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Abstract 

Background:  Protein–protein interactions (PPIs) are the core of protein function, which provide an effective means 
to understand the function at cell level. Identification of PPIs is the crucial foundation of predicting drug-target inter-
actions. Although traditional biological experiments of identifying PPIs are becoming available, these experiments 
remain to be extremely time-consuming and expensive. Therefore, various computational models have been intro-
duced to identify PPIs. In protein-protein interaction network (PPIN), Hub protein, as a highly connected node, can 
coordinate PPIs and play biological functions. Detecting hot regions on Hub protein interaction interfaces is an issue 
worthy of discussing.

Methods:  Two clustering methods, LCSD and RCNOIK are used to detect the hot regions on Hub protein interaction 
interfaces in this paper. In order to improve the efficiency of K-means clustering algorithm, the best k value is selected 
by calculating the distance square sum and the average silhouette coefficients. Then, the optimization of residue 
coordination number strategy is used to calculate the average coordination number. In addition, the pair potentials 
and relative ASA (PPRA) strategy is also used to optimize the predicted results.

Results:  DataHub dataset and PartyHub dataset were used to train two clustering models respectively. Experiments 
show that LCSD and RCNOIK have the same coverage with Hub protein datasets, and RCNOIK is slightly higher than 
LCSD in Precision. The predicted hot regions are closer to the standard hot regions.

Conclusions:  This paper optimizes two clustering methods based on PPRA strategy. Compared our methods for hot 
regions prediction against the well-known approaches, our improved methods have the higher reliability and are 
effective for predicting hot regions on Hub protein interaction interfaces.
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Background
Proteins perform their various biological functions by 
interacting with other proteins, nucleic acids or small 
molecules [1, 2]. Recognizing the interaction of proteins 
can reveal the mechanism of protein activities and pro-
mote the development of biotechnology and life science 
[3, 4]. Studying the function and structure of proteins is 

Open Access

*Correspondence:  linxiaoli@wust.edu.cn
†Xiaoli Lin and Xiaolong Zhang contributed equally to this work
Hubei Key Laboratory of Intelligent Information Processing and Real‑Time 
Industrial System, School of Computer Science and Technology, Wuhan 
University of Science and Technology, Wuhan 430065, People’s Republic 
of China

http://orcid.org/0000-0002-5595-4966
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-020-01350-4&domain=pdf


Page 2 of 12Lin and Zhang ﻿BMC Med Inform Decis Mak          (2021) 21:143 

very important for understanding various life activities 
[5, 6]. At present, the functions of many proteins are still 
unclear. Most molecular and cellular processes are con-
trolled by PPIs. Understanding the mechanism of PPIs is 
essential for understanding large-scale tissues of cells and 
their biological pathways.

For many years, a lot of new technologies have emerged 
to identify PPIs [7–9]. These technologies have been 
used to construct large-scale cellular networks for many 
organisms, which are composed of interacting proteins 
to achieve specific biological functions. Graph theory 
is used to analyze these networks to promote under-
standing of cellular functions and tissues [10]. The most 
important discovery is that there is a close relationship 
between the network’s topological characteristics and 
the basic functions, that is, the number of interactions 
between proteins is related to the importance of their 
functions.

Early studies on the interaction network of yeast pro-
tein revealed that PPIN belongs to the scale-free topol-
ogy, with a small number of highly connected proteins 
(called Hub proteins) and a large number of low-connec-
tivity proteins [11]. In these networks, genes or proteins 
are defined as nodes, and their interactions are defined 
as edges. The importance of nodes can be measured 
according to the changes in network functions or organ-
ism adaptability caused by removing the node. Genome-
wide studies have shown that a small number of genes 
in the genome are indispensable for survival. Researches 
showed that Hub protein is essential in the scale-free 
PPIN. The loss of Hub protein may be more fatal than 
that of non-Hub protein. This phenomenon is called the 
central-lethal rule, which reflects the special importance 
of Hub protein in the network and shows the biological 
significance of network architecture. Studying PPIs pro-
vides basic ideas for understanding the properties and 
interactions of different Hub protein complexes [12]. Hub 
proteins with high connectivity are highly conserved pro-
teins, which participate in the processes of signal trans-
duction [13, 14]. The functions of some conserved Hub 
proteins are unknown. The in-depth understanding of the 
functions of Hub proteins in the interaction network will 
help to regulate and interfere with protein interactions. 
Hub protein as a drug target can be used to design drugs 
and treat diseases [15]. For example, in cancer research, 
Hub protein with high expression in diseased tissues may 
be a target.

