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Dry weight (DW) is an important dialysis index for patients with end-stage renal disease.
It can guide clinical hemodialysis. Brain natriuretic peptide, chest computed tomography
image, ultrasound, and bioelectrical impedance analysis are key indicators (multisource
information) for assessing DW. By these approaches, a trial-and-error method (traditional
measurement method) is employed to assess DW. The assessment of clinician is
time-consuming. In this study, we developed a method based on artificial intelligence
technology to estimate patient DW. Based on the conventional radial basis function
neural (RBFN) network, we propose a multiple Laplacian-regularized RBFN (MLapRBFN)
model to predict DW of patient. Compared with other model and body composition
monitor, our method achieves the lowest value (1.3226) of root mean square error. In
Bland-Altman analysis of MLapRBFN, the number of out agreement interval is least (17
samples). MLapRBFN integrates multiple Laplace regularization terms, and employs an
efficient iterative algorithm to solve the model. The ratio of out agreement interval is
3.57%, which is lower than 5%. Therefore, our method can be tentatively applied for
clinical evaluation of DW in hemodialysis patients.

Keywords: end-stage renal disease, dry weight, RBF networks, multiple Laplacian regularized model, machine
learning

INTRODUCTION

Dry weight (DW) refers to a patient’s target weight after the end of dialysis (Grassmann et al., 2000;
Wabel et al., 2009). After removing excess water from the body, the patient had no facial swelling,
wheezing or sitting breathing, edema of both lower limbs, and distended jugular vein (Alexiadis
et al., 2016). The patient’s blood pressure, heart rate, breathing, and other vital signs are stable.
There are individual differences in the specific value of DW. Good dry weight control can effectively
reduce adverse reactions during dialysis. At present, the DW of hemodialysis patients is mainly
evaluated by clinical means. This method is labor-intensive and time-consuming, and requires
repeated use of various clinical instruments and biological indicators to complete the evaluation.
In the past 10 years, a measuring instrument based on human bioelectrical impedance analysis
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(BIA), called body composition monitor (BCM) (Jiang et al.,
2017), has been accurately determining the DW of patients. The
above methods require professionals and cannot be processed
on a large scale.

In recent years, artificial intelligence technology has been
widely utilized in the biomedical field (Chen et al., 2019;
Cheng et al., 2019; Lin, 2020; Zhang, 2020; Hu et al., 2021a).
Artificial neural networks (ANNs) based on back propagation
(BP) were employed to evaluate the total water volume of
hemodialysis patients. Compared with conventional clinical
calculation equations (Chiu et al., 2005), the ANNs obtained
better results. Deep learning (Dao et al., 2021; Lv et al., 2021a,b)
also made a great contribution to the clinic, including skin
cancer (Esteva et al., 2017), breast cancer (Liu J. et al., 2021),
and brain diseases (Liu G. et al., 2018; Liu et al., 2019; Bi
et al., 2020; Hu et al., 2020, 2021a,b). In biological field,
machine learning has been widely used to solve biological
problems, including O-GlcNAcylation site prediction (Jia et al.,
2018), microbiology analysis (Qu et al., 2019), microRNAs
and cancer association prediction (Zeng et al., 2018), lncRNAs
(Cheng et al., 2016; Deng et al., 2021), CircRNAs (Fang
et al., 2019; Zhao et al., 2019), DNA methylation site (Wei
et al., 2018b; Zou et al., 2019; Dai et al., 2020), osteoporosis
diagnoses (Su et al., 2020b), function prediction of proteins
(Wei et al., 2018a; Wang H. et al., 2019; Deng et al., 2020b;
Ding et al., 2020a; Su et al., 2020a), nucleotide binding sites
(Ding et al., 2021b), drug complex network analysis (Ding
et al., 2019, 2020b, 2021a; Deng et al., 2020a; Han et al., 2021;
Liu H. et al., 2021), protein remote homology (Liu B. et al.,
2018), electron transport proteins (Ru et al., 2019), and cell-
specific replication.

In this study, we proposed a novel predictive model based
on radial basis function neural network (RBFN). Different from
RBFN, multiple Laplacian-regularized RBFN (MLapRBFN) is a
multi-view Laplacian regularized model with L2,1-norm, which
introduces multiple graph regular items. The Laplacian regular
items consider the topological relationship between each patient.

