractory
osteosarcoma and
neuroblastoma, the GD2-CAR
persistence trial

Anti-GD2 CAR
T cells

GD2/N/A/
CD28.OX40.CD3ζ

Study start:
1 January 2021
Primary
completion:
1 August 2024

N/A Unpublished

NCT04483778 Phase I
N = 68

Recruiting B7H3 CAR T cell
immunotherapy for
recurrent/refractory solid tumors
in children and young adults

Anti B7H3-EGFRt-DHFR
CAR T cells

B7H3/N/A/4-1BB.CD3ζ Study start:
13 July 2020
Primary
completion:
December 2025

N/A Unpublished

NCT02107963 Phase I
N = 15

Completed A Phase I trial of T cells
expressing an anti-GD2 chimeric
antigen receptor in children and
young adults with GD2+ solid
tumors

Anti-GD2 CAR
T cells

GD2/14g2a/OX40.CD28.CD3ζ Study start:
28 February
2014
Primary
completion:
15 August 2016

N/A Unpublished
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2.2. Obstacles to Using CARs in Neuroblastoma

2.2.1. CAR T Cell Persistence and Exhaustion

Restrictive CAR T cell persistence has occurred as a major problem in neuroblastoma.
Evidence from the first generation of CAR studies in vivo and clinical trials suggested that the
limited persistence of CAR T cells from low activation and proliferation of cells also affected the
antitumor efficacy [18,48,50,56]. One clinical study demonstrated that the infused, first-generation,
anti-L1-CAM CAR cells were detectable in the peripheral blood up to 1–7 days after adoptive
transfer in most patients with bulk disease but significantly longer (42 days) in a patient with limited
disease burden [12]. T cell exhaustion might be a significant cause of shortening persistence. This is
confirmed by discovering the exhausted CAR T cell phenotype in GD2 CAR T cells with low-level tonic
signaling [57]. The persistence of infused CAR T cells might be prolonged if the exhaustion was reduced.
Thus, several methods have been proposed to increase the persistence of CAR T cells. One such way
is the utilization of second- and third-generation CARs, which improve costimulation after antigen
binding (e.g., 4-1BB costimulatory domain) to protect shortened persistence. This development is
under investigation for feasibility [13,15,57].

2.2.2. Target Selection and On-Target, Off-Tumor Effect

Ideally, the target antigen for CAR T cells should have a high expression in cancer cells, a low
expression in normal cells, and not be associated with oncogenesis [58]. It is known that there are
challenges in the path of choosing an optimal CAR T cell target antigen in neuroblastoma, since many
target antigens are related to normal peripheral nerves or neural tissue expression. Toxicities caused
by particular interactions between the CAR and its target antigen expressed by normal cells termed
on-target, off-tumor effects have been reported in previous CAR studies in solid tumors [59–62].
One clinical trial in metastatic colon cancer reported pulmonary infiltration by CAR T cells that caused
a systemic cytokine storm in patients who received HER2-targeted CAR T cell therapy, demonstrating
strong evidence of on-target, off-tumor toxicities [61]. On the other hand, there was no such effect in a
pediatric sarcoma study using anti-HER2 CAR T cells and anti-GD2 CAR T cells in neuroblastoma
studies [47,63,64]. This evidence suggested that the variation of antigen density on the different types
of cancer is an additional factor to consider during target selection to avoid on-target, off-tumor effects.

2.2.3. Tumor Microenvironment

Unlike the remarkable success of CAR T cells in the treatment of hematological malignancies,
the efficacy of CAR T cells in neuroblastoma can be obstructed by the immunosuppressive tumor
microenvironment (TME), which is a manifest barrier to achieve full effective CAR T cell therapy for
solid tumors [65]. Significant factors derived from TME in neuroblastomas include immunosuppressive
cells like tumor-associated macrophages (TAMs), Type 2 regulatory T cells (Tregs), and myeloid-derived
suppressor cells (MDSCs), which contributed to poor results of CAR therapy [16]. Another factor
is the inhibitory ligands present in the TME, such as PD-L1, the ligand for an inhibitory receptor
expressed on activated T cells, named PD-1 [66,67]. Remarkably, this habitual expression of the
inhibitory ligand in neuroblastoma can cause the loss of CAR T cells [68]. In addition to inhibitory
signals, the availability of soluble factors in the TME, including galactin 1 and 3, TGF-β, and IL-10,
can trigger T cell inhibitory pathways or inhibit T cell function [67,69–72], while secretory HMGB1
may be responsible for Treg differentiation in the neuroblastoma TME [73]. Furthermore, there
are physical barriers that prevent the tumor access of T cells, such as protease fibroblast activation
protein (FAP) expressed by tumor-associated stromal fibroblasts, the extracellular matrix (ECM), and
immunosuppressive tumor vasculature-like vascular endothelial growth factor (VEGF) [74,75].
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2.2.4. CAR Trafficking

