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The recent pandemic of coronavirus infectious illness 2019 (COVID19) triggered by

SARS-CoV-2 has rapidly spread around the globe, generating in severe events an acute,

highly lethal pneumonia and death. In the past two hitherto similar CoVs, the severe acute

respiratory syndrome CoV (SARS-CoV-1) and Middle East respiratory syndrome CoV

(MERS-CoV) also gained universal attention as they produced clinical symptoms similar

to those of SARS-CoV-2 utilizing angiotensin-converting enzyme 2 (ACE2) receptor and

dipeptidyl peptidase 4 (DPP4) to go into the cells. COVID-19may also present with overtly

neurological symptoms. The proper understanding of the expression and dissemination

of ACE2 in central and peripheral nerve systems is crucial to understand better the

neurological morbidity caused by COVID-19. Using the STRING bioinformatic tool and

references through text mining tools associated to Coronaviruses, we identified SAMHD1

as the probable link to neurological symptoms. Paralleled to the response to influenza

A virus and, specifically, respiratory syncytial virus, SARS-CoV-2 evokes a response that

needs robust induction of a subclass of cytokines, including the Type I and, obviously,

Type III interferons as well as a few chemokines. We correlate ACE2 to the pathogenesis

and neurologic complications of COVID-19 and found that SAMHD1 links to NF-κB

pathway. No correlation was found with other molecules associated with Coronavirus

infection, including ADAR, BST2, IRF3, IFITM3, ISG15, MX1, MX2, RNASEL, RSAD2, and

VPRBP. We suggest that SAMHD1 is the molecule that may be behind the mechanisms

of the neurological complications associated with COVID-19.

Keywords: COVID-19, neuroinvasion, ACE2, SAR-CoV2, string, bioinformatics, neurodegeneration, prognosis

INTRODUCTION

Coronaviruses (CoVs), which belong to Coronaviridae family, are enveloped RNA viruses that have
been associated with respiratory and extra-respiratory (e.g., enteric and neurological) diseases in
various animal species (1). Human coronaviruses (HCoVs) are commonly known to be accountable
for both lower and upper infections of the respiratory tract (2). In the last two decades, SARS-
CoV-1 andMERS-CoV caused severe acute respiratory syndrome coronavirus and the Middle East
respiratory syndrome, which triggered a large-scale public health response (3). In December 2019,
another novel coronavirus SARS-CoV-2-, labeled astempestively as COVID 19, emerged and has
been the cause of a worldwide pandemic (4). SARS-CoV-2 is found to have 75–80% remarkably
genomic similarity to SARS-CoV-1 and 50% genomic similarity to the Middle East Respiratory
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Syndrome coronavirus (MERS-CoV) (5). All three of these
viruses belong to the family of β-coronaviruses, with bats
being the possible common reservoir (6). These β-coronaviruses
typically produce respiratory and gastrointestinal symptoms in
human and animal hosts, respectively (5–7). However, there is
accumulating evidence that in addition to these two systems,
coronaviruses may conquer the central nervous system (CNS)
as well causing diseases affecting the neurological system. In
fact, patients of COVID-19 have been reported to exhibit
some symptoms of Guillain Barre syndrome (GBS) as well as
other neurological diseases (8–10). Pondering the high similarity
between SARS-CoV-1 and SARS-CoV-2, some preliminary
studies are suggesting that the potential CNS invasion may
partially be responsible for the mortality (other than morbidity)
associated with COVID-19 infection and have some late
neurologic sequelae (8, 11).