MATERIALS AND METHODS

Materials
The data set of this study came from the hemodialysis center
of Wuxi and the northern Jiangsu People’s Hospital. Our study
was approved by the ethics committees (Nos. 2018KY-001
and KYLLKS201813). There are a total of 476 hemodialysis
patients. These patients meet the following conditions: over
18 years old; more than 3 months end-stage renal disease
(ESRD) and maintenance hemodialysis; diseases such as metal
implants, infections, heart failure, disability, pregnancy, and
edema, do not appear in the patient population. DW is
determined by clinical scoring, which is based on brain
natriuretic peptide (BNP), chest computed tomography (CT)
image, ultrasound, and bioelectrical impedance analysis (BIA).
In addition, age, gender, diastolic blood pressure (DBP), systolic
blood pressure (SBP), years of dialysis (YD), heart rate (HR),
and body mass index (BMI) are employed to construct our

TABLE 1 | She summary information of patients.

Feature Value r*

Gender (males/females) 312/164 −0.4489

Age (years) 54.17 ± 14.22 −0.2341

BMI 22.96 ± 2.95 0.9558

HR (times/min) 73.41 ± 8.92 0.1862

DBP (mmHg) 88.32 ± 19.56 −0.1249

SBP (mmHg) 150.64 ± 29.36 −0.1739

YD (years) 5.97 ± 3.22 −0.1069

*Denotes correlation coefficient between individual variables and dry weight value.

FIGURE 1 | Topological structure of the radial basis function (RBF) network.
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FIGURE 2 | Flow chart of multiple Laplacian-regularized RBF network
(MLapRBFN).

model. The summary of information is shown in Table 1.
This study is a retrospective study, and feature of patient
is easy to obtain. We hope to provide patients with a
non-invasive dry weight assessment method through machine
learning models.
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FIGURE 3 | RMSEs under different parameters. (A) Root mean square errors (RMSEs) under different hidden layer nodes. (B) RMSEs under different numbers of
iteration.

FIGURE 4 | Root mean square errors under different regularization
coefficients.

Radial Basis Function Network
The RBF neural network (Park and Sandberg, 1990) is composed
of an input layer, a hidden layer, and an output layer,
and is shown in Figure 1. The feature of the hemodialysis
patient can be fed into the RBF network for processing.
Suppose that there are N samples containing d variables({

xi, yi
}
, i = 1, 2, . . . ,N

)
. The output isyi ∈ R1×qand input data

xi ∈ R1×d. In Figure 1, the RBF network has three layers, which
are the input, hidden, and output layers. The transformation
from the input space to the hidden layer space is non-linear,

and the transformation between the hidden layer and the
output layer is linear. The fundamental of the RBFN is the
RBF is the “base” of the hidden unit. The vector of input
layer can be mapped to the space of the hidden layer without
weight connection. The mapping relationship is determined
with center point of hidden unit. In Figure 1, the number
of hidden layer nodes is p (p center points). The activation
function of the RBF neural network can be represented as:

φ
(
xi, cj

)
= exp

(
−

1
2
σ2 ∣∣∣∣xi − cj

∣∣∣∣2) (1)

where xiis a feature vector of sample, cj, j ∈
{

1, 2, . . . , p
}

is the vector of j-th center point, and σ is the width
parameter of the function, which controls the radial
range of the function. RBFN can be represented as:

8W = Y (2)

where matrix 8 ∈ RN×p is the output of the hidden
nodes. W ∈ Rp×q is the weight matrix between output
and hidden nodes. Y ∈ RN×q is the matrix of dependent
variable. 8 ∈ RN×p and W ∈ Rp×q can be represented as:

8 =

 φ (x1, c1) · · · φ
(
x1, cp

)
...

. . .
...

φ (xN, c1) · · · φ
(
xN, cp

)


N×p

(3)

W =


wT

1
wT

2
...

wT
p


p×q

(4)
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TABLE 2 | Comparison with other methods (10-CV).

Method R R Squared RMSE Empirical cumulative distribution plot

Highest value Lowest value Median value

MKSVR* 0.9412 0.9321 1.3817 4.3962 −4.1273 0.0082

MKRR* 0.9399 0.9289 1.5015 4.9227 −4.2604 0.1104

ANN (BP)* 0.9398 0.9295 1.4794 7.3661 −4.7447 0.1324

LR* 0.9403 0.9308 1.4335 4.2524 −.4014 0.1418

BCM* 0.9473 0.9137 1.9694 3.2235 −6.2776 −.9863

RBFN 0.9410 0.9302 1.4514 4.9018 −3.9376 0.0966

MLapRBFN (our method) 0.9511 0.9432 1.3226 3.4383 -3.8174 0.0822

*The results are from previous work of MKSVR.
Bold values represents the best performance for each column.