Trafficking of CAR cells into solid tumor sites to exert antitumor activity needs to be improved,
especially in neuroblastoma. Several chemokines that can mediate immune cell trafficking are generally
excreted by tumor or stromal cells like CC-chemokine ligand 17 (CCL17), CCL22, and CCL2 to enhance
the localization of immune cells [76]. Moreover, suitable trafficking of immune cells, like T cells,
can occur when there is an upregulation of a chemokine receptor that is matched to chemokine-related
trafficking on T cells. However, in a previous study using CAR T cells derived from neuroblastoma
patients, low expression of CCR2, a chemokine receptor, was detected [77–79]. Thus, various approaches
to generate CAR T cells with an ability to traffic to neuroblastoma sites are underway.

3. Strategies to Improve CARs in Neuroblastoma

Remarkably the engineering of T lymphocytes to target tumor-associated antigens by forced
expression of CARs has been successful against CD19+ leukemia [80–82]. Similar results have not yet
been achieved against neuroblastoma [50,83,84]. The key factors that challenge the success of CAR
immunotherapies are the immune effector cells, the design of the CAR construct, and the intrinsic
tumor factors. The proposed strategies for improving CARs’ efficacy in neuroblastoma therapy are
illustrated in Figure 3.

3.1. Improving Effector Immune Cells

Solving CAR T cell obstruction or the use of other effector cells might increase CARs’ tumor-killing
activity in neuroblastoma. Regarding the killing effect against tumor cells, natural killer T (NKT) [85],
gamma-delta T (γδT) [86], and natural killer (NK) cells [87] are valuable candidates for generating
CAR-derived cells. These immune cells have different pros and cons. Thus, choosing the proper
effector cell for each tumor target is extremely important. This part will assemble information about
these CAR-derived effector cells, some of which are summarized in Table 2.

3.1.1. T lymphocytes

To date, the immunophenotype of T cells is well understood as an essential parameter in safety
and efficacy features in CAR T products [50,88]. The ratio of subtype composition and an available
naïve and central memory T (TCM) cell population are essential to increase the therapeutic efficacy of
CAR T cells. Shah et al., reported that enriching CD4+ and CD8+ in the starting T cell population before
CAR-lentiviral transfection can enhance the efficacy of CAR T cells on neuroblastoma [89]. The 1:1 ratio
of subtype composition between CD4+ and CD8+ possibly promotes high efficiency with more safety
in patients [84]. Furthermore, another study exhibited an increased percentage of CD4+ T cells and
CD45RO+CD62L+ TCM in CAR treatment of neuroblastoma, shown to prolong the persistence of CAR
T cells in clinical trials [50]. Interestingly, CAR T cells derived from naïve T cells and TCM cells strongly
proliferated ex vivo, resulting in 89% of the CAR T cell population [90]. Likewise, the procession of
CD62L, a standard marker of memory cells, in the CAR population is more effective against both
hematological malignancy and solid tumors and promoted longer persistence of peripheral NKT and
T cells [91–93]. Because of the timing of infiltration into the tumor site, recognizing the tumor antigen,
and performing their function, the memory subtype of CAR T cells is an exigency [94]. Selection of the
T cell subtype population during CAR production or before administration to patients is recommended
for improving the efficacy of CAR T cells against neuroblastomas. Nonetheless, CAR T cells are mostly
detected in peripheral blood but have lower tumor infiltration than other effector cells such as NKT
and NK cells. Thus, a combination of other infiltrated effector cells or ECM remodeling enzymes may
enhance the tumor infiltration of T cells. In contrast, neuroblastoma-targeted CAR T cells may be more
appropriate for eradicating the circulating neuroblastoma cells in patients’ blood and lymphatic system.
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Figure 3. Proposed strategies to improve CARs’ efficacy against neuroblastoma. To enhance the
antitumor toxicity of chimeric antigen receptor (CAR) T cells, several strategies can be applied: (a) The
use of extracellular vesicle (EV) inhibitors. EVs are cargo ships containing functional molecules that
enhance tumor growth and metastasis and may decoy CAR immunotherapy. Inhibiting the secretion
of EVs from tumor cells may improve the killing efficiency CAR T treatment. (b) Engineering CAR
T cells with a suicide gene. To improve CARs, and any side effects of CARs, fusing the iCaspase-9 gene
in CARs’ structure can break T cell activation via induction of apoptosis in CAR T cells; (c) Engineering
CAR T cells secreting cytokine to support function. IL-15 cytokines showed an ability to increase CARs’
antitumor toxicity in both T and natural killer T (NKT) cells. (d) Use of T cell subsets with greater
proliferative ability. Naïve and central memory effector cells have the potential to enhance both CARs’
efficacy and the persistency of immune effector cells. (e) Use of different effector cells with greater
function. For various solid tumors, CARs derived from natural killer (NK), NKT, or γδT cells showed
more penetration into tumor sites and more potent toxicity than CAR T cells. (f) Engineering CAR
T cells to overcome the tumor microenvironment (TME) and increase penetration. Supplementing
with tumor-enriched chemokine inhibitor or using extracellular matrix remodeling enzyme during
treatment might improve the trafficking and infiltration of CAR T cells; (g) Finally, engineering CAR
NK cells to support the function of CAR T cells. Inhibition of immunosuppressive cell function in the
TME via CAR NK cells can enhance the homing and efficacy of neuroblastoma-targeted CAR T cells.

