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Abstract

Fear conditioning paradigms are critical to understanding anxiety-related disorders, but

studies use an inconsistent array of methods to quantify the same underlying learning pro-

cess. We previously demonstrated that selection of trials from different stages of experimen-

tal phases and inconsistent use of average compared to trial-by-trial analysis can deliver

significantly divergent outcomes, regardless of whether the data is analysed with extinction

as a single effect, as a learning process over the course of the experiment, or in relation to

acquisition learning. Since small sample sizes are attributed as sources of poor replicability

in psychological science, in this study we aimed to investigate if changes in sample size

influences the divergences that occur when different kinds of fear conditioning analyses are

used. We analysed a large data set of fear acquisition and extinction learning (N = 379),

measured via skin conductance responses (SCRs), which was resampled with replacement

to create a wide range of bootstrapped databases (N = 30, N = 60, N = 120, N = 180, N =

240, N = 360, N = 480, N = 600, N = 720, N = 840, N = 960, N = 1080, N = 1200, N = 1500,

N = 1750, N = 2000) and tested whether use of different analyses continued to produce devi-

ating outcomes. We found that sample size did not significantly influence the effects of

inconsistent analytic strategy when no group-level effect was included but found strategy-

dependent effects when group-level effects were simulated. These findings suggest that

confounds incurred by inconsistent analyses remain stable in the face of sample size varia-

tion, but only under specific circumstances with overall robustness strongly hinging on the

relationship between experimental design and choice of analyses. This supports the view

that such variations reflect a more fundamental confound in psychological science—the

measurement of a single process by multiple methods.
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Introduction

Fear conditioning paradigms are critical to understanding and improving treatment for several

psychiatric disorders, including post-traumatic stress disorder (PTSD) and anxiety [1, 2]. Fear

extinction occurs when a previously conditioned fear stimulus (conditioned stimulus, CS+) is

repeatedly presented without aversive reinforcement, causing new safety information to com-

pete with pre-existing fear memory [3–5]. Patients with anxiety-related disorders show deficits

in extinction learning, which is believed to facilitate disease progression and maintenance [6,

7]. The rate of an individual’s fear extinction learning can be estimated by the decrease in

threat response to the unreinforced CS+ when compared to the safety signal (CS-), typically

indexed via various physiological measures [8], with skin conductance responses (SCRs) being

most commonly used. Extinction learning has been subject to extensive research on its neuro-

biological basis [9–19], and serves as a highly informative framework for investigating pharma-

cological and psychological adjuncts to exposure therapy for PTSD, and deficits associated

with treatment outcomes [20–27].

The replicability crisis has inspired a growing movement dedicated to improving the quality

of research practices in psychological science [28–32]. These issues of replicability extend to

research on human fear conditioning [8]. Importantly, inconsistent research practices in fear

conditioning might explain the contradictory and null outcomes identified across recent large-

scale studies and meta-analyses [7, 33–36]. These limitations have been identified for several

methodological domains including, but not limited to, study design [37, 38], pre-processing of

psychophysiological data [39–42], and statistical analysis strategies [43–46]. It is increasingly

clear that issues such as these undermine the replicability of fear conditioning research, and

the subsequent translation of experimental findings to clinical outcomes.

Our previous report [54] was concerned with the effect of analytic strategy on robustness.

Simply put, ‘robustness’ in psychology refers to the ability for a result to be consistent across

multiple arbitrary statistical specifications [28]. In our case, arbitrary specifications associated

with inconsistency in analytical strategies and we demonstrated stark divergence of effect sizes

when different statistical methods were used to index extinction [47]. Specifically, a large data

set was resampled to create 40 data sets of N = 60 rows with three groups per sample. Different

statistical strategies, all intending to measure extinction, were compared against each other

across the 40 data sets, but varied with respect to the numbers of trials included the stages of

the phases the trials were drawn from, and whether the data was analysed trial-by-trial or aver-

aged. We tested the effect of these variations on robustness of studies that compared acquisi-

tion learning to extinction learning, change in responding during extinction (e.g., early to late

extinction), and where extinction was treated as a single effect estimate. We showed that the

rank order of these strategies varied significantly depending on the data set, which illustrates

less than desirable robustness of these statistical tests [47]. However, solutions to the issue of

inconsistent analytic strategy remain unexplored.

In the current study, we aimed to investigate one plausible solution—increased sample size.

Increasing sample size will increase the power of a study—that is, the ability to detect a specific

effect size within a sample. It has been observed that many fear conditioning studies may be

underpowered due to low samples [39] and it is possible that improving the precision of physi-

ological measures through more advanced pre-processing could be sufficient to improve

robustness of fear conditioning and extinction outcomes [39–41, 48]. By increasing power, we

increase the probability of detecting the effect, and it is possible that heterogeneity of outcomes

can be caused by underpowered studies that do not accurately capture this effect. However,

heterogeneous statistical analyses have been reported to produce misleading or false results

independent of power considerations [28, 49].
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To investigate if larger samples could address the analytical issue we previously identified,

we bootstrapped data from existing data sets, obtaining rank orderings of previously used sta-

tistical methods for indexing fear acquisition and extinction [47]. In our previous study, each

resampled data set had a sample size of N = 60 rows, broken into three groups during analysis.