To train RBFN, 3 parameters should be solved: the center
points of the basis function

(
cj ∈ R1×d, j ∈

{
1, 2, . . . , p

})
, width

(σ), and weight matrix between the output and hidden layer(
W ∈ Rp×q). In most cases, the self-organized selection center

learning method is used: (1) unsupervised learning process,
solving the center points and width of RBF, (2) supervised
learning process, solving the weights W ∈ Rp×q. First, select p
centers for k-means clustering (p clusters). For the radial basis of
the Gaussian kernel function, the width is solved by the formula:

σj =
σmax
√

2p
, j = 1, 2, . . . , p (5)

where σmax is the maximum distance between the
selected center points.

For W ∈ Rp×q, the RBF network can be represented as:

W∗ = arg min
1
2
||8W−Y||2F (6)

The gradient of Eq. 6 can be set as 0:

W∗ =
(
8T8

)−1
8TY (7)

For a new test sample xnew, we can estimate y∗new as:

y∗new = 8newW∗ (8)

where8new =
(
φ (xnew, c1) , φ (xnew, c2) , . . . , φ

(
xnew, cp

))
1× p .

Proposed Model of Multiple
Laplacian-Regularized RBF Network
To further improve the generalization performance of the RBF
network, a multi-view Laplacian-regularized RBF network is
proposed. The unsupervised process of the first stage remains
unchanged; we mainly improve the model in the second part. The

objective function of Eq. 6 is revised as:

arg min
W,ηv

1
2 ||8W−Y||2F

+
λ1
2 Tr

(
(8W)T

V∑
v=1

(ηv)
ρ Lv (8W)

)
+

λ2
2 |W|

2
2,1

s.t.
V∑

v=1
ηv = 1,

0 < ηv < 1,
v = 1, 2, . . . ,V

(9)

where λ1and λ2 denote the parameters of Laplacian and L2,1-
norm term. L2,1-norm can be used to obtain a sparser solution
during the training process, which makes the model more robust.
ρ > 1, which is used to prevent the extreme situations of ηv =

0 (or ηv = 1). Lv ∈ RN×N is the Laplacian matrix, which is
employed to represent the manifold of samples. V is the number
of views. Lv is built by heat kernel matrix Sv ∈ RN×N :

Lv = D−1/2
v 1vD−1/2

v (10a)

1v = Dv − Sv (10b)

Dv (i, i) =
∑N

j=1
Sv (i, i) (10c)

In our study, we employ the following functions to construct
the heat kernel matrix:

S
(
i, j
)

1 = exp
(
−γ

∣∣∣∣xi − xj
∣∣∣∣2) (11a)

S
(
i, j
)

2 =
xT

i xj

|xi|
∣∣xj
∣∣ (11b)

S
(
i, j
)

3 =
(
−γxT

i xj + 0.1
)2

(11c)

S
(
i, j
)

4 = tanh
(
−γxT

i xj + 0.1
)

(11d)

where γ is a constant, and we set it as 1.
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FIGURE 5 | Folded empirical cumulative distribution curves of six methods.

Optimization
The third term of ||W||22,1cannot be diversified, so Eq. 9 is
converted into:

argmin
W,ηv

1
2 ||8W-Y||2F

+
λ1
2 Tr

(
(8W)T

V∑
v=1

(ηv)
ρ Lv (8W)

)
+

λ2
2 Tr

(
WTGW

)
s.t.

