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Wound healing requires well-coordinated events including hemostasis, inflammation, proliferation, and
remodeling. Delays in any of these stages leads to chronic wounds, infections, and hypertrophic scarring.
Burn wounds are particularly problematic, and may require intervention to ensure timely progression to
reduce morbidity and mortality. To accelerate burn wound healing, Platelet-Rich Plasma (PRP)! can be of
value, since platelets release growth factor proteins and inorganic polyphosphates (polyP) that may be
integral to wound healing. We used polyP-depleted keratinocyte (HaCaT) and fibroblast cell culture
models to determine cell proliferation and scratch-wound repair to determine if polyP, platelet lysate, or
combined treatment could accelerate wound healing. While polyP and PRP significantly reduced the
open scratch-wound area in fibroblasts and keratinocytes, polyP had no effect on keratinocyte or
fibroblast proliferation. PRP was also evaluated as a treatment in a murine model of full thickness wound
healing in vivo, including a treatment in which PRP was supplemented with purified polyP. PRP induced
significantly more rapid re-epithelialization by Day 3. Pure polyP enhanced the effects of PRP on
epithelial tongues, which were significantly elongated in the PRP + high-dose polyP treatment groups
compared to PRP alone. Thus, PRP and polyP may serve as an effective therapeutic combination for
treating wounds.
© 2020, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction used in the treatment of alopecia, acne and scarring (dermatology);
cartilage and bone injury (regenerative medicine); rotator cuff
tears, osteoarthritis of the knee, hamstring injuries, and Achilles
tendinopathy (orthopedics); tooth extractions, periodontal and
implant surgery (dentistry); and in cutaneous wound repair, as we
and others have tested its efficacy to promote enhanced healing
[1-5]. PRP is derived from the patient's blood using centrifugation
to concentrate plasma platelets, and its derived growth factors and

In recent years, platelet rich plasma (PRP) has garnered atten-
tion in diverse disciplines of medicine. For example, it has been
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cytokines including epidermal growth factor (EGF), platelet-
derived growth factor (PDGF), and transforming growth factor
beta (TGFp) [6] that enhance wound healing.

The timely and proper sequence of events is of utmost impor-
tance in the setting of chronic and acute wounds, including burn
wounds. Improper healing of chronic wounds are a significant
factor contributing to morbidity in patient populations that already
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have a plethora of comorbidities [7]. Burn patients with large total
body surface area (TBSA) involvement have restricted donor site
availability. As such, the healing of these large TBSA wounds is a
significant clinical challenge that can lead to wound infection,
sepsis, multi-organ failure, and death if not treated appropriately.
Agents that can act to heal donor sites for quicker re-harvest and
autografting, or to accelerate the healing of deep partial thickness
injuries with, or in conjunction to, autografting are rare and are in
need.

PRP has been used to promote acute and chronic wound healing,
including burn wounds; however, its use is still debated, as many
papers report conflicting results [1]. A review of the use of PRP in
burns in 41 primary manuscripts was reported in 2010 [8]. PRP can
be helpful in stimulating regeneration of dermal structures,
increasing successful rates of skin graft assimilation, and promoting
re-epithelialization, although additional research is recommended.
Since 2010, many studies have been published to try to define the
pathways by which PRP can promote burn wound healing and
improve scar outcomes. Some studies support its use [2—4], while
others do not show substantial changes after PRP treatment [1].
Many investigators have commented on the rich reservoir of
growth factors present in PRP as a probable mechanism by which it
can accelerate healing [8]. As such, a recent paper quantified
growth factors TGFB1, PDGF-AA, and VEGF in a cohort of 5 burn
patients compared to 5 healthy volunteers in an effort to compare
the levels of these factors from individual to individual as a possible
explanation for the variable findings associated with autologous
PRP treatment. Surprisingly, they showed similar levels of growth
factors in PRP generated from burn patients and healthy volunteers.

With this information in mind, it was hypothesized that there
may be an additional factor(s) altered in burn patients (or those
with other pathologies) responsible for its success in autologous
treatment for some burn patients and failure in others. Due to the
impact of burns on the pathophysiology of blood coagulopathy [9]
and endotheliopathy [10], it is not unreasonable to infer that
thrombocytes from burn patients have varying levels of inorganic
polyphosphates (polyP). Coupled with polyP's omnipresence in a
wide range of organisms, and its function in cellular stress, we
hypothesized that polyP is vital to wound healing.

