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Abstract

Sepsis remains a significant cause of neonatal mortality and morbidity, especially in low 

and middle-income countries. Neonatal sepsis presents with nonspecific signs and symptoms 

that necessitate tests to confirm the diagnosis. Early and accurate diagnosis of infection will 

improve clinical outcomes and decrease overuse of antibiotics. Current diagnostic methods rely 

on conventional culture methods, which is time-consuming and may delay critical therapeutic 

decisions. Nonculture-based techniques including molecular methods and mass spectrometry may 

overcome some of the limitations seen with culture-based techniques. Biomarkers including 

hematological indices, cell adhesion molecules, interleukins and acute phase reactants have been 

used for diagnosis of neonatal sepsis. In this review, we examine past and current microbiological 

techniques, hematological indices and inflammatory biomarkers that may aid sepsis diagnosis. The 

search for an ideal biomarker that has adequate diagnostic accuracy, early in sepsis is still ongoing. 

We discuss promising strategies for the future that are being developed and tested that may help us 

diagnose sepsis early and improve clinical outcomes.
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INTRODUCTION

Neonatal sepsis is a clinical syndrome characterized by non-specific signs and symptoms 

caused by invasion by pathogens1,2. Sepsis is deemed culture-proven if confirmed by 

microbial growth on blood cultures or other sterile bodily fluids. Debate exists over the 

occurrence of culture-negative sepsis and whether antibiotics should be continued in culture-

negative cases3. Sepsis is categorized as early-onset if diagnosed within the first 72 hours 

of life, which is due to perinatal risk factors, or late-onset if diagnosed after 72 hours and 

secondary to nosocomial risk factors. Neonatal sepsis is still a major cause of morbidity and 

mortality despite advances in neonatal medicine4. Incidence varies from 1–4 cases per 1000 

live births in high-income countries but as high as 49–170 cases in low and middle-income 

countries with case fatality rate up to 24%5–8. Survivors of neonatal sepsis are at increased 

risk for adverse neurodevelopmental outcomes including cerebral palsy, hearing loss, visual 

impairment and cognitive delays even in those whose cultures were negative but were treated 

with antibiotics9,10.

The diagnosis of confirmed sepsis relies on conventional microbiologic culture techniques, 

which can be time-consuming11. Despite the high sensitivity in detecting low bacterial 

loads (1–4 CFU/mL), many providers view negative blood cultures with skepticism when 

presented with a sick infant12. The diagnosis “culture-negative” sepsis or ‘clinical sepsis’ 

has led to a 10-fold increase in antibiotic use in neonates with evidence of unintended harm 

including increased risk for necrotizing enterocolitis, fungal infections, bronchopulmonary 

dysplasia, and death12.

Advances in rapid culture techniques, antibiotic stewardship, and bundled approaches to 

prevent central line associated bloodstream infections (CLABSIs) have reduced morbidity 

and mortality from neonatal sepsis13,14. Newer molecular approaches and nonculture-based 

methods to assist in timely detection and accurate diagnosis of sepsis are needed. Current 

biomarkers and adjunct hematological indices used in routine clinical practice have limited 

value and are difficult to interpret due to low sensitivity and changing normal ranges during 

the neonatal period15,16. An ideal marker should have sensitivity and negative predictive 

value (NPV) approaching 100%; specificity and positive predictive value (PPV) over 

85%17,18. None of the biomarkers or combination of biomarkers have adequate diagnostic 

accuracy to be used reliably in the diagnosis of neonatal sepsis19. We aim to review the past 

and current diagnostic modalities and present some insight on future diagnostic strategies in 

neonatal sepsis (Figure 1).

PATHOPHYSIOLOGY OF NEONATAL SEPSIS

Host immune responses including cytokines and chemokines during neonatal sepsis may 

aid in the diagnosis and/or assessing the severity of sepsis. A summary of the biomarkers 

associated with host immune pathways that change during sepsis is depicted in Figure 

2. Paneth cells and intestinal lymphoid cells produce interleukin-17 (IL-17), which has 

a role in local defense and development of systemic inflammatory response syndrome20. 