V∑
v=1

ηv = 1,

0 < ηv < 1,
v = 1, 2, . . . ,V

(12)

where G ∈ Rp×p is a diagonal matrix, and i-th is an element:

Gjj =
1

2
∣∣∣∣Wj

∣∣∣∣
2
, j = 1, 2, . . . , p (13)

Since there are multiple variables (W,ηv) that need to be
optimized, we first fix ηvand optimize W. We initialize η

(0)
v =

1/V , and get the fused matrix L∗(0) =
∑V

v=1 η
(0)
v Lv. Equation 12

can be written as:
arg min

W

1
2 ||8W-Y||2F

+
λ1
2 Tr

(
(8W)T L∗ (8W)

)
+

λ2
2 Tr

(
WTGW

) (14)

We obtain the derivative of formula (14) for variable W:

8T (8W-Y)+ λ18
TL∗ (8W)+ λ2GW = 0 (15a)

8T8W + λ18
TL∗8W + λ2GW = 8TY (15b)

(
8T8+ λ18

TL∗8+ λ2G
)

W = 8TY (15c)

W =
(
8T8+ λ18

TL∗8+ λ2G
)−1

8TY (15d)

Then, we fix the variant W and optimize ηv, v = 1, 2, . . . ,V ,
which is related to:

arg min
ηv

Tr
(
(8W)T

V∑
v=1

(ηv)
ρ Lv (8W)

)
s.t.

V∑
v=1

ηv = 1,

0 < ηv < 1,
v = 1, 2, . . . ,V

(16)

The above formula can be converted to a Lagrange function:

Lag (ηv, ξ)= Tr

(
(8W)T

V∑
v=1

(ηv)
ρ Lv (8W)

)
− ξ

( V∑
v=1

ηv − 1

)
(17)

We set ηv and ξ to 0:{
ρ (ηv)

ρ−1 Tr
(
(8W)T Lv (8W)

)
− ξ = 0∑V

v=1 ηv − 1 = 0
(18)
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FIGURE 6 | Bland–Altman plot analysis. (A) ANN, (B) LR, (C) MKRR, (D) MKSVR, (E) BCM, and (F) MLapRBFN.
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TABLE 3 | Bland–Altman plot analysis of the models.

Model Differences with DW (%) Limits of agreement (%)

Mean SD 95% confidence interval Lower limit Upper limit Number (ratio) of out agreement interval

MKSVR* −0.2638 2.3372 −0.4743 to -0.05329 −4.8446 4.3171 22/476 (4.62%)

MKRR* −0.0801 2.5007 −0.3053 to 0.1451 −4.9814 4.8212 23/476 (4.83%)

ANN (BP)* 0.1152 2.5139 −0.1112 to 0.3416 −4.8119 5.0424 22/476 (4.62%)

LR* 0.0002 2.4269 −0.2184 to 0.2187 −4.7566 4.7569 21/476 (4.41%)

BCM* −1.8232 2.7466 −2.0706 to −1.5759 −7.2066 3.5601 30/476 (6.30%)

MLapRBFN (our method) −0.04061 2.2280 −0.2413 to 0.1601 −4.4075 4.3263 17/476 (3.57%)

*The results are from previous work of MKSVR (Guo et al., 2021).

where ηv can be estimated by:

ηv =

(
1

Tr
(
(8W)T Lv (8W)

)) 1
ρ−1

/ V∑
v=1

(
1

Tr
(
(8W)T Lv (8W)

)) 1
ρ−1

(19)

The process of MLapRBFN is listed in Algorithm 1 and
Figure 2.

Algorithm 1 | Algorithm of multiple Laplacian-regularized RBFN (MLapRBFN).

Require: Training set {xi, yi} , i = 1,2, . . . ,N, new
samples

{
xnew,j

}
, j = 1,2, . . . ,M, the hidden layer nodes (p), the iterations

tmax, parameters of λ1and λ2;

Ensure: The predictive values of
{
yte

j

}
, j = 1,2, . . . ,M

(1) Using k-means to select p centers and width (σ ) for RBF function.
Calculating the W (training set) and Laplacian matrices Lv, v = 1,2, . . . ,V
by Eqs 1, 10, and 11. Initializing η

(0)
v = 1/V, v = 1,2, . . . ,V;

(2) Setting t = 0, estimate the initial W(0) with Eq. 7;

Repeat

(3) Update the G(t+1)with

G(t+1) =


1

2
∣∣∣∣∣∣W(t)

1

∣∣∣∣∣∣
2

. . .

1
2
∣∣∣∣∣∣W(t)

p

∣∣∣∣∣∣
2


p×p

(4) Update W(t+1)via Eq. 15d;
(5) Update η

(t+1)
v , v = 1,2, . . . ,Vvia Eq. 19;

(6) Calculating L∗(t+1)
=

V∑
v=1

η
(t+1)
v Lv

until t > tmax;

(7) Calculate the output matrix 8new (test set);

(8) Predict
{
ynew,j

}
, j = 1,2, . . . ,M byy∗new = 8newW∗.