COVID-19 VIRUS OBTAIN ENTRY IN THE
INTERIOR OF THE HOST CELLS VIA ACE2
RECEPTOR

These enveloped viruses harbor a positive-strand RNA genome
with dimensions of up to 31 kb, which is representative of
the largest known genome including all RNA viruses (9). This
genome consists of specific genes coding numerous structural
and non-structural proteins. AlongWith these proteins, the Spike
or S protein possesses a unique biological significance (9). It
has been associated with properties such as tropism and its
modulation (9, 10). It is important to remember that the S units
of coronaviruses are crucial in aiming for a cellular receptor
that mediates infection in the target cells (10). Similar to SARS,
angiotensin-converting enzyme 2 (ACE2) has been recognized
as the functional receptor for SARS-CoV-2 as well (7, 12). The
intracellular penetration of SARS-CoV-1 and MERS-CoV utilize
the ACE2 receptor and DPP4, respectively. With the mRNA
programming several other proteins, SARS-CoV-2, uses S1 to
enable the attachment of the virion to the cellular membrane
by networking with the host ACE2 receptor (13). It has also
been elucidated that spike proteins belonging to all three CoV
are not identical, even though they are considered similar. The
ACE2 binding affinity identified in the 2019-nCoV spike protein
ectodomain is roughly 10–20-fold higher as compared to that of
the SARS-CoV spike protein, thus justifying the higher required
affinity of the COVID-19 spike protein to the human counterpart
(ACE2) receptor (13). ACE2, which is produced in multiple
human organs, including human upper airway epithelia, lung,
kidney, and gut parenchyma as well as vascular endothelia, is also
present in the brain (13–16).

The brain expression of ACE2 is indicative of the fact
that SARS-CoV-2 may obviously cause some symptoms of
neurological type via direct or indirect mechanisms (13).
Investigations have reported the occurrance of various
neurological symptoms. In the following section, we discuss
the distribution of ACE2 receptors in the brain and attempt to
address potential short term and long-term implications of brain
involvement of this infection using STRING as a bioinformatic
tool (17).

CLINICAL CHARACTERISTICS

COVID-19 patients have been delineated to exhibit symptoms
such as fever, myalgia, diarrhea, and cough (18). Typical clinical
presentation of SARS-CoV-2 consists of fever, dry cough, and
progressive respiratory distress at the onset of illness, which
may lead to lethal pneumonia. It has been estimated that
more than half of patients exhibiting dyspnea end up needing
intensive care (8, 18, 19). Respiratory failure, infections, and
cardiovascular events are the leading cause of mortality (8,
11, 20). Importantly, recent studies suggest that, in COVID-19
patients, in some cases, neurological symptoms occur as well (14,
19, 21). Furthermore, when present, neurological manifestation
of COVID-19 infection has been categorized as CNS and
peripheral nervous system (PNS) symptoms. CNS symptoms
consist of headache, dizziness, impaired consciousness, and even,
acute cerebrovascular disease (14, 22–26). PNS symptoms may
consist of hyposmia, hypoplasia, neuralgia, and hypogeusia.
Moreover, very recently, a patient with viral encephalitis has
been reported (26). Overall, these findings support the notion
that SARS-CoV-2 does possess neuroinvasive properties. It is
crucial to gain knowledge of the molecule, which is central in
its neurotropism.

NEUROTROPISM IS ONE COMMON
FEATURE OF COVS

Several studies have elaborated on the neuroinvasive nature
of CoVs (27). Animal studies have identified the brain as
a primary focus organ for infection in rodents (mice) that
are transgenic for the SARS-CoV receptor (ACE2) (28, 29).
Additionally, further studies of this model elucidated that that
the virus may enter the brain via the unique path of the olfactory
bulb, causing infection with a rapid, spread (transneuronal) to
connected cerebral areas. Death of the animal was assumed to be
from non-functionality and/or destruction of infected neurons,
notably those located in cardiorespiratory centers located in
the medulla oblongata. Studies demonstrated that neurons are
a highly vulnerable target for SARS-CoV (28). Neurological
damage has been confirmed in the infection of coronavirus,
such as in SARS-CoV and MERS-CoV, as well as, currently,
SARS-CoV-2 (30). Studies onMERS-CoV demonstrated that low
inoculum dosages of MERS-CoV viral particles were discovered
only in the brain of mice, while none in the lung, indicative of
the fact that mortality may have been associated with infection
in the CNS (31–33). In particular, the brainstem has been
shown to be severely infected by SARS-CoV (34, 35) or MERS-
CoV (20). Additionally, the autopsy findings in patients who
suffered from SARS-CoV infections have demonstrated robust
evidence of the existence of SARS-CoV by SARS genome
sequences being restricted to the cytoplasm of various neurons
in the hypothalamus and brain cortex. Also, edema (cytologic
hydropic degeneration) and scattered red disintegration of the
neurons was reported in autopsies as well as suggestive of the
fact that these viruses are capable of invading the nervous
system (34).
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NEUROINVASION OF SARS-COV-2 AND
SAMHD1