3.1.2. Natural Killer Cells

Natural killer (NK) cell, lymphoid components of the innate immune system, can prevent pathogen
invasion and kill tumor cells without requiring previous stimulation like T lymphocytes [95]. NK cells
are mostly found in the peripheral blood, liver, spleen, and bone marrow, and a few are available
in the lymphoid tissues [96,97]. NK cells can localize, migrate, and infiltrate into tumor sites to
elicit MHC-unrestricted cytotoxicity and secrete proinflammatory cytokines and chemokines against
solid tumors [97]. In addition, NK cells showed antitumor responses via the NKG2D and cytotoxic
adapter molecule DNAX-activating Protein 10 (DAP10) to eliminate MDSCs, which then reversed the
suppressive TME and attracted immune effectors infiltration into the tumor site [98]. According to
these antitumor features, NK has been applied in various types of CARs immunotherapy against both
hematological malignancies and solid tumors [99–101]. Of note, the irradiated NK cell line NK-92 has
been adopted as the effector for various designs of CAR to overcome the difficulty of sorting and ex
vivo expansion of primary NK cells [102,103].
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Table 2. Comparison of CAR-derived effector cells for neuroblastoma.

Effector
Cell

Ex vivo
Expansion

Type of Target Cells CAR Design Combination

Localized CTC Costimulating Signaling Cytokine Effector Cell Signaling
Inhibitor

T *** * ***

Dim expression
target: CD28

High expression
target: 4-1BB

Normally:
CD3ζ Decrease

CRS: DAP12
IL-2, IL-7, IL-15 NKG2D.CAR

NK

anti-PD-1/PD-L1,
anti-IL-10, IL-6

inhibitor

NK * *** ** CD28, 4-1BB, DNAM1
and 2B4

CD3ζ and
DAP12 IL-2, IL-7, IL-21 NB-targeted

CAR T

anti-PD-1/PD-L1,
anti-TGFβ,

anti-IL-10, IL-6
inhibitor

NKT ** *** * CD28 CD3ζ and
DAP12 IL-2, IL-7, IL-15 N/A

anti-PD-1/PD-L1,
anti-IL-10, IL-6

inhibitor

γδT *** *** * Both CD28 and 4-1BB CD3ζ [no data
for DAP12] IL-2, IL-7, IL-15 N/A

anti-PD-1/PD-L1,
anti-IL-10, IL-6

inhibitor

Score: *** = high, ** = moderate, * = low. CAR, chimeric antigen receptor; CTC, circulating tumor cells; DAP12, DNAX-activating protein of 12 kDa; DNAM1, DNAX accessory Molecule-1;
DNAX-activating protein 12; ECM, extracellular matrix; IL, interleukin; N/A, not applicable; NB, neuroblastoma; NK, natural killer cell; NKG2D, natural killer cell receptor D; NKT, natural
killer T lymphocyte cell; PD-1, programmed cell death-1; PD-L1, programmed cell death-ligand 1; T, T lymphocyte; γδT, gamma delta T lymphocyte.
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Several studies reported that CAR-modified NK cells responded to solid tumors and hematological
malignancies. CXCR1-expressed NKG2D-targeted CAR NK cells had enhanced tumor trafficking
with preserved antitumor effects in ovarian cancer xenograft models [104], while anti-CD147 CAR
NK exhibited potent cytotoxicity against hepatocellular carcinoma (HCC) cell lines in vitro and
patient-derived HCC xenograft mouse models [100]. As aforementioned, the NK-92 cell line has been
used as a CAR effector cell. Li et al. [105] demonstrated that bi-specific PD1-DAP10 and NKG2D
CAR NK-92 cells enhanced cytotoxicity to human gastric cells (SGC7901), via triggering apoptosis.
These dual-targeting CAR NK-92 cells also displayed significant antitumor activity in the SGC-7901
mouse xenograft. Moreover, the human prostate-specific membrane antigen (PSMA)-targeted modified
CAR NK-92 cells recognized and mediated potent antitumor effects against prostate cancer xenograft
models [106]. Anti-CD19 CAR NK cells showed potent tumor-specific lethality against NK-resistant
lymphoma [107]. In a Phase I/II trial, Liu et al. [108] reported that 8 out of 11 (73%) patients with
relapsed or refractory CD19-positive cancers (non-Hodgkin’s lymphoma or chronic lymphocytic
leukemia (CLL)) had a response to anti-CD19 CAR NK without the development of major toxic
effects. These infused CAR NK cells expanded and persisted in patients at low levels for at least
12 months [108].