Here, we resampled from our real data (N = 379) with replacement to create bootstrapped

samples of N = 30, 60, 120, 180, 240, 360, 480, 600, 720, 840, 960, 1080, 1200, 1500, 1750, and

2000 observations, with each row being equivalent to one subject. These numbers were chosen

to cover a broad range of plausible sample sizes used in human fear conditioning research. We

performed two experiments—in the first, group allocation was randomised, and no group-

level effect was anticipated. In the second, we added a group-level effect to our bootstrapped

data. The group level effect was varied across three conditions, which were roughly based on

[50] with one group who had high responding during acquisition and rapid extinction,

another group who had lower responding during acquisition and rapid extinction, and

another group who did not extinguish the CS+ response. This work represents a significant

contribution above our previous study because (a) we create much larger samples spanning a

wide range of simulated sample sizes; and (b) we test the results of this and our previous work

against the presence of a simulated group-level effect. Testing our hypotheses with the inclu-

sion of simulated group-level effects is a significant contribution because most fear condition-

ing studies will observe group differences and our original analyses were likely not

representative of these studies; hence, the effect of heterogeneity of analytical methods in stud-

ies with groups effects is unknown. In this extension of our previous work, we therefore aimed

to identify possible boundary conditions of an originally bleak report of the robustness of sta-

tistical analysis pipelines for fear conditioning research.

We hypothesised that larger samples would not improve robustness of rank ordering

between analytic strategies in either condition, because we believe that the issue of analytical

heterogeneity is a fundamental violation of replicability that cannot be solved by increasing

power alone. We hypothesised that the type of simulated effect would vary the robustness of

different statistical strategies because some strategies are used to examine different stages of

learning during fear conditioning tasks.

Methods

The current manuscript uses secondary data analysis strategies on existing datasets, and did not

require further ethical approval. The original studies received ethical approval from the Univer-

sity of Tasmania Social Sciences Human Research Ethics Committee. The fear acquisition and

extinction procedures, as well the data set, for this study are identical to those of our previous

study [47]. Briefly, six data sets gathered over seven years were resampled with replacement to

form new samples. Participants reported no significant physical illnesses, no history of head

trauma or loss of consciousness, no current or significant historical use of illicit substances, and

no heavy alcohol use or dependence. Of the 379 participants included in this dataset, N = 51

(13.46%) had a diagnosis of PTSD (clinician diagnosed) or had a score above 40 on the PCL-IV

or above 30 on the PCL-5 [51, 52]. No other psychiatric diagnoses were permitted in any of the

studies. PTSD cases were retained in the sample in order to remain consistent with the previous

study [47]. Since the predictor variable in these studies are the analytical strategies themselves, it

is unlikely that systemic variability in participant characteristics would affect results [47].

Fear conditioning paradigm and equipment

As in our previous report [47], data was obtained from five trials of acquisition learning and

ten trials of extinction learning (split into early and late extinction phases of five trials each,
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which were separated by an instruction screen) across a total of 379 participants across the six

studies. Acquisition and extinction phases were also separated by an instruction screen, which

in all cases read “In the following phase, you may or may not receive shocks. Please press any

key to continue”. For each trial, a CS+ (a coloured circle) and a CS- (a different coloured circle)

were presented on a computer screen for 12s with intertrial intervals of 12-21s (M = 16s). In all

studies, skin conductance was recorded from the first and third fingers of the left hand in

micro-Siemens (μS) using a 22 mVrms, 75 Hz constant-voltage coupler (ADInstruments). A

stimulus isolator (ADInstruments) was placed on the right hand and delivered a 500ms electric

shock immediately following the CS+ offset during acquisition learning. No shocks were deliv-

ered during the extinction learning phase. Skin conductance responses (SCRs) were scored

using a custom-coded peak scoring method which subtracts the average skin level 2s prior to

CS onset from the peak conductance occurring 0.9-5s following CS onset, which scores the

first interval response, and it should be noted that studies score skin conductance responding

differently [53]. A bidirectional Butterworth filter was applied to the raw SCR trace to reduce

noise.

Resampling procedure

Data was bootstrapped (i.e., resampled with replacement) using rows of participant data [54].

Using bootstrapping, it is possible to validate the accuracy of statistical techniques across a

range of sample sizes, and this has been done in previous literature assessing the effect of sam-

ple size on correlation, factor analysis, principal components analysis, prognostic modelling,

and other statistical techniques [55–58]. Data was resampled by row such that all CS+ or CS-

responses from a particular phase (e.g., acquisition) were resampled together. New data sets of

N = 30, N = 60, N = 120, N = 180, N = 240, N = 360, N = 480, N = 600, N = 720, N = 840,

N = 960, N = 1080, N = 1200, N = 1500, N = 1750, and N = 2000 rows were created and a

‘Group’ variable consisting of equal but random allocation of belonging to the number 1, 2, or

3. Therefore, no group-level effects were expected in this analysis. Sample sizes were chosen to

cover a wide range of possible study power in the simulated datasets. These sample sizes were

determined arbitrarily due to current debate concerning accurate power determination of fear

conditioning research using skin conductance responding [39]. Three groups were used

because in our field of research (PTSD) it is typical to examine a PTSD group against both a

trauma-exposed control and a non-trauma exposed control group [59].