Respiratory epithelia secrete antimicrobial proteins and peptides including cathelicidin 

Celik et al. Page 2

Pediatr Res. Author manuscript; available in PMC 2022 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and β-defensins21. Gram positive microorganisms and their cell wall lipoteichoic acid 

signal through TLR-2 receptors while gram negative microorganisms and their secreted 

lipopolysaccharide (LPS) signal through TLR-4 receptors22. These signaling cascades are 

associated with production of nuclear factor κB (NFκB) dependent inflammatory cytokines 

and chemokines. NOD-like receptors lead to production of IL-1β and IL-18 by a protein 

complex called inflammasome23. Activation of pathogen recognition receptors (PRR) results 

in generation of inflammatory mediators such as IL-1β, IL-6, IL-8, IL-12, IL-18, interferon-

γ (INF-γ) and tumor necrosis factor-α (TNF-α)24. Proinflammatory cytokines activate 

endothelial cells leading to increased expression of cell adhesion molecules such as soluble 

intercellular adhesion molecules, selectins, angiopoietins, CD11b, CD1825. Chemokines 

including CXCL10, CCL5 (RANTES), CCL3 and complement proteins such as, C3a, C5a 

cathelicidin and defensins are also stimulated by proinflammatory cytokines26. Damage 

associated molecular patterns (DAMPs, alarmins) such as high mobility group box 1 

(HMGB-1), uric acid are released from damaged cells and induce cytokine production, 

coagulation cascade and regulate polymorphonuclear cell function27. Anti-inflammatory 

cytokines such as transforming growth factor-β (TGF-β), IL-4, IL-10, IL-11, IL-13) are 

expressed to control and balance inflammation28. Acute phase reactants (APRs) such as 

C-reactive protein (CRP), procalcitonin (PCT), serum amyloid A (SAA) are produced 

predominantly in the liver in response to complement activation, PAMPs activity and 

proinflammatory cytokine secretion.

CURRENT METHODS TO DIAGNOSE NEONATAL SEPSIS

1. Microbiological culture methods

Conventional culture techniques remain the “gold standard” to confirm the diagnosis of 

neonatal sepsis. The introduction of automated systems that detect the presence of growth 

from bacterial CO2 production has reduced the time to organism detection to 24–48h29,30. 

Factors that may influence the recovery of pathogens from the blood include amount of 

blood volume obtained, timing of collection, and number of samples collected.

In neonates, the presence of low or intermittent bacteremia and maternal intrapartum 

antimicrobial exposure may decrease sensitivity of blood cultures12,31. The delay in 

pathogen identification and antibiotic susceptibility testing increases exposure to broad-

spectrum antibiotics, which may lead to bacterial antibiotic resistance and delay in targeted 

antimicrobial therapy9,32,33. The volume of blood sampled for cultures is the single most 

important factor influencing the recovery of pathogens from blood cultures34. However, 

collection of optimal blood volume can be difficult in extremely preterm infants and 

repeated phlebotomy may increase the risk of requiring blood transfusions. Schleonka et 

al reported that a blood culture volume of 1mL injected into pediatric blood culture bottles 

had excellent sensitivity even if organisms were present at very low concentrations (< 4 

colony forming units (CFU)/mL)31.

The need for obtaining anaerobic cultures in neonates before commencing antibiotics is 

unclear35. The overall incidence of clinically significant anaerobic isolates found in a 

neonatal population was 0.2% of all blood cultures performed36. Previous studies showed 

that use of anaerobic blood cultures led to increased identification of both aerobic and 
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facultative anaerobic bacteria37. Créixems et al reported that among 10,024 paired blood 

cultures (aerobic and anaerobic), 19% of patients with bacteremia would have been missed 

if aerobic cultures alone were used, not including the 3 strictly anaerobic infections 

identified38. In contrast, Dunne et al found increased sensitivity in isolating aerobic 

and facultative anaerobic isolates from pediatric patients when 2 aerobic blood cultures 

were performed versus paired aerobic/anaerobic cultures39. It is unclear whether treating 

anaerobes in routine sepsis management in neonates improves clinical outcomes.

2. Rapid testing methods from positive blood cultures

Several diagnostic systems have been developed for rapid identification of organisms 

found in positive blood cultures and provide faster turn-around times when compared to 

conventional methods (Table 2)40. These FDA-cleared assays rapidly identify organisms 

growing in positive blood cultures but do not eliminate the time required for growth 

from these cultures. Peptide Nucleic Acid Fluorescent In Situ Hybridization Molecular 

Stains (PNA-FISH)41 is a well-validated method; the new QuickFISH system has reduced 

turnaround time to 20 minutes, enabling species identification results to be reported in 

the same time frame as Gram staining42. PCR-based methods, including GeneXpert (1 

hour), FilmArray (1 hour), and Verigene (2.5 hours), are somewhat slower than QuickFISH 

but have little or no sample processing and include selected antibiotic resistance genes40. 