For the neuroblastoma treatments, NK cells might requisite proper CAR constructs such as
costimulators and/or signaling molecules, which are discussed in the next topic. Furthermore,
several researchers indicated that the antitumor properties of CARs NK cells were downregulated
by suppressive molecules of the TME, such as TGFβ, thereby limiting the tumor-killing capability of
NK cells [98,109]. In this direction, a combination with the inhibitor of immunosuppressive molecules
(e.g., anti-TGFβ) might increase the antitumor activities of neuroblastoma-targeted CAR NK cells.

3.1.3. NKT Cells

NKT cells are a subset of innate lymphocytes that share T and NK cells’ properties [110,111].
NKTs have differences in T-cell receptor (TCR) diversity and their cancer immune response, and can
be divided into two subtypes; invariant (Type 1, iNKT) and variant (Type 2) NKT cells [102]. Type I
NKTs enhance antitumor immunity, while Type II NKTs regulate and inhibit tumor immunity [112–
114]. iNKT cells have been studied and applied as potent tumor-specific CAR effectors against
lymphomas [92,115] melanomas [116], and neuroblastomas [85]. The first use of CAR NKT cells
against neuroblastoma was reported in 2014 [85]. Both the second and third generations of anti-GD2
CAR NKT cells exhibited potent antitumor activity and presented significantly prolonged survival
without any graft-versus-host disease in a mouse xenograft model [85]. Unlike T cells, NKT effectively
traffic and infiltrate into the tumor site [92] to mediate antitumor activities, inhibit tumor-supportive
macrophages, and transactivate the localized NK and CD8+ T cells [117,118]. Additionally, a higher
percentage of NKT cells in tumor-infiltrating lymphocytes have been detected in neuroblastoma than
in patients’ peripheral blood [119]. Likewise, Xu et al. reported that CAR NKT cells enhanced CARs’
treatment efficacy through their persistence and provided high localization onto the tumor site without
significant histopathological toxicity [52]. These suggested that NKT cells are more easily infiltrated
into neuroblastomas than T lymphocytes. Recently, Heczey et al., [120] reported interim results from
three patients with relapsed or resistant neuroblastoma, who enrolled into the Phase I dose escalation
trial, receiving dose Level 1 of autologous NKT cells coexpressing GD2 CAR and interleukin-15
(NCT03294954). The results showed that GD2 CAR NKT cells expanded in vivo, localized to tumors,
and, in one patient, induced regression of bone metastatic lesions without adverse effects [120].

Neuroblastoma-targeted CAR NKT cells are noticeable as potential effector cells against
neuroblastomas and other solid tumors. Of note, an exhausting phenotype of NKTs upon in vitro
stimulation is associated with the upregulated expression of PD-1 and TIM-3 [92]. Thus, CAR NKT cells
should be used in combination with anti-PD-1 or anti-TIM-3 to generate an intense tumor-killing effect.
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3.1.4. γδT Cells

γδT cells are innate T lymphocytes that independently recognize MHC targets, have a natural
killing activity against pathogens, and respond to tumor cells [121–123]. In contrast to αβT cells,
γδT lymphocytes are rare in the peripheral blood and lymphoid organs (<10%), while they mostly
reside in a wide variety of tissues including the skin epidermis, gastrointestinal tract mucosa, and
the reproductive system [124,125]. Interestingly, γδT cells also found in neuroblastoma tumors [119].
γδT cells can be divided into three subpopulations depending on the differences in TCR-δ chain
expression (Vδ1, Vδ2, and Vδ3), paired with the γ9 chain [126]. γδT cells expressing the Vγ9Vδ2
TCR is a common subset that can inhibit proliferation and angiogenesis and encourage tumor cell
apoptosis [102]. Moreover, these γδT cells can be activated and proliferated ex vivo for more than
1000-fold expansion [127].