Over the years, many researchers have studied the 
relationship between hub protein and topological cen-
trality in PPIN. Jeong et  al. [11] studied Saccharomy-
ces cerevisiae PPIN and found that the network shows 
power-law connectivity distribution. Yu et al. [16] found 
that proteins with high marginal importance tend to be 

Hub proteins, which have more interactions and shorter 
characteristic path lengths than other proteins. Hahn 
et al. [17] pointed out that most proteins do not evolve in 
isolation. So, the location of proteins in the network can 
indicate their centrality to cellular function. Batada et al. 
[18] showed that Hub protein has at least one unusual set 
of characteristics, such as high decay rate of mRNA and 
a large number of phosphorylation sites, and Hub pro-
tein is more important for cell growth rate. He et al. [19] 
found the relationship between the structural importance 
of Hub node and its functional importance in PPIN, and 
reveal the biological significance of network structure. 
Therefore, it is necessary to carry out research on the 
Hub protein interaction network, which has important 
theoretical guiding for drug design.

In PPIs, the hot spot residues [20, 21] are usually sur-
rounded by other non-hot spot residues, and the filling 
density of hot spot residues is much higher than that of 
non-hot spot residues. In PPIs, the hot spots form a spe-
cific conformation, called the hot region [22]. Cukuroglu 
et  al. [23] pointed out that PartyHub and DateHub are 
different in function and evolution. They also analyzed 
the hot region organizations of Hub proteins, and found 
that different protein partners can bind to hot spots of 
different types of hub protein interface. This paper mainly 
discusses hot regions on the interfaces of Hub protein.

The essence of hot region identification is to find out 
the most stable structural conformation in the interface. 
Its physical properties determine the spatial layout of res-
idues, including spatial potential energy and spatial dis-
tance. And its biological properties determine the pairing 
tendency between residues. Therefore, the calculation 
method can be used to simulate the biological struc-
ture of hot region more comprehensively, and then the 
machine learning algorithm can be used to speed up per-
formance. Therefore, combining the three-dimensional 
structure of proteins and the machine learning technol-
ogy to analyze the physicochemical characteristics of 
protein residues, some works have been carried out to 
detect the hot regions in PPIs [22]. The hot region in PPIs 
is just like the community in the complex network. And 
the community is a hidden pattern in the complex net-
work, which is also called the clustering of the complex 
network. So, in this paper, clustering method is used to 
detect the hot region structures in PPIs.

Method
Dataset
Because published data about hot spots of Hub pro-
teins are fewer, we first used common hot spot datasets 
in published literature for better evaluating the per-
formance of our methods. There are different defini-
tions of hot spots, different datasets, and even different 
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evaluation criteria in many researches. To more effec-
tively evaluate our method, we first performed experi-
ments used the same datasets as [24–26], which was 
obtained from the Alanine Thermodynamic Scanning 
Database (ASEdb).

Then, the Hub protein datasets were used to test, which 
were obtained from Ekman’s PPIN [27]. In this PPIN, the 
proteins are divided into PartyHub protein, DateHub 
protein and NonHub protein according to Ordered Locus 
Names (OLNs) and their Hub status. The features such as 
solvent accessible surface area (ASA) and relative acces-
sible surface area (RASA) were obtained from HotPoint 
server. In addition, ASA values of monomers (RelMono-
mer ASA), ASA values of complexes (RelCompASA) 
and Potential Energy (Potential) were also obtained. The 
details of the datasets are shown in Table 1.

Feature selection
When the number of features exceeds a threshold for 
the limited training set, the accuracy will decrease with 
the increase of features to result in over-fitting. In addi-
tion, the number of features is proportional to training 
time of the model. Redundancy features will take more 
training time, and the most important is to reduce gen-
eralization ability on datasets. Therefore, the appro-
priate feature subset is help to construct the training 
model and can also increase the interpretability of the 
model. Protein residues have many chemical and physi-
cal characteristics. To effectively identify hot regions 
on Hub protein interaction interface, the feature selec-
tion method should be carried out to select the stable 
and optimum feature set. We have used several fea-
ture selection methods, such as the improved mRMR 
method [22] and SVM-RFE based on Pearson correla-
tion coefficient [28]. Pearson correlation coefficient 
is an effective way to measure features. Using Pearson 
correlation coefficient, the features with high correla-
tion can be found. To reduce redundancy, one of the 
highly correlated features can be randomly removed 
without much loss of information. So, this paper used 
the same method as [28] to select features. The selected 
optimal feature subset is shown in the Table 2.