For the second experiment, scores were modified for the third Group upon bootstrapping

such that a higher but gradually decreasing CS+ response (relative to CS- response) was

expected in each phase. Data was produced that resembled the three fear conditioning trajecto-

ries reported by [50]. These trajectories were replicated in our own clinical fear conditioning

data (manuscript in preparation), and group-level simulated effects were created in the data

from the current report based on the difference between each of the three trajectories and our

bootstrapped data that did not have a simulated group-level effect. The modifications to pro-

duce the simulated effects are described below. Scores for Group 3’s CS+ were modified to be

1, 0.8, 0.6, 0.4 and 0 standard deviations higher than their bootstrapped values during trials

1–5 of acquisition; 2, 1.5, 1, 0.8, 0.5 standard deviations higher than their bootstrapped values

during trials 1–5 of early extinction; and 1, 0.8, 0.5, 0.2, and 0 standard deviations higher than

their bootstrapped values during trials 1–5 of late extinction. Two other distinct group-level

effects were simulated for Group 3, with CS+ modified to be 0, 0.3, 0.3, 0.3, and 0.3 standard

deviations higher during acquisition, 1, 1, 1, 1, and 1 standard deviations higher during early

extinction, and 1.5, 1, 0.5, 0.1, and 0 standard deviations during late extinction higher than the

average data for Group 3a; and 0, 0, 0.3, 0.3, and 0.3 standard deviations higher during
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acquisition, 2, 1.5, 1, 0.5, and 0.3 standard deviations higher during early extinction, and 1.5, 1,

0.5, 0.1, and 0 standard deviations during late extinction higher than the average data for

Group 3b. These simulated effects were achieved by adding the same value (e.g., 2 standard

deviations above the mean score for trial 1) to all scores individually within that group. There-

fore, all analyses in this study were conducted three times with Group 3 consisting of one of

the three sets of simulated effects. An illustration of an example of this data is provided in Fig

1. Simulated effects were roughly based on the findings of Galatzer-Levy et al. (2017) [56], who

identified three distinct trajectories during acquisition and extinction phases in fear condition-

ing data. In Fig 1, Group 3 is the trajectory that shows high differential acquisition and rapid

extinction, Group 3a is the trajectory that shows moderate differential acquisition and rapid

extinction, and Group 3b is the group that does not show extinction.

Types of analytical strategies included in comparisons

Further analyses were conducted using base R. Analytic strategies were identical to those used

previously [47] and are summarised in Table 1. As described previously, some strategies aver-

aged trials or subtracted CS- from CS+ scores, whereas others did not. These details are

described in Table 1. The goal of these strategies was to either: (1) determine the change in

SCRs from acquisition to extinction learning (CON-EXT); or (2) determine a static measure of

extinction learning (EXT) or (3) determine the change in SCRs across the extinction learning

phase (EXT-EXT). Since the goals of the strategies differed in these ways, we divided strategies

into each of these categories and compared outcomes only within each category.

Data analysis

For each strategy, we compared the highest order group-level interaction via its computed par-

tial eta squared (ɳp2) effect size. For each sample size, bootstrapped (1,000 times) Kendall non-

parametric ranked order correlation coefficients (Tb) and associated 95% bootstrapped confi-

dence intervals were computed between analytical strategies of each of the three categories,

based on the ɳp2 effect sizes generated. Therefore, each sample size (e.g. 30 “participants”) was

resampled 100 times to generate a rank order (Tb) of ɳp2 across the different analysis strategies,

and this procedure was bootstrapped 1,000 times to generate mean Tb and 95% confidence

intervals. The mean Tb and its associated confidence intervals were the average correlation

between one strategy and each of the other strategies separately (e.g., creating three mean Tb
values for Strategy 1 of the acquisition—extinction category). This entire procedure was com-

pleted using a custom R script that is available from the authors upon request. The data was

compiled and is reported in the Supplementary Material up until N = 960. Data beyond this

size is not reported due to excessive amount of the data reported in the manuscript and

because the results at N>960 were almost identical to those obtained at N = 960. Using the

average Tb effect size of each strategy, we tested whether the rank order coefficients improved

with increased sample size using Pearson’s coefficient (r). This was completed for both the first

(no group-level effect) and second (simulated group-level effect) experiments.

During data compilation, it was evident that there were large decreases in effect sizes with

increased sample size (p< .001). As an exploratory analysis, effect sizes averaged across sample

sizes for each category of analytical strategy were compared using Pearson’s correlations (r).
To ensure that the effects observed in this exploratory test were not due to variability caused

by our resampling process (where CS+ or CS- scores for each participant from only one phase

were resampled), we resampled using the full data from each participant to create data sets of

N = 30, N = 60, N = 120, N = 240 rows, with three equally sized groups randomly allocated

amongst these rows. Samples were not created that were larger than the number of actual
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Fig 1. Example of simulated group-level effects in bootstrapped data (N = 960). SCR = Skin conductance response. Groups 3-

3b have simulated effects of differing gradients to reflect possible differences in physiological expression of acquisition and

extinction between participants and between studies. Error bars are 95% Confidence Intervals.

https://doi.org/10.1371/journal.pone.0268814.g001
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participants to avoid repeating participant data in the same sample. Again, the ɳp2 effect sizes

from each category of analytical strategy were averaged and compared across sample size.