Many clinicians and research scientists have become interested
in inorganic polyP, which is synthesized from polyP kinases 1 and/
or 2 (PPK1/2) and degraded by both exo- (PPXs) and endo- (PPNs/
epps) polyphosphatases. PPX cleaves polyP into phosphate mono-
mers, thereby preserving phosphate homeostasis [11]. In general,
polyP synthesis is induced by environmental stress from nutrient
deprivation, osmotic changes, acidic pH, reactive oxygen species
(ROS), heat, or UV irradiation, which deplete ATP reserves by con-
verting ATP to polyP (>1000 Pi residues in prokaryotes vs. 50 to 800
Pi chain lengths in eukaryotes) [12,13]. The mechanism for syn-
thesis is largely unknown for most eukaryotes [14], although the
Ca’*-ATPase of the human erythrocyte membrane have been
shown to display polyP-synthesizing activity in humans [15]. Poly P
may also be generated by a complex process in intact mitochondrial
membranes [16] that generate a proton-motive force. To maintain
phosphate homeostasis, phosphate is sequestered as polyP in
phosphate-rich conditions [17], and released to provide precursors
for DNA replication.

PolyP is localized to the nucleus, cell membrane, cytoplasm, and
intracellular organelles, particularly those rich in H*, Ca®* and
phosphorus, such as acidocalcisomes and mitochondria [18,19].
Platelet-dense granules are similar to acidocalcisomes, and have
very high concentrations of polyP, as do dense granules of mast
cells (130 mM) [19,20]. PolyP is efficiently secreted after platelet
activation [20], and intra- and extracellular localization of polyP is
of central importance in the regulation of the clotting cascade.

Patients with platelet-dense granule defects and bleeding
demonstrated approximately 10 times lower platelet polyP levels
than normal [21]. We have also demonstrated a role for intracel-
lular and extracellular polyP in human keratinocytes [22].

PolyP is implicated in bioenergetics, signal transduction, Ca®*-
signaling, and regulation of the mitochondrial membrane potential
[23]. In Dictyostelium discoideum a G protein-coupled receptor
mediates cell-surface binding of extracellular polyP, which alters
cell adhesion and cytoskeletal F-actin levels [24]. PolyP can interact
with a number of other proteins, including mammalian target of
rapamycin (mTOR), to which it binds and stimulates at physiolog-
ical levels in mammalian cells (0.15—1.5 mM) [18], and thus appears
to play a role in mTOR-induced autophagy [25], as well as cell
proliferation, and apoptosis [23]. Ribosome biogenesis has been
shown to be the major metabolic effort in proliferating cells [26],
and thus important in wound healing. PolyP also promotes binding
of FGF-2 to its receptors, and thus enhances its mitogenicity [27].
PolyP plays other key roles in mammalian cells including inflam-
mation [28] after its release from mast cells [19], and Ca?* meta-
bolism during osteogenic differentiation and bone mineralization
[29].

Many of these processes, especially blood clotting, inflamma-
tion, oxidative stress, motility, proliferation, and differentiation are
intimately involved in wound healing, including burn wound
healing. However, a definitive role for polyP in mammalian cell
wound healing has only been tested in a few cell culture models
[22]. It was our hypothesis that polyP from PRP or platelet lysate
promotes wound healing, and we tested this hypothesis using
wound healing models in cultured cells and in vivo. Previous work
by our group was used as the foundation for this study [22]. An
immortalized keratinocyte cell line that is depleted of polyP was
derived (HaCaT PPX1), and it was shown that polyP depletion had a
negative effect on cell growth, motility, proliferation, and wound
healing in scratch assays in vitro. The goal of the current work was
to expand and confirm this finding through the use of the HaCaT
PPX1 cell line and evaluate wound healing in vitro and in vivo with
the secreted products of platelets, focusing on polyP.

2. Methods
2.1. Reagents

2.1.1. PolyP and human platelet lysate

Medium chain polyP (75 residues) and human platelet lysate
were purchased from Kerafast Inc., Boston, MA and MilliporeSigma,
St. Louis, MO, respectively.

2.1.2. PolyP assay

PolyP concentrations were quantified using a polyP assay ac-
cording to manufacturer's instructions (ProFoldin, Hudson, MA),
which measures fluorescence of a PPD dye upon binding to polyP,
using a 45-mer sodium polyphosphate for the creation of a stan-
dard curve (emission 550 nm, excitation 415 nm).