Algorithms
When predicting hot regions on the protein interface, 
more natural hot spots and fewer false hot spots (false 
positive) should be identified. Therefore, to obtain bet-
ter prediction results, it is necessary to create a strong 
classifier for predicting hot spots. We have used some 
algorithms, such as gradient boosting [28] and random 
forest [21] to predict hot spots of the protein interaction 
interfaces. The number of residues in PPIN is numer-
ous. The connections between residues are diverse and 
directional, and the network structures of residues have 
different characteristics. In addition, the residues in the 
network tend to packed closely together and form the 
different community structures. Within the community, 
the connections between residues are relatively dense 
and stable, while there are obvious differences between 
the different communities [29]. This inhomogeneous 
relationship indicates that there is a natural partition 
structure in PPIN. Choobdar et  al.[30] also verified the 
existence of community structure in PPIs. Studies have 
shown that the hot region structure is independent in 
the protein interaction interface. Moreover, the relation-
ship between hot spots in the same hot regions is strong, 
and the relationship between hot spots in different hot 
regions is weak. Hot spots and hot regions are defined as:

Hot spot: The residues with binding free energy ≥ 2.0 
kcal/mol are defined as hot spots [24]. The hot spots usu-
ally gather in the local tightly packed region. The hot 
spots in the same hot region are closely related to each 
other, and they have high coordination number.

Hot region: Supposing that each residue is regarded as a 
ball. If the distance between two hot spot residues is less 
than the sum of radius and a harmonic distance 2Å, the 
two hot spot residues are located in the same commu-
nity. Three or more hot spots in the same community can 
form a hot region [5].

Table 1  Proportion of hot spots and non-hot spots in different 
datasets

Dataset Hot spots Non-hot spots Total Proportion

ASEdb 65 90 155 0.72:1

DateHub 1056 1850 2906 0.57:1

PartyHub 1033 1980 3013 0.52:1

Table 2  Selected optimal feature subset of protein residues

Rank Feature Rank Feature

1 BsRASA 12 BbASA

2 BsASA 13 BbRASA

3 BsmDI 14 UbASA

4 BnRASA 15 UbRASA

5 BminPI 16 UsASA

6 BpRASA 17 UnASA

7 BmaxPI 18 UnRASA

8 BpASA 19 UtASA

9 BnASA 20 UsmDI

10 BtmDI 21 UmaxDI

11 BmaxDI 22 UminPI
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Hot spots tend to cluster tightly in a community, but 
they are unevenly distributed in the protein interac-
tion interface. Therefore, hot spots can be clustered in a 
community by clustering method, and each cluster rep-
resents a set of similar objects. To effectively cluster hot 
spots, this paper used the PPRA optimization strategy to 
optimize LCSD algorithm (Local Community Structure 
Detection) [22] and RCNOIK algorithm (Residue Coor-
dination Number Optimization and Improved K-means, 
as shown in Table 3).

K‑means algorithm based on Silhouette coefficient
K-means algorithm [31] belongs to split clustering, which 
divides n objects into k clusters and makes the distance 
between objects within the same cluster nearest. The aim 
of the algorithm is to minimize the Within-Cluster Sum 
of Squares (WCSS). Supposing that x is a set of given 
objects, S = S1, S2, · · · , Sk represents k partitions, ui is 
the center of Si , and the Within-Cluster Sum of Squares 
is defined as

The process of k-means clustering includes five steps:

Step 1: Input k, that is, number of groups by cluster-
ing.
Step 2: Randomly generate k partition.
Step 3: The center of each partition is calculated .
Step 4: Assign the objects to the nearest clusters.
Step 5: Repeat Step 2, Step 3 and Step 4, until WCSS 
converges to minimum.

The k-means algorithm is efficient method for clus-
ter analysis in data mining, which is easy to implement. 
But the number of clusters k needs to be set before the 
algorithm carries out. An inappropriate k can produce 
unavailable clustering results. In order to obtain better 
clustering results, we used the average silhouette coeffi-
cient to determine k value that can get the best clustering 
result.