The idea has been put forth concerning how specific viruses
enter into the nervous system. Numerous studies suggest that
at first, certain CoVs colonize peripheral nerve terminals,
and subsequently enter CNS via a synapse-connected path
(35–38). Some other CoVs have been reported to enter the
brain through trans-synaptic transfer (8). As far as SARS-
CoV and MERS-CoV are concerned, experimental studies of
animal models showed that SARS-CoV and MERS-CoV, when
given through the nose, possibly invade the cerebrum via
the olfactory nerves, spreading to some regions of the brain
including thalamus and brainstem (8, 20, 34). Notably, it has
been suggested that ACE2 olfactory (epithelial) support cells
and stem cells produce ACE2 genes, as do cells located in the
epithelium of the nasal respiratory tract in patients afflicted
with COVID-19, which may show some parallels with attention-
deficit/hyperactivity disorder (39–41). So far, in the light of
the evidence provided enough, it is conceivable that SARS-
CoV-2 is neuroinvasive, and it uses ACE2 as receptors to
penetrate the cell (13). We target the ACE2 distribution in
the brain, based on literature and discuss various associated
pathways, which can potentially cause mortality in COVID-19
infected patients.

Evaluating protein -protein interactions can be tremendously
essential in understanding the underlying biological mechanisms
of any disease (42). Protein-protein interactions possess an
integral role in several biological functions which include
metabolic and signaling pathways’ regulation, replication of
DNA, and immunological recognition, among others (43). In
addition to providing a reasonable analysis of interactions,
STRING also offers a full set of images of the interaction network.
It utilizes domains, pathways, and Gene Ontology annotations
in order to support the functional enrichment of network
proteins (44, 45). It is a bioinformatic tool and Text-Mining
tools belonging to the Swiss Institute of Bioinformatics (SIB),
European Molecular Biology Laboratory (EMBL), and Novo
Nordisk Foundation Center Protein Research (CPR). Therefore,
we used the bioinformatic tool STRING and references through
text mining tools that has been correlated with Coronaviruses.
Using STRING, we discovered SAMHD1, which is the acronyme
for “sterile-α-motif and HD domain-containing protein 1” as the
probable link to neurological symptoms. Equated to the response
to influenza A virus and, specifically, respiratory syncytial virus,
SARS-CoV-2 provokes a response that lacks induction of a
subgroup of cytokines, including types I and III interferons as
well as a few chemokines. In the setting of pathogenesis and
neurologic complications of COVID-19, we could not find that
SAMHD1 had links to ADAR, BST2, IRF3, IFITM3, ISG15, MX1,
MX2, RNASEL, RSAD2, and VPRBP. SAMHD1 plays a role in
the control of the innate immune response. The coded protein is
upregulated in reaction to viral infection and may be involved
in the intercession of tumor necrosis factor (TNF)-α pro-
inflammatory responses.

POTENTIAL HOST RESPONSES TO
COVID-19

So far, we have established the potential invasion of the brain
by COVID 19. At this point, It is also essential to consider the
host response to this virus from the therapeutic perspective (2).
It is commonly known that one core function of the innate
immune system is to find virologic infections and induce antiviral
effectors to prevent the spread of disease and activates antigen-
specific adaptive response (46). As indicated above, COVID 19
lung tissue shows that SARS-CoV-2 evokes a distinctive response
of transcriptional type, which lacks Types I and III interferons
(IFN-I and IFN-III) expression (47). Along with this, there is
an induction of well-categorized direct effectors of the innate
immunologic response, including SAMHD1, MX1, IFITM3, and
TRIM25, as well as the induction of viral sensors of RNA
type such as RIG-I and the OAS1-3 genes (47). It is to note
that previous studies on CoVs have also indicated that CoVs
prevent IFN induction at transcription level as well as subsequent
antiviral gene activation (48). Typically speaking, the innate
response consists of signaling cascades that are activated upon
the detection of the foreign pathogens in the host (49). Generally,
during a viral infection, cytoplasmic sensors of protein type, such
as RIG-I (retinoic acid-inducible gene I) and MDA5 (melanoma
differentiation-associated protein 5), bind to viral single-stranded
RNA and/or, remarkably, double-stranded RNA (dsRNA) and
signal through a protein called MAVS (mitochondrial antiviral
signaling protein) (42, 43). Initiation of MAVS results in the
subsequent activation of TBK1/IKKε, which are TANK-binding
kinase 1 (TBK1) as well as the homolog IκB kinase (IKK) epsilon
(IKKε, originally IKKi), two kinases which phosphorylate IRF3
(Interferon Regulatory Factor 3) to induce its dimerization, and
import into the nucleus (43). TBK1/IKKε have been studied
profusely in relation to their functions in inducing the type
I interferon response. Nuclear IRF3, along with several other
proteins, leads to transcription and induction of type I IFN to
warn neighboring cells of the infection (44). As soon as IRF3
induces transcription of IFN-I, this potent cytokine is emitted
from the cells. The NF-κB pathway is also remarkably activated
via these mediators. Activation of classical NF-κB is essential
for a successful immune response as well as for the survival
and proliferation of cells (45). Interestingly, exogenous SAMHD1
expression in cells and, alternatively, SAMHD1 reconstitution in
knockout cells have been shown to quell NF-κB activation and
IFN-I induction, as specifically reported (50).