Results

The overall data from the original sample (N = 379) is reported in S1 Fig. The main index that

was used as an outcome in the present study was the rank order of effect sizes produced by dif-

ferent analytical (i.e., statistical) approaches when applied to the same dataset. To ensure that

this result was robust, datasets were bootstrapped so that the analysis was repeated many

times. If a low rank order effect is produced, this implies that application of different analytical

approaches to the same datasets produces inconsistent effect sizes relative to the other

approaches. A high rank order effect suggests that application of different approaches to the

same datasets produces consistent effect sizes relative to the other approaches, which implies

robustness. To assess the robustness of each analytical method within each bootstrapped data-

set, Kendall’s rank correlation coefficient values (Tb) and corresponding 95% confidence inter-

vals were computed for each of the three sets of analyses with sample size set to N = 30, N = 60,

N = 120, N = 180, N = 240, N = 360, N = 480, N = 600, N = 720, N = 840, N = 960, N = 1080,

N = 1200, N = 1500, N = 1750, and N = 2000 rows. Complete statistics from an exemplar of

these analyses are reported in S1–S42 Tables and are summarised in Fig 2. We also entered the

Table 1. Description of different strategies for measuring extinction learning using skin conductance responses (Ney et al., 2020).

Analytic

strategy

Strategy # # of Trials Trials Included Trial Analysis Stimuli

Analysis

Analysis Study

ACQ—EXT Strategy 1 8 (ACQ), 16

(EXT)

All (ACQ), last 2 (EXT) Average Diff Phase×group [60]

Strategy 2 5 (ACQ), 10

(EXT)

Maximum Response (ACQ), Last

2 (EXT)

Average Diff Phase×group [61]

Strategy 3 8 (ACQ), 7

(EXT)

All (ACQ), last 3 (EXT) Average Diff Phase×group [62]

Strategy 4 20 (ACQ), 20

(EXT)

Last half (ACQ), First half (EXT) Average, using paired t-test

contrasts^

Diff Phase×group [63]

EXT Strategy 1 16 Last three-quarters Average CS+, CS- Group×stim [64]

Strategy 2 5 All Trial-by-trial CS+, CS- Trial×Group×Stim [65]

Strategy 3 16 Last half Average CS+, CS- Group×stim [66]

Strategy 4 10 Last trial One trial Diff Group [67]

Strategy 5 10 Last 2 Average CS+, CS- Group×stim [68]

Strategy 6 5 All Running average# Diff Trial×Group [69]

Strategy 7 8 First 2 Trial-by-trial Diff Trial×Group

EXTearly-

EXTlate

Strategy 1 6 First half, second half Average CS+, CS- Phase×Group×Stim [70]

Strategy 2 14 First half, second half Average Diff Phase×Group [71,

72]

Strategy 3 16 First quarter, last quarter Average CS+ Phase×Group [73]

Strategy 4 32, 16 First half, second half Average CS+ Phase×Group [74,

75]

ACQ = Acquisition, EXT = Extinction, Diff = Differential, CS+ = Conditioned stimulus to the aversive unconditioned stimulus, CS- = Conditioned stimulus as a safety

signal, Stim = stimulus type (CS+ v. CS-).

^This study was the only study to use a test other than ANOVA.
#Running average response was calculated with trials one and two averaged as a single response, trials two and three averaged, and so on.

https://doi.org/10.1371/journal.pone.0268814.t001
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rank order for each analytical strategy compared to every other strategy into Pearson correla-

tion models across each sample size. This data is visualised in Fig 2 and reported in Table 2.

Overall, findings for non-simulated effect datasets are congruent with our previous findings

[54], which was conducted with a sample size of N = 60. There were no significant trends in

the data for the no-effect data (summarised in Table 2), which suggests that increasing sample

size did not improve robustness caused by variability in analytical strategies used to assess sim-

ilar constructs in the same data.

ACQ-EXT

Strategies 1 and 3, which compared acquisition to extinction, produced high correlative values

across sample sizes, whereas Strategies 2 and 4 were not similar to any Strategies (S22–S28

Tables). This finding replicated our findings from our previous report at N = 60.

Fig 2. Effect of sample size on average Kendall’s rank order effect size (Τb) between statistical strategies attempting to elicit the same construct

from different data sets. Higher Τb implies higher robustness. Top panel is data without simulated group-level effect, second panel simulates rapid

decreasing differential conditioning during acquisition, third panel simulated gradual decrease in differential conditioning during acquisition, fourth

panel simulated no change in differential conditioning during acquisition or early extinction.

https://doi.org/10.1371/journal.pone.0268814.g002

PLOS ONE Robustness of fear conditioning across analytic strategies

PLOS ONE | https://doi.org/10.1371/journal.pone.0268814 May 24, 2022 8 / 22

https://doi.org/10.1371/journal.pone.0268814.g002
https://doi.org/10.1371/journal.pone.0268814


T
a

b
le

2
.

P
ea

rs
o

n
’s

co
rr

el
a

ti
o

n
co

ef
fi

ci
en

t
a

n
d

si
g

n
if

ic
a

n
ce

o
f

th
e

re
la

ti
o

n
sh

ip
b

et
w

ee
n

sa
m

p
le

si
ze

a
n

d
ra

n
k

o
rd

er
b

et
w

ee
n

d
if

fe
re

n
t

st
a

ti
st

ic
a

l
st

ra
te

g
ie

s
u

se
d

to
in

d
ex

st
a

ti
c

ex
ti

n
ct

io
n

(E
X

T
),

ch
a

n
g

e
in

ex
ti

n
ct

io
n

(E
X

T
-E

X
T

)
a

n
d

a
cq

u
is

it
io

n
to

ex
ti

n
ct

io
n

(A
C

Q
-E

X
T

)
d

u
ri

n
g

fe
a

r
le

a
rn

in
g

p
a

ra
d

ig
m

s.