Rapid assays are gradually becoming less labor intensive and has led to improved clinical 

outcomes, shorter hospital stays, and dramatically lower healthcare costs43,44.

Recent advances in molecular techniques enable amplification of microbial pathogens 

directly from whole blood samples in under 12 h without relying on initial microbial growth 

in blood cultures (Table 2)40. This provides the advantage of same-day identification and 

early targeted pathogen-specific antimicrobial therapy, especially in settings where there is 

pretreatment with antibiotics, low-density bacteremia, or where culture-negative sepsis is 

common. These molecular techniques predominantly rely on the amplification methods of 

polymerase chain reaction (PCR) for the bacterial 16S or 23S rRNA genes and the 18S 

rRNA gene of fungi. Diagnostic accuracy of systems such as SeptiFast, SepsiTest, and, most 

recently, detection of PCR amplified pathogen DNA from blood that is hybridized to capture 

probe-decorated nanoparticles detectable by a small portable T2 Magnetic Resonance (MR) 

platform have been reported45,46–48. The Roche Light Cycler SeptiFast system requires 100 

μL blood and can detect 25 pathogens known to cause >90% of bloodstream infections, with 

a turnaround time of 6 hours. A competing commercial assay, SepsiTest is able to detect 

>300 pathogens, however, with a relatively slower turnaround time of 8–12 hours46. The T2 

MR is an automated nanoparticle-based PCR assay that can detect as few as 1 CFU/mL of 

Candida spp. in the blood in approximately 3 hours46.

Some studies report a discordance between conventional culture and PCR methods during 

validation of molecular pathogen detection methods, which has led to continued uncertainty 

about the bacterial etiology of sepsis49,50. Furthermore, false positive results were seen with 

high cycle thresholds thus opening the possibility for nonspecific amplification and raising 

the questions about whether the bacteria present was the cause for the sepsis syndrome51. 

A systematic review concluded that molecular diagnostics had value as adjunctive tests with 
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an overall sensitivity of 90% and specificity of 96%52. Molecular assays are not readily 

available, may be expensive and have modest diagnostic accuracy. Hence, molecular assays 

are not ready to replace blood cultures as reference standards but are useful as adjunctive 

tests in the diagnosis of neonatal sepsis.

3. Hematological Indices

Leukocyte (<5000 or ≥20000/mm3), absolute neutrophil (<1000 or ≥5000/mm3) and 

immature/total neutrophil counts (>0.2), and peripheral blood smear (toxic granulation, 

vacuolization and Dohle bodies) are traditionally used to aid the diagnosis of neonatal 

sepsis53.

White blood cell count (WBC)—Leukocyte count starts between 6000 and 30000/mm3 

in the first day of life and decreases to 5000–20000 mm3 later. Neutrophil count tends to 

be lower at lower gestational ages (GA) and peaks 6–8 h after birth54. Clinical conditions 

such as maternal fever and hypertension, perinatal asphyxia, meconium aspiration syndrome, 

delivery route, intraventricular hemorrhage, hemolysis, pneumothorax, convulsion and 

even crying affects neutrophil count55. A literature review by Sharma et al reported that 

leucopenia (WBC count <5000/mm3) has a low sensitivity (29%) but high specificity 

(91%) for diagnosis of neonatal sepsis56. Additional studies highlighted that leucopenia 

is more predictive of sepsis than leukocytosis (WBCs > 20,000/mm3) at more than 4 h57. 

Neutrophil/lymphocyte (NLR) of 1.24 to 6.76 and platelet/lymphocyte (PLR) ratios of 57.7 

to 94.05 may be diagnostic of neonatal sepsis58,59.

Absolute Neutrophil Count (ANC)—Neutrophil counts are commonly evaluated in 

neonates with presumed sepsis but can be affected by maternal and infant risk factors54,55. 

Neutropenia (ANC <1,000/mm3 at ≥4 h) is considered more specific for early onset neonatal 

sepsis as opposed to neutrophilia (ANC ≥10,000/mm3)51,56,60. Interpretation of ANC, 

however, must take into consideration the neonate’s gestational and postnatal age as the 

lower limit of ANC decreases with lower GA. Furthermore, an analysis of 30,354 CBCs 

obtained in the first 72 h of life demonstrated that ANC peak later in early preterm neonates 

<28 weeks’ gestation as compared with neonates ≥28 weeks’ gestation (24 h of life vs 

6–8 h, respectively)54. Mean neutrophil volume >157 arbitrary units had sensitivity and 

specificity as 79% and 82% while sensitivity and specificity of CRP were 72% and 99%, 

respectively61. In 141 neonates with neonatal sepsis, cut-off level of delta neutrophil index 

(DNI) was calculated as 4.6 with 85% sensitivity and 80% while CRP had 81% sensitivity 

and 82% specificity62.