Neuroblastoma mostly escapes from the immune system via downregulation of the MHC Class
I molecule [119]. Since γδT TCR does not require MHC-mediated antigen presentation [128,129],
γδT cells may be appropriate to address this issue. Furthermore, these cells can differentiate into
professional antigen-presenting cells (pAPCs), which present antigenic fragments for CD4+ and
CD8+ αβT cells [130]. Although γδT cell exhaustion is associated with PD-1, an immune checkpoint
molecule [131], γδT cells have lower expression of PD-1 compared with αβT cells, and are thereby
recognized as a promising effector cell for CAR immunotherapy. Like T cells, the naïve and memory
phenotype of γδT cells sufficiently survive to promote the persistence of CAR γδT cells in the recipients
without decreasing the [132] killing activity against tumor cells [121].

Until now, few studies of CARs γδT cells have been reported. The first anti-CD19 CAR γδT
cells showed strong killing efficacy against leukemia [122,132,133] For solid tumors, there have been
preclinical studies of CAR γδT cells against melanoma [86] and neuroblastoma [127,134,135]. Therefore,
γδT cells are influential candidates for developing CAR immunotherapy against neuroblastoma.
At present, two Phase I clinical trials are available in clincaltrial.gov. The first study (NCT04107142) is
planning to investigate of the safety and tolerability of NKG2DL-targeting CAR γδT cells in various
solid tumors: colorectal, breast, sarcoma, nasopharyngeal carcinoma, prostate, and gastric cancer.
The second clinical trial (NCT03885076) is estimating the potential role of anti-CD33-CD28 CAR γδT
cells against acute myeloid leukemia (ALL). However, the clinical studies’ results are not yet available.
From these properties, the γδT cell is a potential candidate for use as an effector immune cell in
adoptive CAR immunotherapy against neuroblastoma.

3.2. Modification of CAR Constructs

The CAR construct design is one of the key features that affect the kinetics of expansion and the
duration of persistence. CARs are recombinant receptors responsible for both antigen-binding and
activation functions for immune cells [136]. The second-generation CARs offer a clinical benefit via both
the TCR stimulatory domain (CD3z) and a single costimulatory domain [89]. Recently, FDA-approved
products can contain either CD28 or 4-1BB (CD137) costimulatory domain [80]. Choosing the appropriate
combination of costimulatory ligands, chimeric costimulatory receptors, or cytokines in the CARs’
structure for each objective immune cell may differently enhance the effector cells’ function, proliferation,
and survival [136]. Good design of CAR structures can overcome the significant barriers of CARs in
cancer immunotherapy.

3.2.1. Hinge and Transmembrane Domain

The access of CARs to the target antigen depends on their flexibility and the length of the hinge
and transmembrane domain [137]. In the case of anti-CD19 CAR T cells, human CD8α hinge and
transmembrane molecules did not promote efficacies differently against tumor xenografts but induced
lower cytokine levels compared with CD28 hinge and transmembranes [138,139]. These confirmed that
the length and composition of the hinge provided an antigen binding and signaling cascade through
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the CAR T cells. Accordingly, the CD8α hinge and transmembrane domain may be an excellent choice
to generate neuroblastoma-targeted CARs. However, further studies on this topic are required to
discover a suitable composition that offers the highest tumor-killing efficacy but bestows the patients
with low or no side effect.

3.2.2. Costimulatory Domains

Costimulator molecules play a critical role in the development, activation, and functional response
of effector immune cells [92]. A set of costimulatory receptors that are noticeable in human T cells
include: CD28, 4-1BB, and OX40 [92], while the costimulators for activating NK cells are CD28, 4-1BB,
2B4, and NKG2D [140,141]. For creating CAR T cells, CD28 has more potent signaling through T cell
activation with a short persistence, while 4-1BB provides a less potent signal but longer persistence [142].
To address cytokine releasing syndrome (CRS), the CD28 costimulator is appropriate for the dim
target antigen, whereas 4-1BB is suitable for the high density target [139]. Unlike T cells, the CD28
costimulator is suitable for enhancing the proliferation, cancer-killing function, and persistence of
NKT cells. Even though CD28 and 4-1BB prevent the loss of CD62L expression that is important to
prolong the survival of NKT cells [92], the CD28 costimulator also forces the CAR NKT cell to massive
expansion, while 4-1BB induces excessive activation, leading to cell death [52]. For CAR γδT cells,
both CD28 and 4-1BB [143] were applied as costimulators [144,145]. However, data on the comparison
and optimization of costimulators for CAR γδT cells are scanty. For NK cells, CD28 is mostly used as
a costimulator. Oelsner et al. suggested that CD19-CAR NK cells with CD28 costimulators showed
better performance against B-cell malignancy than 4-1BB [145]. Fusing DNAM1 and 2B4 costimulatory
domains in CAR NK design can enhance cytotoxicity against hepatocellular cancer cells in vitro [146].