S
tr

a
te

g
ie

s
C

o
m

p
a

re
d

(E
X

T
)

1
–

2
1

–
3

1
–

4
1

–
5

1
–

6
1

–
7

2
–

3
2

–
4

2
–

5
2

–
6

2
–

7
3

–
4

3
–

5
3

–
6

3
–

7
4

–
5

4
–

6
4

–
7

5
–

6
5

–
7

6
–

7

S
tr

a
te

g
ie

s
C

o
m

p
a

re
d

(A
C

Q
-E

X
T

,
E

X
T

-E
X

T
)

1
–

2
1

–
3

1
–

4
2

–
3

2
–

4
3

–
4

N
o

si
m

u
la

te
d

ef
fe

ct

A
C

Q
-E

X
T

r
-.

0
9

6
.2

2
1

-.
0

2
3

.0
6

3
.3

4
8

-.
0

3
0

p
.7

2
3

.4
1

1
.9

3
3

.8
1

7
.1

8
7

.9
1

3

E
X

T
r

-.
1

5
0

-.
0

6
0

-.
3

9
6

-.
2

2
0

.0
5

0
.0

1
0

-.
1

5
7

.0
8

7
-.

0
3

1
.1

7
1

-.
1

6
6

-.
3

5
6

-.
3

2
5

-.
0

0
9

-.
2

8
2

-.
1

8
8

.0
4

9
-.

5
8

9
�

.2
2

9
-.

0
6

9
-.

4
6

7

p
.5

7
9

.8
2

5
.1

2
8

.4
1

4
.8

5
5

.9
7

1
.5

6
1

.7
4

9
.9

1
0

.5
2

8
.5

3
9

.1
7

6
.2

1
9

.9
7

2
.2

9
0

.4
8

5
.8

5
8

.0
1

6
.3

9
4

.8
0

0
.0

6
8

E
X

T
-E

X
T

r
-.

0
7

1
-.

2
6

5
-.

0
2

8
-.

0
8

8
-.

0
7

8
-.

2
0

9

p
.7

9
4

.3
2

1
.9

1
7

.7
4

6
.7

7
5

.4
3

7

S
im

u
la

te
d

ef
fe

ct

A
C

Q
-E

X
T

r
-.

8
6

9
�
�

.5
2

9
�

-.
4

5
5

-.
9

0
1
�
�

.1
4

6
-.

4
3

1

p
<

.0
0

1
.0

4
3

.0
8

9
<

.0
0

1
.6

0
2

.1
0

9

E
X

T
r

-.
0

3
2

.3
9

1
-.

5
0

7
.9

5
5
�
�

.3
4

6
.2

1
7

.2
3

4
-.

0
4

3
-.

9
4

7
�
�

.3
3

1
.3

5
3

-.
3

5
9

.9
6

1
�
�

.2
1

5
.0

3
4

-.
9

9
0
�
�

-.
0

1
0

.0
9

4
-.

1
0

4
.1

8
9

.5
1

5
�

p
.9

1
0

.1
5

0
.0

5
4

<
.0

0
1

.2
0

6
.4

3
8

.4
0

0
.8

8
0

<
.0

0
1

.2
2

8
.1

9
7

.1
8

8
<

.0
0

1
.4

4
2

.9
0

5
<

.0
0

1
.9

7
1

.7
4

0
.7

1
2

.5
0

0
.0

4
9

E
X

T
-E

X
T

r
.6

6
1
�
�

.6
6

2
�
�

.6
4

1
�

.4
8

2
.4

9
9

.4
4

8

p
.0

0
7

.0
0

7
.0

1
0

.0
6

9
.0

5
8

.0
9

4

S
im

u
la

te
d

ef
fe

ct
a

A
C

Q
-E

X
T

r
-.

9
3

2
�
�

.9
8

1
�
�

-.
8

1
0
�
�

-.
9

1
9
�
�

.0
0

9
-.

7
3

6
�
�

p
<

.0
0

1
<

.0
0

1
<

.0
0

1
<

.0
0

1
.9

7
6

.0
0

2

E
X

T
r

-.
0

7
7

.2
7

5
-.

2
8

8
.9

6
4
�
�

-.
4

2
7

-.
0

8
2

.0
5

7
-.

5
4

3
�

-.
9

3
1
�
�

.2
9

3
.4

5
8

-.
3

7
5

.9
6

8
�
�

-.
1

7
7

-.
2

1
7

-.
9

8
6
�
�

-.
1

8
0

-.
1

3
2

-.
0

2
6

.0
4

7
.3

3
9

p
.7

8
6

.3
2

1
.2

9
8

<
.0

0
1

.1
1

2
.7

7
1

.8
3

9
.0

3
7

<
.0

0
1

.2
8

9
.0

8
6

.1
6

9
<

.0
0

1
.5

2
7

.4
3

7
<

.0
0

1
.5

2
1

.6
4

0
.9

2
8

.8
6

9
.2

1
6

E
X

T
-E

X
T

r
.4

0
7

.4
9

6
.4

8
2

.5
4

0
�

.5
6

2
�

.4
9

2

p
.1

3
2

.0
6

0
.0

6
9

.0
3

8
.0

2
9

.0
6

2

S
im

u
la

te
d

ef
fe

ct
b

A
C

Q
-E

X
T

r
-.

8
9

2
�
�

.8
8

4
�
�

-.
6

9
7
�
�

-.
8

9
3
�
�

.4
0

5
-.