(1)WCSS =

k
∑

i=1

∑

x∈Si

� x − ui �
2

Table 3  Prediction method of hot regions based on residue coordination number optimization and improved K-means(RCNOIK)

Input: Protein Residues

Output: Hot Spot Region Best C

Initialize:

Mark all residues as untreated.

Begin

Obtain the optimal k value by calculating the average silhouette coefficient;

Obtain initial hot region C by k-means algorithm;

For each residue ri of hot region:

If ri is non-hot spot

The residue ri is added to the deletion set DSet;

For each pair of residues ri and rj of hot region C

If Location (ri, rj) ≤ 1

Contactij =0;

Else if d(ri, rj) ≤ 6.5 then

Contactij =1;

For each residue ri of deletion set DSet

If CNi =
∑RN

j=1 Contactij > 5.0

Remove residue ri from DSet and add it to hot regions C;

Return Best C;

end
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The effect of clustering depends on the similarity of 
objects within clusters and the dissimilarity between clus-
ters. That is, the larger the distance between clusters, the 
better the clustering effect. And the smaller the distance 
between objects in the same cluster, the better the cluster-
ing result. Considering the aggregation degree of objects 
within clusters and the separation degree between clusters, 
the silhouette coefficient [32] of each object x is calculated 
as

where, a(x) is the average distance from object x to all 
other objects in the same cluster. And b(x) is the mini-
mum of the average distance from object x to all objects 
of other clusters. Generally, the range of Silhouette(x) is 
[− 1,1]. The closer the value is to 1, the better the cluster-
ing is efficient.

Optimization of residue coordination number
There are several distance-based measurements in the 
spatial structure of proteins, such as the contact num-
ber of residues, the number of neighboring residues, 
and the coordination number of residues. The contact 
residues are the basis of the interactions between pro-
tein interfaces. The neighborhood residues are important 
in the structure of aggregation clusters, which provide 
the support for constructing the protein interfaces. The 
coordination number of residues is the total number of 
neighborhood residues. Due to the hot spot residues tend 
to aggregate at one or more same regions in the protein 
interfaces, the average coordination number of hot spot 
residues is higher. Therefore, the average coordination 
number of residues can be used as the optimization con-
dition. Two residues are supposed to contact if the dis-
tance between their Ca atoms is smaller than 6.5Å. The 
residue’s contact is defined as

where d(i, j) is the distance between two Ca atoms of resi-
due i and residue j.

The coordination number of residue i can be defined as

(2)Silhouette(x) =
b(x)− a(x)

max
{

b(x), a(x)
}

(3)

Contactij =

{

0 if | i − j |≤ 1;
1 if | i − j |> 1 and dij ≤ 6.5Å;

(4)d(i, j) =
√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2

(5)CNi =

RN
∑

j=1

Contactij

where RN is the total number of residues. We can iden-
tify hot spots according to the coordination number CNi 
of residues. RCNOIK algorithm (Residue Coordination 
Number Optimization and Improved K-means) is shown 
in Table 3.

PPRA optimization
The biological properties and physical properties of pro-
tein residues are diverse, such as hydrophobicity, ASA, 
distribution potential, solvents and so on. Tuncbag [24] 
proposed that when the Pair Potentials (PP) of residues 
is greater than or equal to 18.0 and Relative ASA is less 
than or equal to 20.0, it can help to distinguish hot spot 
residues from protein residues. Therefore, we used these 
characteristics to further optimize the prediction meth-
ods and to detect the hot regions of Hub protein interac-
tion interfaces. This optimization strategy is called PPRA 
(Pair Potentials and Relative ASA).

Potential energy often occurs in the space folding and 
the interaction interface. The potential energy of residue 
i is defined as:

where potential(i,  j) denotes the potential energy of the 
connection between residue i and residue j.

The ASA of protein residues in complex and monomer 
can be calculated by PSAIA (Protein Structure and Inter-
action Analyzer). The Relative ASA of residue i in the 
complex is defined as:

where maxASAi represents the largest ASA of a residue in 
the tripeptide. Then, PPRA optimization strategy is used 
to optimize LCSD algorithm and RCNOIK algorithm for 
predicting the hot regions on Hub protein interfaces. The 
algorithm process is shown in Tables 4 and 5. The process 
of predicting hot regions is shown in the Fig. 1.

Results and discussion
Evaluation criteria
Several common measures are used to analyze the per-
formance of prediction methods.