RESULTS AND DISCUSSION

In this section, we perform 10-fold cross-validation (10-CV) to
test the predictive performance of different models, the BCM
device, multiple kernel support vector regression (MKSVR),
linear regression (LR), back propagation-based artificial neural
network [ANN (BP)], and multi-kernel ridge regression (MKRR).

Evaluation Measurements
Some traditional assessment methods include correlation
coefficient (R), R square, root mean square error (RMSE),

empirical cumulative distribution plot (ECDP), and Bland–
Altman analysis. In particular, The Bland–Altman analysis
usually can evaluate the agreement between two methods,
and determines whether the two methods can be replaced
with each other.

Selection of Optimal Parameters
We obtain the optimal model parameters, such as the number
of hidden layer nodes (the number of clusters), regularization
parameters, and number of optimization iterations. First, we
fix the number of iterations (tmax = 10) and regularization
coefficients (λ1 = 20,λ2 = 20), and adjust the number of hidden
layer neurons. In Figure 3A, we test the number of nodes from
10 to 250 with step of 10. After adding 140 neuron nodes, RMSE
tends to be flat. In addition, the RMSE also tends to remain
unchanged (minimum) after 10 iterations (Figure 3B). Finally,
we get the number of hidden layer nodes as 140 and times of
iteration as 10, and adjust the regularization coefficient. The
results are shown in Figure 4, and the optimal coefficients are
λ1 = 2−3,λ 2 = 2−3 .

Comparison With Other Existing Models
We compare our model with other existing machine learning
methods (Guo et al., 2021), which include multi-kernel ridge
regression (MKRR), multiple kernel support vector regression
(MKSVR), artificial neural network (ANN), linear regression
(LR), and BCM measuring instrument. The gold standard is
clinical dry weight. In Table 2, our method (MLapRBFN) is better
than the ordinary RBF neural network (RBFN) model. The R
and R squared have the highest values of 0.9511 and 0.9432,
respectively. In addition, the RMSE of MLapRBFN reaches its
lowest value (1.3226). In Table 2 and Figure 5, we can see
that our method has the smallest ECDP range (from −3.8174
to 3.4383). The multiple Laplacian regularized RBFN model
has multiple graphs for different heat kernels, which contain
different information. To effectively integrate each graph of
feature into one graph, multi-view learning (MVL) is employed
to estimate the weight of each graph. Each graph has different
contribution for the model.

Bland-Altman Analysis
In this section, we employ a Bland–Altman plot to further
evaluate the regression error of different models. In Figure 6
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and Table 3, several models evaluate the agreement with clinical
DW. MLapRBFN achieves the smallest range of -0.2413 to 0.1601
(95% confidence interval). What is more, the number (ratio) of
out agreement interval is the key indicator to evaluate whether
the two methods are equivalent. For the predictive models, the
number (ratio) should be all less than 24 (5%). In Table 3,
all the predictive models meet this standard. In particular, our
method obtains the least number (ratio) of 17 (3.57%). If 95%
of the samples are in agreement range, the predictive models are
clinically acceptable. It can be seen that our method can replace
clinical methods.

CONCLUSION

The limitations of BCM and clinical are time-consuming and
laborious. In our study, a MLapRBFN method is developed to
predict the DW of hemodialysis patients. Different from standard
RBFN, our method contains multiple Laplace regularization
terms, and uses an efficient iterative algorithm to solve the
model. MKRR, LR, MKSVR, and ANN are compared with our
model. Bland-Altman analysis and RMSE are the main evaluation
methods. In the Bland-Altman analysis of MLapRBFN, the
number of out agreement interval is the least (17 samples).

In the fields of medicine (Esteva et al., 2017; Xiao et al., 2017;
Hu et al., 2018; Deng et al., 2019; Huang et al., 2020; Zhou et al.,
2020; Yang H. et al., 2021), pharmacy (Wang et al., 2020), and
biology (Wei et al., 2014, 2017, 2019; Fajila, 2019; Wang Y. et al.,
2019; Wang et al., 2021; Yang C. et al., 2021; Zou et al., 2021),
artificial intelligence technology has solved lots of predictive
tasks. In future studies, more data of hemodialysis patients will be
collected, and a deep neural network (Dao et al., 2020a,b; Lv et al.,
2020) with stronger representation ability to accurately estimate
the DW of hemodialysis patients will be built.
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