2.1.3. Platelet-Rich Plasma preparation

PRP was generated as described previously [30]. Multiple mouse
donor blood was pooled, collected in sodium citrate, and centri-
fuged at 200x g (20 min at room temperature) to separate plasma. A
small number of RBCs containing platelets and the full volume of
plasma was then further centrifuged at 400xg (15 min at room
temperature) to generate platelet-poor plasma (PPP) as well as a
platelet pellet. PPP was removed and platelets re-suspended in a
small volume of PPP. PRP was activated with thrombin and CaCl; at
a ratio of 10:1 (Recothrom®, Mallinckrodt Pharmaceuticals, Surrey,
United Kingdom) to form a gel, which makes a “bio-bandage”-like
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substance that is convenient to apply to wounds. Recothrom was
not dissolved in the saline supplied by the manufacturer, but
instead with 10% CaCl,. Smears of Whole blood, packed RBCS, and
PRP were stained with Wright Giemsa stain (American Mastertech
Scientific, Lodi, CA) to confirm high concentration of platelets in the
PRP. Whole blood and PRP were diluted in HEPES buffered saline
1:100 for counting by hemocytometer.

2.2. Cell culture

HaCaT immortalized human keratinocytes [31] or primary hu-
man foreskin fibroblasts (HFF), derived as described previously
[32,33], were grown in DMEM with 10% FBS and 1% penicillin/
streptomycin in a cell culture incubator (37 °C, 5% CO,). HaCaT cells
were transfected with vector pCMV (Clontech Labs, Inc) or with
pCMV-PPX1 using Lipofectamine-LTX; clones were selected using
G418, and screened for PPX1 expression by RT-PCR and immuno-
blot analysis [22]. Packaging @NX-cells were transfected with
pLHCX vector with either GFP or DsRed to track cells fluorescently;
HaCaT-vector or HaCaT-PPX1 cells were then transduced with the
viral supernatants from ONX-cells; clones were selected in
hygromycin.

2.3. Cell growth curves

HaCaT empty vector GFP, HaCaT PPX1 DsRed cells, or HFF were
seeded into 6-well plates using 10,000 cells/well, allowed to attach
for 24 h, and further grown in media containing (1) media only
(control), (2) 1 uM polyP, (3) 4% platelet lysate and (4) 4% platelet
lysate + 1 uM polyP. Cells from triplicate wells were collected every
two days for 10 days, and subjected to total and viable cell counts
with an Eve™ Automated Cell Counter (NanoEnTek Inc, Waltham,
MA) after trypan blue staining. All cells used were above 90% cell
viability, indicating cells were healthy. Cell growth curves were
plotted over time.

2.4. Scratch-wound assays

500,000 cells/well were plated in 12-well plates for 24 h, fol-
lowed by addition of media containing 4% platelet lysate with or
without 1 uM polyP. Three scratches/well with consistent widths
were made on confluent monolayers of cells using sterile pipette
tips. The scratch wounds were analyzed using an EVOS fluores-
cence time-lapse auto-imager (Life Technologies, Carlsbad, CA)
with an onstage incubator. Fluorescent images were taken at 10-
min intervals for a period of 36 h using time-lapse imaging.
Average wound gap areas were quantified with Image | software
based on the photomicrographs, and gap areas were calculated and
converted to percent gap area relative to the original wound gap.
Multiple scratch assays were performed where HaCaT PPX1 DsRed,
HaCaT empty vector GFP cells were treated with 1 pM polyP, 4%
platelet lysate, or combination treatment and compared to control
cells that received no treatment. HFF were treated as above after
exposure to either 1 pM polyP or 4% platelet lysate. Results are
representative of 3 independent experiments with reproducible
results.

2.5. Murine excisional wounding model

The protocol and procedures employed were reviewed and
approved by the MedStar Health Research Institute's Institutional
Animal Care and Use Committee. For in vivo experiments, a murine
full thickness excisional wound healing model was used in which
6 mm punch biopsy injuries were generated on the dorsal flanks of
C57BL/6 mice [34]. To induce healing by reepithelialization, punch
wounds were then splinted to minimize contracture. PRP was then
applied to wounds, followed by Tegaderm dressing for 3 days.
Images were captured at days 3—7, after which wounds were
healed.