(6)PP(i) =|

N
∑

j=1

potential(i, j) | if |i − j| ≥ 4

(7)

potential(i, j) =

{

contact potential of type(i, j) if d(i, j) ≤ 7.0;

0 otherwise;

(8)RComASAi =
ASA inComplexi

maxASAi
× 100

(9)Precision =
TP

TP + FP
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(10)Recall =
TP

TP + FN

(11)F1− Score =
2 ∗ Precision ∗ Recall

Precision+ Recall

TP (true positive): the number of correct classification in 
the sample of predicted positive. FP (false positive): the 
number of misclassification in the sample of predicted 
positive. FN (false negative): the number of misclassifica-
tion in the sample of predicted negative.

Table 4  LCSD algorithm based on PPRA optimization

Input: Datasets
Output: Optimized Hot Region LCSD_Best_CHi

Step 1: Feature selection for residues in datasets;

Step 2: A clustering-based boundary point recognition algorithm is used to obtain the predicted set of hot regions LCSD_RH1;

Step 3: LCSD_RH1 is optimized by PPRA to obtain hot region LCSD_RH2;

Step 4: LCSD_RH2 is optimized according to the loss residue optimization strategy;

Step 5: Repeat step 4 until there is no missing residue need to be processed;

Step 6: Input the optimized hot regions LCSD_Best_CHi.

Fig. 1  Workflow of predicting hot regions
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Experiment based on ASEdb dataset
Frist, we performed experiments used the common ASEdb 
dataset. Table  6 lists the results of the different methods. 
It can be shown that Tuncbag has very high precision, but 
its coverage (Recall) and F1-Score are lower. Compared 
with Nan and Hu, the precision (0.80) and recall (0.82) of 
RCNOIK are improved, which can successfully predict 
80% of the real hot spot regions, and 82% of the identi-
fied hot spot regions are natural. Compared with LCSD 
method, RCNOIK has a slight improvement in precision 
and F1-Score, but its coverage is lower than LCSD method. 
Table  6 shows that two clustering methods LCSD and 
RCNOIK are effective for predicting the hot spot regions 
with better performance.

Next, we introduced the execution process of the 
RCNOIK method. First, the optimal number of clusters k 
can be obtained by the average silhouette width (ASW). 
Figure 2 gives the average silhouette width graph of differ-
ent k values for protein complexes 1A22, 1FCC and 3HFM. 
When the average silhouette width is the largest, the 
value of k is the optimum. The maximum average silhou-
ette widths of 1A22 in Fig. 2a and 1FCC in Fig. 2b can be 
obtained when k equals 2, and the average silhouette width 
of 1FCC has exceeded 0.70. The average silhouette width of 
3HFM in Fig. 2c reaches the maximum when k equals 3, 
which is close to 0.60.

Figure  3 is the silhouette width plots under optimized 
k value of protein complex 1A22, 1FCC and 3HFM. In 
Fig. 3a, 1A22 has 53 residues which are clustered into two 
clusters. One of the clusters has 39 residues, and the other 
one has 14 residues. In Fig. 3b, 1FCC has 8 residues which 
are also clustered into two clusters. One of the clusters has 
2 residues, and the other one has 6 residues. In Fig.  3c, 
3HFM has 23 residues which are clustered into three 
clusters, including 6 residues, 3 residues and 14 residues 
respectively.

In the experiments, we found that the different feature 
combinations have great influence on clustering results. 
The optimum feature combination are composed of nine 
features, namely: BsRASA, BsASA, BsmDI, BnRASA, 
BminPI, BpRASA, BmaxPI, BpASA and BnASA. The accu-
racy and kappa coefficient of these nine features are shown 
in Fig. 4. Kappa coefficient [33, 34] is an index to measure 
the accuracy of classification,which is defined as

where p0 is total classification accuracy. Supposing that 
ai and bi are true samples and predicted samples respec-
tively, pe can be defined as

(12)kappa =
p0 − pe

1− p0

Experiment based on hub protein datasets
Two clustering methods LCSD and RCNOIK were 
also carried out with DateHub and PartyHub datasets. 
Table 7 shows the results of LCSD and RCNOIK meth-
ods for hot region prediction on DateHub and PartyHub 
datasets. Using the same evaluation criteria as previous 
studies, the performance of the two methods on two 
datasets were evaluated. For the results, the coverages of 
two methods on DateHub dataset are higher than those 
on PartyHub dataset, which coincides with the fact that 
DateHub is likely to have more hot spots. In addition, 