6
2

2
�

p
<

.0
0

1
<

.0
0

1
.0

0
3

<
.0

0
1

.1
2

0
.0

1
0

E
X

T
r

-.
0

7
8

.4
0

2
-.

3
2

6
.9

5
8
�
�

-.
7

4
7
�
�

-.
7

7
7
�
�

.2
0

3
-.

4
3

3
-.

9
6

9
�
�

.7
9

4
�
�

.8
3

3
�
�

-.
4

2
9

.9
5

8
�
�

-.
4

1
6

-.
0

7
1

-.
9

8
9
�
�

.4
1

7
.0

5
7

-.
2

8
9

-.
1

6
7

.7
7

7
�
�

p
.7

7
3

.1
2

2
.2

1
8

<
.0

0
1

.0
0

1
<

.0
0

1
.4

5
1

.0
9

4
<

.0
0

1
<

.0
0

1
<

.0
0

1
.0

9
8

<
.0

0
1

.1
0

9
.7

9
5

<
.0

0
1

.1
0

8
.8

3
3

.2
7

7
.5

3
7

<
.0

0
1

E
X

T
-E

X
T

r
-.

2
0

4
.4

1
2

-.
2

8
2

.5
8

7
�

.6
1

9
�

.5
3

1
�

p
.4

4
9

.1
1

3
.2

9
0

.0
1

7
.0

1
1

.0
3

4

N
o

te
:
E

X
T

=
S

ta
ti

c
E

x
ti

n
ct

io
n

,
A

C
Q

-E
X

T
=

ac
q

u
is

it
io

n
to

ex
ti

n
ct

io
n

,
E

X
T

-E
X

T
=

ea
rl

y
to

la
te

ex
ti

n
ct

io
n

.

�
p
<

.0
5

,

�
�
p
<

.0
0

1

h
tt

p
s:

//
d
o
i.o

rg
/1

0
.1

3
7
1
/jo

u
rn

al
.p

o
n
e.

0
2
6
8
8
1
4
.t
0
0
2

PLOS ONE Robustness of fear conditioning across analytic strategies

PLOS ONE | https://doi.org/10.1371/journal.pone.0268814 May 24, 2022 9 / 22

https://doi.org/10.1371/journal.pone.0268814.t002
https://doi.org/10.1371/journal.pone.0268814


When a group-level effect was simulated, however, these results changed. Only Strategies 1

and 3 showed positive but increasingly weak correlative improvements in the acquisition with

increasing sample size (Fig 2 and S1–S7 Tables), whereas combinations of other strategies

were increasingly significantly and negatively correlated with increased sample sizes, meaning

that they estimated fear responding in opposite directions to one another and that this pattern

got worse with a larger sample (Fig 2 and Table 2).

EXT

Some of the correlations between the static extinction strategies failed to be supported com-

pared to our previous study in the data without simulated group level effects (S29–S35 Tables).

These were mainly between strategies 1, 4 and 5, which were not supported in data derived

from the new data sets but had been correlated in our previous report. Correlations between

Strategies 1 and 3; 2, 6 and 7; and 5, 3, and 4 continued to be supported of the static extinction

strategies (S29–S35 Tables and Fig 2).

There were very few supported correlations in static extinction Strategies when group

effects were simulated (i.e., high Tb values, primarily correlations between 1 and 3 were sup-

ported), but some of these improved with increased sample size (Fig 2, Table 2, and S8–S14

Tables). Correlations between Strategies 1, 3, and 5 for static extinction improved significantly

with increased sample size, whereas correlations between Strategies 2, 4, and 5 were signifi-

cantly negatively correlated with increasing sample size. Other combinations of strategies

showed no change with increasing sample size (Fig 2 and Table 2).

EXT-EXT

At higher sample sizes, some of the significant correlations from our earlier study [47] within

the early-late extinction strategies were no longer significant, though this did not follow a par-

ticularly consistent pattern (S40–S42 Tables). In all cases, Strategies 3 and 4 of the early-late

extinction category continued to be correlated (Fig 2 and S36–S42 Tables), but this did not

improve with higher sample size (Table 2).

Strategies 2 and 4, 3 and 4, as well as 2 and 3 of early-late extinction showed some moder-

ate-high evidence of correlation that improved logarithmically when group level effects were

simulated (Fig 2 and S15–S21 Tables). Unexpectedly, these results were not substantially

affected by the type of simulated effect (Fig 2). However, only Strategies correlating with Strat-

egy 1 from early-late extinction changed by improving with increased sample size, after cor-

recting for multiple comparisons using False Discovery Rate Q = .1.

Sample size and average effect sizes

During data compilation, we noticed large decreases in effect sizes with increased sample size.

As an exploratory analysis, we correlated the average effect size (ɳp2) from each category of

analytical strategies with the sample size. The average effect size for each set of analyses

decreased significantly as a function of sample size (all p< .001), as shown by Fig 3A. Effect

sizes of all three types of analyses reduced at a similar rate. This effect was replicated when the

data was resampled from full participant rows (i.e., in real data, Fig 3B).