In another experiment, mice were wounded as above, then
divided into 4 treatment groups: 1) untreated, 2) PRP 3)
PRP +10 uM polyP (low dose) and 4) PRP + 100 uM polyP (high
dose). C57BL/6 mice contain 9.85 + 1.40 x 10! platelets/L [35], and
platelets contain 0.74 + 0.08 pmol polyP/10"! platelets [36].
Therefore, whole mouse blood contains 7.3 uM polyP, while PRP
should contain 3—5X that much, or >22 pM polyP. We therefore
used 10 uM polyP in the “low dose” group, and 100 uM for the “high
dose” treatment.

After treatment, Tegaderm ® dressings remained in place for
three days, after which dressings were taken off and images
captured at days 3 and 4. On the fifth day, dressings were removed,
images were captured, and wounds excised and sewn into histo-
logical cassettes to maintain correct orientation of sections. Tissues
were embedded in paraffin and stained with H&E, and epithelial
tongue lengths measured by Image ]. Criteria for “new epithelium”
was determined by whether only injured dermis appeared directly
below keratinocytes migrating into the wound.

2.6. Statistical analysis

Data from three experiments were compared using two-tailed
Student's t-test to determine significance. When multiple com-
parisons were made, a Bonferroni correction was used after the t-
test.

3. Result

3.1. Inorganic polyP and platelet lysate contribute to increased
wound closure in cultured cells alone and in combination

To examine the effects of exogenous polyP and platelet lysate on
cell proliferation of HaCaT keratinocytes, platelet lysate supple-
mented with or without 1 uM polyP was incubated with
fluorescently-tagged DsRed-PPX1 or GFP-empty vector-containing
cells. RT-PCR analysis revealed that HaCaT-PPX1- DsRed cells ex-
press high levels of PPX1 RNA, whereas vector-GFP control and
parental HaCaT cells did not (Fig. 1A). The presence of functional
scPPX1 was verified by quantifying degradation of 3?P-labeled long
chain polyphosphates with increasing protein concentrations in
cell lysates. As expected, scPPX1 activity was detected and
increased linearly with protein levels in HaCaT PPX1 cells, but not
in the vector control cells; further, intracellular polyP levels were
reduced by 48% in ScPPX1-expressing cells [22].

In both empty vector-GFP control (Fig. 1D, left column) and
polyP-depleted PPX1-DsRed cells (Fig. 1D, right column) treated

Fig. 1. Ectopic expression of SCPPX1 enzyme in HaCaT cells and effects on proliferation upon treatment with 4% platelet lysate either with or without 1 M polyP. A) RNA isolated
from HaCaT cells stably transfected with vector pCMV, or with pCMV-ScPPX1, was subjected to RT-PCR using primers specific for ScPPX1. B) Growth curves of HaCaT empty vector
(left) or polyP-depleted PPX1 cells (right) reveal significant increases in cell proliferation upon treatment with 4% platelet lysate either with or without 1 uM polyP treatment. C)
polyP standard curves generated using a 45-mer polyP control (left) and long-chain polyP (200—1300-mer; middle), and of different concentrations of platelet lysate (right). For all
experiments *, **, or *** represent p < 0.0167, p < 0.0033, or p < 0.00033 (Bonferroni correction for 3 comparisons) compared to controls; results are shown as the means + SEM of
three replicates of a representative experiment; essentially the same results were obtained in three independent experiments.
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Table 1
Levels of polyP in platelet lysate as quantified using two standard curves.

Platelet Lysate (% of pure)

45-mer PolyP standard curve

Long Chain PolyP standard curve

50%
25%
12.5%

25.96 uM
17.50 uM
12.86 uM
6.25% 10.75 pM
3.125% 7.92 uM
4% 9.18 uM

22.80 uM
14.98 uM
10.68 uM
8.73 uM
6.12 uM
7.28 pM

The bold value represents the % of pure platelet lysate used in cell cultures.

with 4% platelet lysate (Fig. 1D, middle row), or 4% platelet
lysate + 1 uM polyP (Fig. 1D, bottom row), cell proliferation was
significantly enhanced, but to the same extent in the presence or
absence of added purified polyP; there is no significant difference
between 4% platelet lysate with or without 1 pM polyP. polyP
quantification showed that 4% platelet lysate harbors approxi-
mately 8 uM polyP (Fig. 1B, Table 1); thus adding 1 pM exogenous
polyP does not enhance proliferation in vitro.