SAMHD1 is a vertebrate protein. It is engaged in the control
of cellular deoxyribonucleoside triphosphates (dNTP) pool by
catalyzing the hydrolysis of dNTP into 20-deoxynucleoside and
triphosphate products (51). SAMDH1 has been reported to be
a key mechanism of cell proliferation and is an essential player
in dNTP homeostasis. SAMHD1 is a dNTP hydrolase which
reduces the concentration of intracellular dNTP pools (52, 53).
It has been suggested that the inhibitory effect of SAMHD1 on
HIV-1 replication is due to its dNTPase action, or it has also been
suggested that SAMHD1, or an associated protein, may limit

Frontiers in Neurology | www.frontiersin.org 3 September 2020 | Volume 11 | Article 562913

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Khan and Sergi SAMHD1 and COVID-19

HIV-1 replication through its RNase activity (54). In Figure 1

is shown an interactive panel of a number of proteins linked
to SAMHD1 using version 11 of STRING. In mammalian cells,
the rates of dNTPs are thought to be controlled by coaction of
synthesis and degradation. In this process, synthesis of dNTPs
involves two corridors, (1) de novo synthesis of dNDPs by
ribonucleotide reductase (RNR) in the cytosol followed by (2)
phosphorylation to dNTPs by a nucleoside-diphosphate kinase
(55). Rescue of deoxyribonucleosides occurs by two parallel
sets of deoxy-nucleoside and -nucleotide kinases in both the
mitochondria and cytosol (55).

Along with SAMDH1, DCK (deoxycytidine kinase), DGUOK
(deoxyguanosine kinase), PPP2R5E (Serine/threonine-protein
phosphatase 2A 56 kDa regulatory subunit epsilon isoform),
VPRBP (Vpr (HIV-1) binding protein), and TK2 (thymidine
kinase 2) may play unique roles in this process. In fact, VPRBP
has a role in cell growth, as it regulates the G1 phase of cell
cycle and is crucial for the achievement of DNA replication
in the S phase (56, 57). PPP2R5E has been demonstrated
to have multiple signaling pathways and is vital during early
development (58). While TK2, DGOUK, and DCK are involved
in the deoxynucleoside salvage pathway (59–61), it is to note
that VprBP has been linked with SAMDH1 in the context of its
antiviral activity against HIV. Mutations of TK2 and DGOUK
have been linked with SAMDH1 in the context of AGS elated
neurological symptoms (56, 59). Interestingly, regulation of their
function and the DGOUK mutations have also been known to
cause a specific type of mitochondrial encephalopathy (61). Thus,
it is conceivable that a SAMDH1 and its interactions with these
proteins, as well as the potential impairment of these interactions,
are essential in the antiviral response as well as neurological
symptoms associated with might be involved in COVID 19.

Current evidence suggests SAMHD1 is an effective antiviral
restriction factor suitably targeting numerous other medically
relevant viruses (62). However, it is to note that the study on
CHIKV and ZIKV reported that SAMHD1 might be proviral as
it promotes their replication. This study found that Vpx/VLP-
mediated SAMHD1 deterioration leads to a conspicuous
decrease in the replication and, notably, virion production by
both viruses. While the same treatment reduced the replication
of CHIKV (Chikungunya virus, an alphavirus, replicon, it was
also observed that the over-expression of SAMHD1 facilitated
CHIKV and ZIKV (Zika virus) replication (63). It is worth
mentioning that unlike HIV-1 and HBV, in CHIKV and ZIKV,
the reverse transcription step is not needed for their replication,
hence could be the reason for such contrasting results. Also,
unlike HIV, in CHIKV and ZIKV the presence of dNTP
(deoxynucleoside triphosphate) is not required. Furthermore,
it has also been demonstrated that SAMHD1 interacts with
the IKKε and IFN regulatory factor 7 (IRF7), thus causes the
suppression of the IFN-I induction pathway by reducing IKKε-
mediated IRF7 phosphorylation. Also, SAMHD1 inhibits NF-
κB activation by interacting with NF-κB1/2, thereby reducing
phosphorylation of the NF-κB inhibitory protein IκB (50, 63).