3.2.3. Signaling-Transducing Domain

CD3ζ is commonly used as the signaling molecule in CAR constructs to activate T and NK cells
functions for both hematologic malignancy and solid tumors [81,89,138,147]. Immunotherapy resistance
and CRS are associated with highly active CD3ζ-activated CAR T cells [148,149]. Implementing other
activation domains in CAR designs should be considered as an alternative to provide a robust clinical
advantage in relieving the risk of CRS and overcoming these barriers.

DNAX activation protein of 12 kDa (DAP12), an immunotyrosine-based activation motif-containing
adaptor, is constitutively expressed in NK cells and is expressed in a subset of human T cells [150].
The first use of DAP12 as an alternative cytoplasmic domain in CAR design emerged in 2015 [151].
The chimeric target receptor fusing with the transmembrane and cytoplasmic domains of KIR2DS2,
a stimulatory killer immunoglobulin-like receptor, and DAP12 (KIR-CAR DAP12) triggered robust
antigen-specific proliferation, effector function, and enhanced antitumor activity in leukemia cell
lines [151]. Although only a few studies have used DAP12 as a new activation domain in CAR-modified
T cells, the low cytokine markers of CRS could be observed in DAP12-based CAR preclinical studies [148].
Compared with CD3ζ-based second-generation CARs, T cells modified with the natural killer group
2D (NKG2D) ectodomain combined with 4-1BB and the DAP12 signaling domain released lower levels
of interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and interleukin-2 (IL-2) during
tumor cell lysis without a significant difference in tumor-killing effects both in vitro and in vivo [148].
DAP12 is also involved in the signal transduction of activating NK cells [152]. DAP12-based CAR NK
cells could eradicate neuroblastomas in the mouse xenograft model [152]. This DAP12 might be a
brilliant new signaling molecule for high efficacy with more safety in CAR development

3.2.4. Other Generations of CAR Structures

Although the second generation of CARs was mostly used in neuroblastoma clinical trials,
the fourth generation of CARs has been developed. With neuroblastoma-targeted antigens incorporating
multiple costimulatory molecules and a suicide gene-inducible caspase9 (iCasp9), the success
of fourth-CAR T cells against MYCN amplification in neuroblastomas has been reported [53].
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This fourth-generation CAR exhibited higher tumor-killing activity than the third-generation CAR
with a safety profile, leading to 4 years of survival of a neuroblastoma patient after fourth-generation
CAR treatment [53]. Successful fourth-generation CAR T cells are being explored for the new era of
treatment for neuroblastoma and other solid tumors.

3.3. Overcoming the TME to Improve the Efficacy of CAR Immunotherapy

The intrinsic tumor factors, including the extracellular matrix (ECM) and the TME, are critical
challenges for CAR immunotherapy against neuroblastoma [153]. The counterstrategies for these
tumor escape mechanisms are shown in this topic.

3.3.1. ECM: Trafficking and Infiltration of Effector Cells

Low T cell infiltration has been observed in so-called immunologically “cold” neuroblastoma
tumors [154]. Various studies demonstrated that poor trafficking to and limited CAR T cell persistence
in solid tumors are significant burdens in CAR immunotherapy [155]. To increase the trafficking
ability of CAR T cells via presenting matched chemokine receptors or adding therapeutic agents
against tumor-enriched chemokines may be a practical strategy for neuroblastoma and other solid
tumor treatments [156]. For example, in hepatocellular carcinoma in which a high expression level
of CXCR2 ligand was observed, Liu et al. confirmed that using CXCR2 CAR T cells could enhance
in vivo trafficking and tumor cytotoxicity [157]. Additionally, the fusion of IL-7 and CCL19 on the
CAR structure showed increased infiltration and exhibited high antitumor activity of CAR T cells [158].
Moreover, given the prevalence of IL-8 production in human cancer [159], this approach may find
broad applicability in the potentiation of CAR T cell immunotherapy for solid tumors. Accordingly,
the tumor chemokine–chemokine receptor network in neuroblastoma should be identified. Studies
showed that VEGF, IL-6, and IL-10 receptor (IL-10R) in neuroblastoma were associated with poor
outcomes [160–162]. Thus, the fusion of anti-VEGF, anti-IL-6, or anti-IL-10R into the CAR structure
may also be effective against neuroblastoma.