To determine changes in keratinocyte migration and wound
healing, scratch wound assays were performed. Images were
captured every 10 min for 36 h (EVOS FL time-lapse; Fig. 2A), and
analyzed by Image ] (Fig. 2B). Closure in scratch wounds was
accelerated with 1 uM polyP (Fig. 2B, top row), 4% platelet lysate
alone (Fig. 2B, middle row), or a combination of the two (Fig. 2B,
bottom row;). Cells treated with the combined treatment had a
smaller open wound area compared to the individual treatments.
The scratch gaps completely closed by 16 h, 14 h, and 12 h in polyP-
treated cells, 4% platelet lysate-treated cells, and with the combined
treatment, respectively. PolyP, platelet lysate, or the combination
may therefore enhance re-epithelialization during wound healing.

We next determined the effects of platelet lysate and polyP on
HFF primary epidermal fibroblasts. Cells were derived from
neonatal foreskin (Materials and Methods), and scratch wound
assay closures performed in the presence or absence of platelet
lysate (Fig. 3A) or polyP (Fig. 3B) as described above for keratino-
cytes. Fig. 3A and B shows that in the presence of platelet lysate or
purified polyP, scratch wounds close faster than control fibroblasts.
To determine whether proliferation was contributing to fibroblast
wound closure, growth assays were performed. Platelet lysate, but
not purified polyP, increased the proliferation of HFF (Fig. 3C),
suggesting that purified polyP contributes to fibroblast migration
into the wound, but unlike its effect on keratinocytes, polyP does
not promote fibroblast proliferation.

3.2. PRP accelerates wound healing in vivo

As expected, PRP was determined to contain more platelets than
equivalent amounts of whole blood (Fig. 4A). To prevent the dra-
matic contraction that occurs in murine wound healing compared
to humans, a splinted model variation of our previously used skin
grafting technique [32,33] was used to study the process of re-
epithelialization. PRP was introduced on the wound as a “bio-
bandage” (Fig. 4C and 4D). Punch biopsies were utilized to generate
wounds of similar dimensions at day 0. At the third and fifth days,
PRP significantly reduced the sizes of wounded areas compared to
controls (Fig. 4E), after which differences between the groups was
not significant.

3.3. Addition of purified of polyP to PRP further increase rate of
healing in vivo

To determine the potential role of polyP as a therapeutic in PRP-
induced wound healing, PRP alone, or with 10 uM (“low dose”) or

100 puM (“high dose”) additional purified polyP was used. Control
wounds were still not healed by day 3, while those treated with PRP
were noticeably reduced with freshly generated epithelium
(Fig. 5A). Addition of high levels of purified polyP to the PRP
appeared to promote epithelialization. Image ] quantification of
open wound area revealed that treatment with PRP and/or
PRP + low or high-dose polyP resulted in lower % open wound area
normalized to Day 0 at Day 3 (Untreated = 85.34 + 2.49% vs.
PRP = 68.89 + 3.08% (p < 0.0059) vs. PRP + low dose
polyP = 6991 + 2.95% (p = 0.0106) vs. PRP + high dose
polyP = 65.17 + 3.12% (p = 0.0007). This quantification did not
reveal significant differences with the addition of polyP, and hence,
epithelial tongue length was further quantified to elucidate any
difference.

3.4. Addition of purified of polyP to PRP increases epithelial tongue
length

Upon cutaneous wounding, platelets release clotting factors that
prevent bleeding and invasion by bacteria, which are further
eliminated by inflammatory cells. Fibroblasts also enter the wound
bed and secrete ECM containing collagen. Finally, keratinocytes
migrate over this granulation tissue until two epithelial “tongues”
meet in the center of the wound, as part of the re-epithelialization
process [37]. Following H&E staining, these epithelial tongues can
be measured by quantitative analysis. In controls, epithelial
tongues were reduced in size in all dimensions. Addition of PRP
generated an epithelium that contained more layers and was longer
than controls (Fig. 5C). Addition of 10 uM purified polyP to PRP
generated epithelial tongues of greater length (Fig. 5D). A polyP
dose-dependency was also observed with significantly longer
tongues observed with 100 pM polyP (Fig. 5E). Image ] analysis
revealed a significant increase in tongue length in wounds exposed
to PRP with 100 puM purified polyP, compared to controls and
wounds exposed to PRP alone (Fig. 5F).