Mechanistically, SAMHD1 promotes an inhibiton of the NF-
κB activation by interacting with NF-κB1/2 and decreasing
phosphorylation of the NF-κB inhibitory protein IκBα. Also,
SAMHD1 interacts with IKKε and IRF7, leading to the

suppression of the IFN-I induction pathway by actively reducing
IKKε -mediated IRF7 phosphorylation. The intimate interactions
of endogenous SAMHD1 with NF-κB and IFN-I pathway
proteins have been specifically validated in both human
monocytic cells and primary macrophages (63).

Notably CHIKV and ZIKV both show neurological symptoms
as well (63). It is important to recall that numerous patients
with Zika fever have also been reported to have symptoms of
Guillain-Barre Syndrome (GBS) (64). Hence it can be assumed
that SAMDH1 might be a commonality and a causative factor
among these viral infections. Along with them, SAMDH1
has been associated with several other disorders that show
signs and symptoms of neurological involvement (65–68).
These include Aicardi-Goutieres syndrome (AGS), which is
an autoimmune condition. Aicardi-Goutieres syndrome (AGS),
which is caused by irregular type I IFN responses, results in
physical and intellectual disabilities. AGS patients end up with
mild to severe mental or physical impairments. Additionally,
SAMHD1 mutation has been reported to play essential roles in
immunoregulation and cerebral vascular homeostasis. It has been
thought that cerebrovascular events (e.g., stroke) associated with
specific mutations in SAMHD1 extend the phenotypic spectrum
of AGS (69). Various inflammatory vasculopathies of the brain
that may lead to cerebrovascular stenoses and early stroke have
been correlated with SAMDH1 as well (70). Moreover, SAMHD1
expression has been associated with neurological symptoms
of HIV as well (71). Also, mutations of SAMDH1 have been
correlated with the pathogenesis of neurogenerative disorder
as well (64). Overall, these findings suggest that SAMDH1 is
involved in various diseases related to the brain.

Like other innate immunity proteins, SAMDH1 shows a
crucial role in shaping innate and adaptive immunological
responses to protect animals against viruses by disrupting
the virus’ life cycle (52). In response to that, viruses generate
proteins that bind these host factors and alter their activity.
This setting leads to an evolutionary conflictual event as
immunity and virus proteins exquisitely adapt to prevent and
restore binding, respectively (52, 54). One such adaptation
has been reported to occur in a region of SAMHD1
that controls its activity, which influences its enzymatic
properties suggesting that evolutionary conflictual eventhas
engaged modulation of SAMHD1 regulation and function
and has swayed both SAMHD1’s dNTPase and antiviral
actions (52, 54, 63).

There is evidence of SAMDH1 being both antiviral and
proviral (50, 63). Thus, in the perspective of COVID 19
infection, it is profoundly essential to improve the knowledge
of how SAMHD1 executes its activity in CNS as well as on
the level of the whole organism. SAMHD1 plays a crucial
role in shaping innate and adaptive immune responses. Since
SAMHD1 has been demonstrated to efficiently inhibit a wide
variety of viruses (52), many of these viruses, in turn, have
developed various mechanisms to conquer SAMHD1 imposed
block to viral replication (52, 63). Moreover, the NFκB signaling
pathway has been shown to play a role in previous CoVs
(72, 73). The fact that SAMDH1 has been shown to have
proviral activities by suppressing the NFκB signaling pathway is
significant. It is imperative to understand the full mechanisms
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FIGURE 1 | Network representation of proteins linked to SAMHD1 using version 11 of STRING. Each gene has a unique function as well as interacts with SAMDH1 in

maintaining the concentrations of deoxyribonucleoside triphosphates (dNTPs) by regulating synthesis and degradation in DNA synthesis. Mutations of some of these

genes have been correlated with AGs (Aicardi-Goutières syndrome (AGS) is a rare disease, characterized by genetically determined early-onset progressive

encephalopathy). Thus, we hypothesize that these interactions are essential in the context of neurological symptoms associated with COVID 19.

in the pathogenesis of COVID 19, which may help develop new
drugs and modulate SAMHD1 activity.