3.3.2. Myeloid-Derived Suppressor Cells

MDSCs are immunosuppressive immune cells found in the TME [163,164]. These MDSCs
enhance tumor growth and suppress the infiltration, proliferation, and tumor-killing activity of CAR
T cells [165]. These cells also express PD-L1 themselves, which contributes to immune escape in
various solid tumors [166]. Researchers found that the NKG2D ligand, a cytotoxicity receptor activated
by non-classical MHC molecules, is overexpressed in these tumor-infiltrating MDSCs [167,168].
A combination with NKG2D-CAR NK cells enhanced the tumor infiltration and expansion of CAR
T cells at tumor sites and prolonged CAR T cell survival compared with single treatment [98,169].
The mixed NKG2D-CAR NK and neuroblastoma-targeted CAR T cell treatment may safely enhance
antitumor activity against neuroblastomas that are supported and protected by MDSCs.

3.3.3. Tumor Extracellular Vesicles

Extracellular vesicles (EVs) are lipid bilayer vesicles released from the cells [170], which can be
classified into three major groups (exosomes, microvesicles, and apoptotic bodies), based on their
size [171]. Like cargo, EVs contain soluble proteins such as growth factors, cytokines, chemokines [172],
lipids, metabolites, and nucleic acids, including regulatory microRNAs (miRs) [171,173]. Several
studies reported that EVs play a crucial role in tumor–tumor [174,175] and tumor–immune
cell communications [176] and affect tumor cells’ phenotype and metastatic potential [177–179].
Neuroblastoma cells release EVs in their extracellular space [172]. Previous studies showed that
neuroblastoma EVs induced the production of pro-tumorigenic cytokines and chemokines such as IL-6,
IL-8, VEGF, and CCL2 by MSCs [180]. Additionally, neuroblastoma EVs also trigger a proinflammatory
response in monocytes and promote neuroblastoma chemoresistance [181]. Future studies aiming
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to reveal the exact roles of EVs in the communication between the neuroblastoma and the TME is
required to decipher a novel treatment strategy against neuroblastoma TMEs.

3.4. Combination of CARs

3.4.1. PD-1/PDL-1

Programmed cell death 1 (PD-1 or PDCD1) is a coinhibitory receptor expressed by all CAR effector
cells, including αβT [182], γδT [143], NKT [52], and NK cells [131]. PD-1 binds to its ligand, PD-L1
[or CD274], leading to a decrease in effector cell receptors’ downstream signaling and diminishing
T cell activation [183]. By using immunohistochemical analysis, Zuo et al. [184] reported that up to
one-third (11/31) of neuroblastoma patients showed positive PD-L1 expression in tumor tissues. It was
not surprising that PD-L1 positivity was associated with decreased overall survival [184]. PD-L1
expression in metastatic neuroblastomas also plays a key role in immune resistance mechanisms [185].
Several reports suggested that inhibition of PD-1/PD-L1 interaction by anti-PD-1 or anti-PD-L1 antibody
enhanced T cells’ killing efficacy against tumor cells [67,186,187]. Li et al. reported that combining
anti-PD-1 antibody with CAR T cells engineered to secrete PD-1 inhibitors can enhance expansion and
inhibitory effects in a human lung carcinoma xenograft mouse model [188]. The modified human CAR
T cell secreting PD-1 blocking scFvs (E27-secreting CAR T) had also been established and investigated
for therapeutic efficacy in hematopoietic malignancies as compared with their prototype CAR T cells.
The results showed that E27-secreting CAR T cells significantly eliminated tumor cells and increased
the survival of tumor-bearing mice [189]. Rupp et al. successfully established PD-1 deficient anti-CD19
CAR T cells combined with Cas9 ribonucleoprotein (Cas9 RNP)-mediated gene editing to disturb
PD-L1-positive tumor xenografts. The results showed that Cas9-edited CAR T cells can improve
the therapeutic efficacy for cancer immunotherapy in vivo [190]. Since PD-L1 is highly upregulated
in multiple solid tumors, PD-L1-targeting CAR T cells have been designed. A vector bearing the
extracellular and transmembrane regions of human PD-1 (dPD1z) and a CAR vector against PD-L1
(CARPD-L1z) have been established. Both dPD1z and CARPD-L1z effectively suppress the growth of
multiple types of tumors in patient-derived xenograft models [191].