4. Discussion

PolyP has been shown to play potential roles in different stages
of normal wound healing, including hemostasis, dermal wound
healing, and re-epithelialization. We have shown in cell culture
models that both intracellular and extracellular polyP enhances
scratch-wound closure of HaCaT skin keratinocytes [22]. Kerati-
nocytes, the cells that make up the majority of the epithelium, were
shown to have increased cell growth in the presence of 4% platelet
lysate. Moreover, addition of polyP attenuated open wound area in
scratch assays of HaCaT keratinocyte cells in cells depleted of polyP
(PPX1 DsRed), as well as empty vector controls.

Reepithelialization of wounds depends on the processes of cell
proliferation and cell motility. Effects on cell growth were evalu-
ated to elucidate whether treatment with polyP, platelet lysate, or
the combination of the two, can enhance the rate of wound healing
in HaCaT cells by affecting cell proliferation, cell motility, or both.
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Fig. 2. A) Representative fluorescent images of wound healing scratch assays at indicated time points for HaCaT empty vector GFP (left panel) or polyP-depleted PPX1 Ds-Red cells
(right panel) that are untreated (top, control), treated with 1 uM polyP (upper middle), 4% platelet lysate (lower middle) and 4% platelet lysate + 1 uM polyP (bottom). Images were
taken at 10x magnification, with the margin of wound shown as a yellow line. B) Wound gap closure of HaCaT empty vector (left) or polyP-depleted PPX1 cells (right) reveal
significant increases in rates of wound healing in cells treated with 1 uM polyP (top), 4% platelet lysate (middle), or 4% platelet lysate + 1 uM polyP (bottom) compared to untreated
control cells. Results are the means + SEM of three replicates of a representative experiment; essentially the same results were obtained in three independent experiments.
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Fig. 3. Fibroblast scratch wound closure is enhanced by PRP and purified polyP. Scratch wounds were made in fibroblast cultures, and measurements were made from repre-
sentative fluorescent images at indicated time points for HFF that are untreated or treated with 1 uM polyP (A), 4% platelet lysate (B). C) HFF Proliferation is enhanced by PRP but not
polyP. HFF were plated in the presence or absence of purified polyP, and cell counts were performed each day for 10 days.
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Fig. 4. A) PRP was created by multiple rounds of centrifugation. Blood smears were stained with Wright Giemsa. B) Whole blood and PRP were diluted and loaded onto a he-
mocytometer to determine platelet concentrations. White blood cells are indicated with black arrowheads. Platelets are indicated in white circles. C) The splinted excisional wound
mouse model was used to evaluate treatment of wounds with PRP and polyP. 6 mm punch biopsies were used to create full thickness wounds (left), splints were applied to prevent
contraction (middle), and treatment was applied as a gel (right, D). Black arrow = splint; black asterisk = suture; white asterisk = PRP. E) Wounds were splinted to prevent
contraction, and were left untreated, or were treated with PRP. On Days 0 and 3—7, pictures were taken and open wound areas were quantified by Image ] to assess wound healing.
Box and whiskers plot of wound areas (N > 6), showing average + SD of the mean, and range. *p < 0.05, **p < 0.01 Results are the means + SEM of three replicates of a
representative experiment; essentially the same results were obtained in three independent experiments.
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Fig. 5. The splinted mouse model was used, and representative pictures of wounds at days 0 and 3 are shown (5A). B) Image ] quantification of open wound area revealed that
treatment with PRP and/or PRP + low or high-dose polyP resulted in lower % open wound area normalized to Day 0 at Day 3 (Untreated = 85.34 + 2.49% vs. PRP = 68.89 + 3.08%
(p < 0.0059) vs. PRP + low dose polyP = 69.91 + 2.95% (p = 0.0106) vs. PRP + high dose polyP = 65.17 + 3.12% (p = 0.0007). This quantification did not reveal significant differences
with the addition of polyP, and hence, epithelial tongue length was further quantified to elucidate any difference. Wounds were removed after exposure to test compounds for five
days, then formalin fixed, paraffin embedded, sectioned, and examined histologically with H&E. Wounds were left untreated (5C), treated with PRP only (5D), PRP + 10 uM polyP
(low dose; 5E) or PRP + 100 uM polyP (high dose; 5F). For 5C—5F, images were photo stitched to observe unwounded skin as well as the epithelial tongues entering the wound bed
(orange arrows). Black arrows denote areas lacking epithelium. Image ] analysis was performed and revealed a significant increase in tongue length in wounds exposed to PRP with

100 pM purified polyP, compared to controls and wounds exposed to PRP alone (5G).