ACE2 LOCALIZATION IN THE HUMAN
BRAIN

Evidence of Expression and Distribution of
ACE2 in Brain
ACE2 that has been established as the functional receptor for
SARS-CoV-2 is a transmembrane monocarboxypeptidase (8, 13,
74). It is significantly important to note that in addition to
other human organs, kidneys, lungs, heart, and testes, it has
been reported to be expressed in the brain in several databases
as well as in the scientific literature (75). Initially, ACE2 was
sequenced and cloned from the human failing heart and human
lymphoma cDNA libraries (76, 77). The distribution of ACE2 in
the brain was disputed in the beginning since original reports
were unable to detect carboxypeptidase in this tissue (78). Later,
studies of animal models exhibited the widespread presence of
ACE2mRNA and protein in the mouse brain (75). Animal model
studies suggested that the ACE2 presence in nuclei has been
identified in the central management of cardiovascular function
including subfornical organ, paraventricular nucleus (PVN), the
nucleus of the tractus solitarius (NTS), and rostral ventrolateral
medulla (RVLM) (79, 80). The presence of ACE2 was also
reported in non-cardiovascular areas, which included the motor
cortex and raphe. Another study reported the occurrence of

ACE2 mRNA and protein in the mouse brainstem (81). In
addition, recent studies have also described the presence of ACE2
mRNA in the ratmedulla oblongata and mouse brain (82, 83).

ACE2, a Member of Brain RAS May Have
Cardioprotective, and Cerebro-Protective
Effects
It is well-established the fact that ACE2 is an elegant and integral
member of the renin-angiotensin system (RAS) (84). In the body,
RAS functions to regulate blood pressure, kidney function, and
salt and water homeostasis (84). Importantly, there is a RAS in
the brain, as well (85). Brain RAS is similar to the other tissue
RAS (86). ACE2 has been reported to be expressed specifically
in the areas controlling central blood arterial pressure (78).
Several studies have revealed that brain ACE2 has been involved
in the progression of neurogenic hypertension, the molecular
mechanisms, by which this protective effect occurs, seem to
include the regulation of angiotensin (AT) receptors expression.
ACE2 is capable of adjusting the AT2/AT1 and Mas/AT1 ratios
so that it opposing the promotion of hypertension. In addition,
animal model demonstrated that nitric oxide (NO) signaling
pathways may also be influenced by ACE2 over-expression in the
CNS as demonstrated by an overall reduction of hypertension of
neurogenic type in syn-hACE2mice (78, 79, 84). Therefore, it has
been suggested that since ACE2 possesses amonitoring role in the
central regulation of cardiovascular function and blood pressure
(86), ACE2 in the brain is a potential therapeutic target for
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hypertension and other cardiovascular diseases that result from
an overactive RAS (80). This fact is significantly crucial in the
context of COVID-19 because, apart from pneumonia, COVID-
19 leads to acute myocardial injury and, progressively, chronic
damage to the cardiovascular system (87). It is conceivable
that cardiovascular protection is a vital part of treatment for
COVID-19 (87, 88). Targeting ACE2 on the central regulation of
cardiovascular function may at least partially be helpful in the
treatment of COVID-19.

Also, ACE2 has a peripheral other than cardio-cerebral
vascular protection effect (86, 89). The significance of peripheral
ACE2 in regulating blood pressure is well-established, but
fewer studies emphasize that ACE2 plays a key role in
regulating blood pressure (15, 16, 90). Uncharacteristically
elevated blood pressure increases the risk of cerebral hemorrhage
(26). It is to note that death associated with cerebrovascular
disease has been reported in patients suffering from COVID-
19 (14). Activation of ACE2/Ang (1–7)/MASR axis has also
been shown to improve neurological deficits as it has anti-
inflammatory and antioxidative effects in the ischemic insult.
Thus, ACE2/Ang (1–7)/MASR axis is considered to play a
protective role in the treatment of ischemic stroke, as well as
other cerebrovascular events (86). Currently, the neuroinvasive
propensity of COVID19 is well established (8, 13, 28, 91, 92).
Also, there is evidence from animal studies that ACE2 receptors
are present in areas such as medulla and brainstem (82, 83).
Therefore, as suggested previously, the pathogenesis SARS-
CoV-2-induced respiratory failure may also partially stem from
the brain.