Discussion

In this study we investigated whether the decreased robustness that arises from inconsistent

analytic strategy [54] could be amended by increased sample sizes. To do so, we tested whether

greater sample sizes affected the robustness of outcomes via lower divergence of results
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obtained across varied analytical strategies. Robustness did not improve when sample size was

increased for any of the strategies included in our analysis that did not include a simulated

effect. However, in contrast to our hypothesis, a simulated effect resulted in several changes in

robustness, particularly within strategies that examined extinction as a single index. The kind

of effect that was simulated (in terms of the gradient of fear responding across trials) did not

substantially affect these results. These findings have several implications for study design and

statistical analysis of fear extinction via SCRs.

Our previous study provided evidence that heterogeneity in analytical strategy in the assess-

ment of fear extinction can reduce robustness of effects when tested across different data sets

[47]. This problem has been reported in other fields, such as human neuroimaging [76, 77],

and high flexibility in data analysis is an established cause of increased false positives [49]. It is

possible, however, that some types of strategies produce more robust results than others. The

current findings support several assertions that we made in our previous paper in this regard.

First, studies that examine change in SCRs from acquisition to extinction will show varying

robustness depending on what sections of acquisition and extinction are used, but robustness

does not seem to be affected if small variations in number of trials or use of averaged compared

to maximal values are used. Similarly, analysing extinction on a trial-by-trial basis is inconsis-

tent with strategies that averaged across trials, but both strategies are internally consistent

regardless of the number of trials included, or whether differential responses (CS+ > CS-)

were calculated. Finally, we found mixed evidence that number of trials and use of differential

responding affects robustness of strategies examining change during extinction, which were

associations that we had previously identified as having moderate support [47].

The main aim of the current study was to understand whether improving power, by

increasing sample size, would improve robustness that is affected by heterogeneity of analytical

strategies. As we had anticipated, the limitations imposed by varied analytic strategies holds

even when applied to samples of greater size, but this appeared to apply only when no effect

was present in the data. While this supports the validity of our prior study [54], it also chal-

lenges our previous findings in several ways. Firstly, in the data containing simulated group-

level effects, some strategies improved markedly in terms of robustness as sample size

increased. However, these cases were contradicted by several other strategies that showed

weaker robustness with increasing sample size. Most importantly, not all strategies showed

Fig 3. Average effect size decreased as sample size increased for all types of analyses (p< .001). Panel A is the correlation using resampled data of

responses. Panel B is the correlation using resampled data of responses. Error bars are 95% Confidence Intervals.

https://doi.org/10.1371/journal.pone.0268814.g003

PLOS ONE Robustness of fear conditioning across analytic strategies

PLOS ONE | https://doi.org/10.1371/journal.pone.0268814 May 24, 2022 11 / 22

https://doi.org/10.1371/journal.pone.0268814.g003
https://doi.org/10.1371/journal.pone.0268814


these patterns, and marked improvement in robustness in the static-extinction strategies was

primarily observed at the higher sample sizes, which research groups would not have the

capacity to collect. Improving robustness of strategies examining changes in fear responding

from early to late extinction might be achievable by increasing sample size to an amount that is

viable with respect to research resources. Critically, these results were not substantially affected

by alteration of the gradient of the group-level effect. This implies that it is possible that an

improved set of data analysis strategies for fear extinction data could be applied robustly across

fear extinction phenotypes, which were recently identified in [50]. These findings provide criti-

cal boundary conditions and caveats to our previous findings, and we strongly emphasise that

not all analytical approaches that we highlighted as problematic (or robust) in our previous

report will be applicable to all real-world samples. Critically, by extension our current data also

demonstrates that a statistical approach that seems unrobust in this study could be robust if

the underlying effect is different.

This research is important because sample considerations are frequently the first criticism

addressed in experimental psychology research, and supports the notion that further methodo-

logical innovations are required to enhance fear extinction research, beyond simply increasing

study power [43]. Several research groups have begun moving towards Bayesian inference in

fear extinction [78–81] and computational modelling has also been explored in assessing phys-

iological responses to fear conditioning [45]. It is possible that these contemporary statistical

frameworks may offer solutions to the deficits imposed by heterogeneous analytic strategies in

extinction research. However, further research is needed to explore this as a viable possibility

to conventional data analysis, particularly in terms of accessibility to non-statisticians.

While compiling the data in the current study, we observed strong effects of lower sample

size resulting in higher effect size. It is likely that the reduced effect size we observed with

increasing sample size reflected increasing precision of the effect size, which is reflected in the

increasingly narrow confidence intervals. The relationship between smaller samples reaching

significance with higher effect sizes is intrinsically wedded to the parameters of power analysis

in null-hypothesis significance testing (NHST) [82]. In a simple case, when performing a-pri-
ori power analysis (to determine an appropriate sample size), specifying higher r (e.g., effect

size) and a significance criterion (α) of p< 0.05 will result in a generally lower N, all things

being equal [83]. The propensity for studies with small sample sizes to inflate effect sizes is well

documented [84–86]. This is sometimes attributed to publication bias [85], but in the context

of the current study, higher variability in our smaller samples is a likely cause, as indicated by

95% confidence intervals. Our findings suggest that these issues are likely to be prevalent until

a minimum of n = 40 participants per group for a 3-group design (which may vary depending

on the number of groups). However, it has been reported that this estimate is improved by

advanced SCR scoring methods [39]. Interestingly, the inflection point of logarithmic

improvement in some of the strategies in terms of robustness was at this same sample size,

raising the possibility that there may be some relationship between adequately powered data

and the propensity for certain strategies (mainly the early-late extinction strategies) to perform

robustly. Relatedly, power analyses using single point estimates from previous fear condition-

ing studies is likely problematic given that heterogeneity of experimental parameters and effect

sizes that are chosen by researchers affect power calculations. Instead, it might be more useful

to estimate the expected variability and build a power analysis based on the precision of the

anticipated effect size (i.e., the effect size’s confidence interval) [87].