(13)pe =

∑c
i=1 ai × bi

n× n

Fig. 2  Average silhouette width graph of different k value for 1A22, 
1FCC and 3HFM. a 1A22,k = 2 under max ASW; b 1FCC, k = 2 under 
max ASW; c 3HFM, k = 3 under max ASW
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Fig. 3  Silhouette width plots under optimized k value. a 1A22, Average silhouette width is 0.55 under k = 2; b 1FCC, Average silhouette width is 
0.76 under k = 2; c 3HFM, Average silhouette width is 0.57 under k = 3
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although LCSD and RCNOIK have the same coverage on 
both datasets, RCNOIK is slightly higher than LCSD in 
Precision. RCNOIK has the highest Precision (0.64) on 
DateHub dataset, and the balance performance F1-Score 
is also better. And RCNOIK can successfully predict 54% 
of natural hot regions on the DateHub dataset, and 64% 
of identified hot regions are natural hot regions.

To further improve the performance of prediction 
results, we optimized the prediction methods by using 
PPRA. Table  8 lists the prediction performance based 
on PPRA optimization, and shows that two optimized 
methods have been improved under Precision, Recall 
and F1-Score. PPRA_LCSD and PPRA_RCNOIK meth-
ods improve the accuracy on both datasets. Moreover, 
the hot spots predicted on the DateHub dataset are more 
than those on the PartyHub dataset, and the coverages 
of both methods are increased to 70%. PPRA_RCNOIK 
has the best prediction effect on DataHub dataset 
( F1− Score = 0.78).

To further analyze the predicted performance, Tables 9 
and 10 list detailed prediction results of protein com-
plexes (1A0A and 1E9G) of DataHub dataset based on 
RCNOIK and PPRA_RCNOIK. For Table  9, many hot 
spots of hot regions are lost, and more false hot spots are 
predicted to be in the hot regions. For Table 10, some of 
the lost hot spots are recovered by PPRA optimization, 
and more non-hot spots can be removed. In addition, 
the results of clustering methods used in this paper are 
closer to those of classification methods (The classifica-
tion results are shown in Table 11), which can get most 
of the same hot regions. Further, the optimized clustering 
methods used are effective for predicting the hot regions 
of Hub protein interaction interfaces.

To observe predicted hot regions more intuitively, the 
three-dimensional spatial structures of 1A0A and 1E9G 
are given. As shown in Fig.  5, the different colors rep-
resent different chains and different shapes represent 
different types of chains. The complex 1A0A in Fig.  5a 
consists of four chains, A, B, C and D, in which A and B 
chains are main chains, C and D chains are side chains. 
Hot regions appear in A and B chains. The red spheres 
are the predicted hot spots, which are the same as the 
natural hot spots. After optimization, 15 hot spots are 
predicted. Blue spheres are the natural hot spots, but 
they are judged to be non-hot spots. We can see that four 
natural hot spots (A20, B23, B43, B46) in the hot regions 
are misjudged as non-hot spots. Orange spheres repre-
sent the predicted false hot spots, and five false hot spots 
(A22, A57, B13, B19, B42) appear in the predicted hot 
region structure. The complex 1E9G in Fig.  5b consists 
of two main chains A and B, without side chains. Four 
natural hot spots (A84, B52, B181, B279) are misjudged 
as non-hot spots, and five non-hot spots (A128, B82, 
B128, B179, B278) are predicted as hot spots. Two three-
dimensional spatial structures show that most of the hot 
regions of Hub protein can be correctly predicted.

Conclusions
In PPIN, a minority of Hub proteins have many inter-
acting partners. Obviously, the connectivity of proteins 
is related to protein function. However, the charac-
teristics of Hub protein have not been fully under-
stood. There are still many important and meaningful 
problems need to be solved about Hub protein inter-
action interfaces. In this paper, two clustering meth-
ods were optimized to predict hot regions on Hub 

Fig. 4  Optimum feature combination of clustering
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protein interaction interfaces. First, LCSD method and 
RCNOIK method were used to identify the hot region 
structures of Hub protein interaction interfaces. Then, 
PPRA optimization strategy was used to optimized the 
predicted hot regions. The experimental results show 
that the improved methods are effective in predict-
ing hot regions of Hub protein interaction interfaces, 
and have better performance than other methods. In 
addition, compared with the classification results, the 