Long Term Complication of COVID 19
Invasion in the Brain
Although they are known as respiratory pathogens, the
neuroinvasive and neurotropic properties of CoVs have been
demonstrated in mice (93–95). Also, studies reveal that
a human CoV (OC43) is capable of infecting and then
persisting in human neuronal and glial cells, subsequently
activating glial cells to deliver pro-inflammatory mediators and
causing neurodegeneration (93–97). COVID-19 appears to be
neuroinvasive using the ACE2 functional receptor (20–23).
As mentioned above, ACE2 is an important component of
RAS, and pathways associated with it have been correlated
with Alzheimer disease as well as other neurodegenerative
diseases (74, 81, 91). Dysregulated brain RAS has been
associated with neurodegeneration due to the strong evidence
for initiating a cascade of events leading to increase in oxidative
stress, apoptosis, and neuroinflammation causing progressively
neurodegeneration. Degenerative diseases of the brain that
have been linked to altered RAS include Parkinson disease,
Alzheimer disease, Huntington disease, multiple sclerosis,
amyotrophic lateral sclerosis, traumatic brain injury, other
than stroke as mentioned above (86, 98, 99). Moreover,
the dysregulation of the antiviral response is another factor
that has been associated with neurodegenerative disease (100,
101). It has been shown that products of certain genes may
have potent antiviral activities, and may have deleterious

effects when their expression is not appropriately regulated.
There is evidence of mutations that have been linked to
neurological conditions occurring in genes related to the
antiviral response. Among such genes, SAMDH1 is probably the
one. Notably, SAMDH1 has been related to Aicardi-Goutieres
syndrome—a congenital disease that includes neurodegeneration
as one of its main symptoms (62). As mentioned above,
SAMDH1 appears to control the NF-κB pathway. Importantly,
NF-κB has been engaged in the pathogenesis of a range
of neurodegenerative disorders, including Alzheimer disease,
Parkinson disease, Huntington disease, diabetic neuropathy,
AIDS-dementia, and amyotrophic lateral sclerosis (102–104).
Taken together, based on its similarity with other CoVs, and
the fact that COVID 29 is neuroinvasive and its functional
receptor is ACE2, and also because SAMDH1 is upregulated
in the pathogenesis of COVID 19, it can be hypothesized
that the SARS-CoV-2 entry into the brain will result in
long-term neurological sequelae and may ultimately lead to
neurodegenerative changes.

Although text mining and databases are useful to suggest
mechanisms, there is one limitation of our study is that it
relies on computational methods. Despite a sophisticated analysis
was carried out, this study may not obviously predict the
postulated interactions with 100% accuracy (42–45). Since the
pandemic has been declared in March 2020, almost 19 million
global cases and over 700,000 global deaths have been recorded
on August 6, 2020. In these months several laboratories have
also collected plasma as well as other body fluids that will be
key in testing several hypotheses and confirm the presumed
role of SAMDH1 in triggering the neurological symptoms of
COVID 19 infection.

CONCLUSIONS

There is accumulating evidence that COVID-19 involves the
brain. Not only studies have reported mild neurological
symptoms, but encephalitis and cerebrovascular disease have
been reported. Most struggle in the human war against this
new virus revolves around the fact that COVID 19 is a
respiratory pathogen. Mortality associated with this virus is
because of respiratory failure, cardiovascular damage, and
cerebrovascular accidents. In this study, we have explored
the role of SAMDH1 as the potential link between SARS-
CoV-2 infection and neurological illness. We discussed the
distribution of ACE2 in CNS and its vital role regulation of
cardiovascular function and, specifically, blood pressure in the
brain (centrally) and at the periphery. We assume that detailed
neurological and neuropathological investigations are ongoing.
Establishing a therapeutic strategy that targets the brain ACE2
may improve the outcome of COVID-19 patients. Interestingly,
the same SAMDH1 has been associated with various neurological
diseases, including Aicardi-Goutieres syndrome (AGS) as well
as GBS, which has been associated with Zika Virus infection.
We strongly suggest that SAMDH1-targeting COVID-19 may
be at the basis of both early neurological symptoms and late
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neurodegeneration and our neuropathological team is open to
any cooperation.
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