Considering this finding, as well as the overall results of the current report, we suggest two

implications for the enhancement of robustness in fear extinction research via SCR. First, in

line with our prior report (Ney et al., 2020), it is critical that a specific analytic strategy is imple-

mented only when the experimenter seeks to measure a specific aspect of fear extinction, one
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that corresponds clearly to the strategy in question. For instance, some of the analytic strategies

identified in this and the prior study [54] can credibly be used to measure distinct aspects of

extinction learning. For instance, subtracting early and late extinction responses might repre-

sent a principled measure of extinction learning per se, while subtracting mean extinction

responses from mean acquisition responses could represent something quite different, albeit

equally worthy of investigation. Critically, if these different strategies are used, it is incumbent

on the experimenter to interpret the results consistently. Labelling all different strategies under

a homogenised term (i.e., ‘extinction learning’) could otherwise incur costs to robustness, and

ultimately, failures to replicate. Similarly, it is important that standardised methods for com-

paring extinction between group relative to acquisition learning are developed, because there

is significant heterogeneity in current methods that do this [46], yet some relative estimation is

essential given that the effects observed during extinction are often contingent on responses

during acquisition.

Second, this study illustrates that the pervasive issue of measuring one construct by a

diverse array of analyses remains an issue even in the face of some methodological changes, in

this case, sample size. An implication of this is that other methodological changes may also be

unable to ameliorate this effect, but more critically, that future research should strive to find

ways to analysis extinction learning that circumvent the effect altogether. In other words, ana-

lysing data in different ways will almost always lead to different outcomes, and reduced robust-

ness or replicability. Therefore, rather than finding ways to homogenise between different

analytic strategies as a path forward, ongoing work could seek to characterise extinction via

more principled quantitative approaches. It is critical to consider that fear acquisition and

extinction are multifaceted processes that cannot be captured by a single parameter. In many

cases, researchers will make different statistical decisions based on the type of learning process

that they are interested in—for example, analysing data trial-by-trial may assess the rate of

learning, whereas comparing mean responses during extinction to acquisition might assess

someone’s relative performance between phases. One way of addressing the propensity for dif-

ferent studies to use different types of analyses is to use multiverse approaches. Multiverse

analysis is an approach that assesses a statistical problem with multiple analytical methods

[88]. In fear conditioning, multiverse packages have been written for R [89], and can poten-

tially directly address the issues highlighted within this paper by increasing transparency of sta-

tistical decision making as well as the relative importance of a reported result [53]. In this way,

not only does multiverse analysis reduce the potential of p-hacking, but it also facilitates com-

parison between studies that may have otherwise analysed their results in incomparable ways.

Similar to this, it is almost certain based on this and recent data that different experimental

designs (e.g., number of trials, induction of uncertainty via instructions, etc) are likely to pro-

duce different outcomes that may not be readily comparable between studies. We are aware of

current work aiming to produce ‘typical’ fear conditioning experiments that may help to stan-

dardise the field, but in the meantime it is also possible that further investigation of the rela-

tionship between specific statistical analyses and experimental designs may help to improve

the comparability of findings between fear conditioning studies.

The current study is primarily limited by the possibility of our findings not generalising to

other fear extinction designs. For instance, we have a relatively low number of trials and long-

duration stimuli (12 s), which are not the case for many studies. Further, these results may not

be transferable to different data pre-processing methods and will need to be checked indepen-

dently by groups that use these methods. One issue that we did not explicitly examine was the

effect of number of trials on statistical outcomes—however, it is probable that the number of

trials included in a study presents another significant heterogeneity factor that, when analysed

using similar methods, may reduce robustness. Our experimental phases were all separated by
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brief instruction screens, including between early and late extinction learning, and this detail

may have impacted on the patterns observed in our results. Third, our sample included a small

proportion of PTSD participants, though this was done to replicate our previous study [47].

While we do not anticipate that this would affect our primary outcome, some variability in the

bootstrapped samples may have been due to participant characteristics such as this. Next, we

only simulated one type of potential group-level effect in our data and this may have resulted

in some strategies showing greater or lesser robustness, depending on the aim of the strategy.

Therefore, we cannot be prescriptive concerning which strategy may perform best with group-

level effects; however, it is relevant to note that a model that best describes extinction has not

been formalised and thus it is unknown what group-level extinction data should look like.

Finally, there may be many more analytical strategies in the literature that were not included

in the present paper. These strategies could alter the robustness between strategies reported

here. The strategies reported here were identical to those identified in the previous paper—

based on highly cited examples; hence, it is possible that there are different analytical strategies

reported in less cited studies.

In conclusion, we found that larger sample size does not improve the robustness of fear

extinction results when assessed across heterogeneous analytical strategies when no effect is

simulated but does alter robustness under some circumstances when an effect is simulated.

We also report that smaller sample sizes (less than N = 120, or n = 40 per group) result in

inflated effect sizes, both in simulated and original data. Although this issue is not unique to

fear extinction, formal identification of it may encourage better powered studies and more

progressive methods in the future. Future studies should examine how robustness of fear

extinction analyses can be improved and ensure that studies are adequately powered such that

effect sizes are not artificially inflated.
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