The combination of anti-PD1 and CAR T therapy has been investigated in Phase I clinical trials
for hematological (NCT04134325, NCT03287817, NCT04337606) and malignant pleural mesothelioma
(NCT04577326). Likewise, the safety and efficacy of anti-PD-L1 combined with CAR T cells have been
investigated for B-cell malignancies (NCT03310619) and various types of solid tumor including cervical
cancer, sarcoma, and non-small cell lung cancer (NCT04556669). In this direction, checkpoint inhibition
may be turning the neuroblastoma microenvironment to respond to immunological treatment and
enhance the efficacy of CAR therapy against neuroblastomas as well [192,193].

3.4.2. Cytokines

Another approach to improve the potency of CARs is to genetically modify the effector cells
secreting pro-inflammatory or pro-proliferative cytokines, aiming to strengthen effector function,
proliferation, and persistence, and to alter the TME [136,194]. The cytokines IFN-γ, IL-2, IL-7,
IL-12, IL-15, IL-18, IL-21, and IL-27, promoted neuroblastoma regression via enhancing the efficacy
of effector cells, whereas VEGF, IL-6, and IL-10 induced neuroblastoma progression through their
immunosuppressive activities. Several studies reported that increasing the proinflammatory chemokine
IL-8 levels in patients was related to poor prognosis in neuroblastomas and other solid tumors [195,196].
This information is useful for the new design of CAR constructs or combination therapy to enhance the
efficacy of CARs against neuroblastoma.

To date, IL-15 cytokine has been studied for its ability to enhance CARs’ antitumor effects.
IL-15 plays a crucial role in T and NKT cells [52,197] via enhanced CAR antitumor activity and
survival in peripheral blood and tumor tissue [197]. This study suggested that the IL-15-conjugated
CD28-CAR structure reduced the exhaustion marker and improved the persistence and the tumor-killing
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activity of NKT-established CARs. Recently, Xin et al. utilized mice bearing neuroblastoma
xenografts to demonstrate that GD2-CAR IL-15 NKT cells enhanced in vivo persistence, increased
localization to tumor sites, and improved tumor control as compared with GD2-CAR NKT cells [52].
Interestingly, IL-15-conjugated GD2 CAR T cells reduced the expression of the PD-1 receptor [197].
These characteristics have made IL-15 a promising candidate for CAR T (or NKT) design for
neuroblastoma immunotherapy.

4. Conclusions and Future Perspectives

The strategies to improve CARs for use in neuroblastomas are mostly concerned with increasing the
antitumor activity and persistence of the infused CAR cells. Therefore, discovering new tumor antigens
that are more restricted to neuroblastomas with less neuronal toxicity is very necessary. The evaluation
of new target antigens such as B7H3 or o-acetyl-GD2 (oaGD2) is ongoing [198,199]. Researchers can
also modify the construct of CARs to be more effective by adding new costimulatory endodomains
such as 4-1BB or inducible T-cell costimulator (ICOS), which can be seen in the fourth generation of
CAR therapy [200,201]. Seeking a way to overcome the immunosuppressive TME in neuroblastomas is
a critical challenge in CAR studies. Various trials of CAR cell therapy in neuroblastomas, which relied
on the strategies mentioned above, are underway to validate improved outcomes. Alternatively,
administration of antitumor-related cytokines might enhance the immune response and amplify the
direct neuroblastoma cell-killing effect of CAR cells in a complex TME. For example, IL-15 has been
used to improve in vivo persistence and antitumor activity against neuroblastoma. Hence, another
area of interest in CAR structure design is the induction of cytokine expression.

Given all these findings, understanding the mechanism of how the TME affects the resistance of
CAR cells and inhibits the in vivo antitumor function is vastly relevant. The exploration of exosomal
miRs or exosome decoys released within the neuroblastoma TME may be essential alternatives to
overcome the barriers posed by the TME. Furthermore, by understanding the molecular mechanisms
within the TME, researchers can efficiently engineer molecular targeting CAR cells to restore TME
resistance sensitivity.

Lastly, a more practical approach for CAR-modified cell manufacturing is still needed. The ability
to manufacture prompt quantities of an efficacious cell product is required for neuroblastoma patients
with various conditions. In the end, good manufacturing might help to create highly active CAR cells
for patients with relapsed disease in time.

In summary, immunotherapy using CARs in neuroblastoma treatment has shown promising
efficacy and safety. To utilize the therapeutic benefits of CARs as the first line of immunotherapy in
patients with a high risk of relapsed neuroblastoma, several approaches have been explored further
to augment the antitumor function of CAR-modified cells in vivo. However, unlike the remarkable
success in hematological malignancies, various barriers restrict the effective use of this CAR treatment in
clinical trials, as indicated earlier. The strategies provided in this review may offer suitable approaches
to address the benefits of CAR therapy in neuroblastoma.
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