We have previously shown significantly higher rates of cell growth
in vector control cells compared to PPX1-expressing cells, indi-
cating that intracellular polyP depletion by PPX1 decreases the rate
of cell growth [22]. As a measure of individual cell proliferation, an
in situ BrdU incorporation assay was also conducted at indicated
times on the cells at the wound edge. Fluorescent images of cells at
wound-edge were taken, and % BrdU incorporation into their
nascent DNA was quantified and plotted. Consistent with the cell
growth curves, BrdU incorporation was significantly lower for the
PPX1 cells compared to vector control cells. Depletion of intracel-
lular polyP by PPX1 may therefore impair the ability of HaCaT skin
keratinocytes to close wounds, in part by interfering with their
ability to proliferate [22].

Interestingly, while intracellular polyP may play an essential
role in cell proliferation, our current results show that addition of
exogenous polyP did not have any significant effect on cell growth
of HaCaT cells, although polyP-rich platelet lysate did. The signifi-
cant increase in the rate of wound healing in cells treated with
extracellular polyP, platelet lysate or the combination, can therefore
be attributed to increased cell motility rather than cell proliferation.
Consistently, results of real time monitoring and measurement of
cell motility using an xCelligence impedance-based system
revealed a marked attenuation of cell motility in polyP-depleted
PPX1-expressing HaCaT keratinocytes [22]. PPX1 cells exhibit
only one-fifth the motility of the vector control cells, suggesting
that polyP depletion leads to significantly impaired cellular

migration. Taken together, our results demonstrate that constitu-
tive expression of PPX1, which degrades intracellular polyP, retards
the rate of wound healing in human skin keratinocytes, a response
that, at least in part, may be attributable to a decrease in cell pro-
liferation as well as cell motility.

The human h-Prune cancer metastasis regulator protein exhibits
inorganic polyphosphatase activity (Ky = 2.2 uM for polyPs [38]).
Interestingly, h-Prune has been shown to increase cell motility
[39,40] as a mechanism to promote cancer metastasis [38,41,42].
Normal wound healing in vivo, however, is a coordinated series of
events, including angiogenesis, collagen deposition, granulation
tissue formation, re-epithelialization, and wound contraction.
Consistent with our results, corneal epithelial cell migration during
wound healing is also stimulated by diadenosine polyphosphates
presumably due to activation of MAPK pathways [43]. The role(s) of
polyP in wound healing may also be mediated via mTOR, a serine
threonine kinase stimulated by inorganic polyphosphate [44].
mTOR is involved in cell proliferation and survival, and is upregu-
lated during wound healing [45].

These promising in vitro results prompted an investigation into
the effect polyP may have in vivo. PRP, which contains polyP at a
concentration near 8 uM polyP, was shown to accelerate wound
healing in a splinted excisional wound mouse model. The addition
of purified polyP to PRP accelerated keratinocyte proliferation, as
shown by augmented epithelial tongue length in a polyP dose-
dependent fashion. Thus, extracellular polyP appears to function
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Fig. 5. (continued).

as an inducer of migration, but not proliferation in keratinocytes as
well as dermal fibroblasts, which comprise the bulk of the skin.
PolyP levels need to be compared in healthy and pathologic con-
ditions allowing us to supplement PRP with appropriate amounts
of polyP when treating acute burn wounds or chronic wounds in
the future.

5. Conclusions

In conclusion, we have shown that in HaCaT skin keratinocytes,
treatment with polyP, platelet lysate, and their combination in-
creases rates of wound scratch closure. Additionally, in a splinted
excisional wound mouse model, PRP-treated wounds had smaller
open areas compared to controls as quantified by gross pictures.

Additionally, when purified polyP is added to PRP, acceleration of
healing is increased. PRP is a safe option for the treatment of
wounds due to its autologous nature. It can be used to treat wounds
or partial thickness burns, and further studies should further
examine the role of polyP modulation to accelerate wound healing.
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