Fig. 5  Three-dimensional spatial structures of DateHub proteins 1A0A and 1E9G. a 1A0A; b 1E9G

Table 5  RCNOIK algorithm based on PPRA optimization

Input: Datasets
Output: Optimized Hot Region RCNOIK_Best_CHi

Step 1: Feature selection for residues in datasets;

Step 2: Calculate the sum of distance squares of residues and the average silhouette value to obtain the optimal k value;

Step 3: K-means is used to obtain the hot regions RCNOIK_RH1;

Step 4: RCNOIK_RH1 is optimized by PPRA to obtain hot region RCNOIK_RH2;

Step 5: RCNOIK_RH2 is optimized according the RCNO strategy;

Step 6: Input the optimized hot regions RCNOIK_Best_CHi.

Table 6  Performance of predicting hot regions by different 
methods

Method Precision Recall F1-Score

Tuncbag 1 0.20 0.33

Nan 0.67 0.40 0.49

Hu 0.78 0.70 0.74

LCSD 0.78 0.83 0.80

RCNOIK 0.80 0.82 0.83

Table 7  Prediction performance of two methods on DateHub 
and PartyHub (before optimization)

Dataset Method Precision Recall F1-Score

DateHub LCSD 0.58 0.54 0.56

RCNOIK 0.64 0.54 0.59

PartyHub LCSD 0.48 0.51 0.49

RCNOIK 0.51 0.51 0.51

Table 8  Prediction performance based on PPRA optimization 
(after optimization)

Dataset Method Precision Recall F1-Score

DateHub PPRA_LCSD 0.78 0.70 0.74

PPRA_RCNOIK 0.89 0.70 0.78

PartyHub PPRA_LCSD 0.73 0.62 0.67

PPRA_RCNOIK 0.89 0.62 0.73
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clustering method adopted can obtain essentially iden-
tical results with those of classification methods, which 
further illustrates that the improved methods are feasi-
ble for predicting hot regions.

Combining with the previous works, the following 
aspects need to be further explored. We will continue 
to study the characteristics of different Hub protein 
interfaces and explore which types of Hub protein 
interface are more likely to form hot region structures. 
In addition, the structural domain can reflect the mech-
anism of PPIs, which is helpful to understanding the 
cell function. Next, we will also continue to study the 
function of domain on Hub protein interaction inter-
faces, and analyze the importance of Hub protein for 
predicting drug-target interactions.
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Table 9  Prediction results of 1A0A and 1E9G by clustering based on RCNOIK

PDB ID Natural hot spots predicted Natural hot spots unpredicted False hot spots predicted
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Table 10  Prediction results of 1A0A and 1E9G by PPRA optimization

PDB ID Hot spots recovered Hot spots unrecovered False hot spots recovered False hot spots

1A0A A23, A46, A50, A56, B49, B50 A20, B23, B43, B46 A43, A47, B22, B28, B47, B54, B57 A22, A57, B13, B19, B42
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B281, B283

A128, B82, B128, B179, B278

Table 11  Prediction results of 1A0A and 1E9G by classification methods

PDB ID Method Natural hot spots predicted Natural hot spots unpredicted False hot spots

1A0A Boosting A16, A19, A49, A53, A56, B16, B29, B49, B50, 
B52, B53

A20, A23, A46, A50, A52, B23, B43, B46 A15, A22, A57, B13, B19, B22, B42

Gradient boosting A16, A19, A23, A46, A49, A52, A53, B16, B29, 
B49, B52, B53

A50, B23, B43, B46 A22, A26, B13, B19, B42, B57

Random forest A16, A19, A23, A46, A49, A50, A52, A53, B16, 
B29, B43, B49, B52, B50, B53, A56

A20, B23, B46 A22, A57

1E9G Boosting A51, A52, A90, A279, A281, B51, A178, A181, 
B84, B90

A87, A84, B52, B87, B178, B181, B279 A82, A126, A128, B82, B128, B179

Gradient boosting A51, A52, A87, A90, A279, A281, B51, B52, 
A178, A181, B84, B178,

A84, B87, B90, B181, B279 A126, A128, B82, B126, B128, B278

Random forest A51, A52, A87, A90, A279, A281, B51, A178, 
A181, B84, B87, B90, B279

A84, B52, B178, B181 A128, B179
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