Immature to Total Neutrophil (I:T) Ratio—Compared to other hematological markers, 

I:T ratio may be the most sensitive indicator of neonatal sepsis60, but this parameter also 

varies with GA and postnatal age. In healthy newborns, the I:T ratio peaks at 0.16 during 

the first 24 h and gradually declines over days. Gandhi et al., propose that I:T ratio > 0.27 

in term newborns and > 0.22 in preterm neonates favor the diagnosis of neonatal sepsis60. 

Murphy et al. demonstrated that two normal I:T ratios correlated with a sterile blood culture 

had a maximum NPV of 100%63.
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Red cell distribution width—Red cell distribution (RDW) width shows increased red 

blood cell production in inflammatory and infectious diseases. Elevated RDW has been 

shown to be associated with increased mortality from sepsis in both adult and neonates64,65. 

In neonates, RDW was significantly higher in sepsis and among non-survivors66. Cut-off 

levels as 16.3 and 19.5 had sensitivity (70–87%) and specificity (66.1–81%) in neonatal 

sepsis and gram-negative LOS, respectively64,67.

Thrombocytopenia—Thrombocytopenia is associated with neonatal sepsis68. Platelet 

volume increases while being more active and associated with cytokines and inflammatory 

mediators. A meta-analysis that included 11 studies and 932 patients, reported that MPV 

was higher in neonatal sepsis with a cut-off level between 8.6–11.469–71.

4. Inflammatory Biomarkers

Acute phase reactants—Acute phase reactants are produced by the liver in response to 

cytokines, which are induced by infection and tissue injury. TNFα, CRP, PCT, fibronectin, 

haptoglobin, pro-adrenomedullin (pro-ADM) and SAA have been evaluated in neonatal 

sepsis.

a. C-reactive Protein: C-reactive protein (CRP) has been the most studied biomarker16. 

Serum CRP concentrations rise within 10 to 12 hours in response to bacterial infections 

and peak after 36–48 hours, with concentrations that correlate with illness severity72. 

Due to the delay in elevation, it is unreliable for early diagnosis of neonatal sepsis (low 

sensitivity)15. Furthermore, other non-infectious maternal and neonatal conditions may also 

result in elevated CRP levels, thus making it a nonspecific biomarker72,73. A systematic 

review of biomarkers for neonatal sepsis concluded that serial measurements of CRP at 24 

to 48 hours after onset of symptoms has been shown to increase its sensitivity and negative 

predictive value and may be useful for monitoring response to treatment in infected neonates 

receiving antibiotics16. This suggests that CRP may be more useful for ruling out infection 

and discontinuing antibiotics when serial measurements are obtained.

Procalcitonin—Procalcitonin is synthesized in monocytes and hepatocytes as a 

prohormone of calcitonin in response to cytokine stimulation. After birth, it increases 

until postnatal day 2–474. PCT is downregulated by interferon-γ, a commonly produced 

cytokine in viral infections72,75,76. Thus, PCT has emerged as a promising biomarker for 

the diagnosis of bacterial infections that may be useful in discriminating between bacterial 

and viral etiologies. After exposure to bacterial endotoxin, PCT levels rapidly rise within 

2–4 hours and peak within 6–8 hours, thus making it a more sensitive marker than CRP for 

early diagnosis of neonatal sepsis77. This increase often correlates with the severity of the 

disease and mortality. However, in early onset neonatal sepsis, PCT measurements at birth 

may initially be normal; a serial PCT measurement at 24 h of age may be more helpful 

for early diagnosis78. Furthermore, serial PCT determinations allow to shorten the duration 

of antibiotic therapy in term and near-term infants with suspected early-onset sepsis79. 

However, before this PCT-guided strategy can be recommended, its safety and reliability 

must be confirmed in a larger cohort of neonates.
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In a meta-analysis with 1959 patients, sensitivity and specificity of PCT were reported to 

be 81% (95%CI: 74–87%) and 79% (95% CI: 69–87%), respectively80. Studies in the meta-

analysis used different cut-off thresholds (0.8–2.4 μg/L). Positive and negative likelihood 

ratios (PLR and NLR) were 7.7 and 0.11 for LOS while 3.2 and 0.3 for EOS indicating 

that diagnostic accuracy is better in LOS81. Cord blood PCT >0.7 μg/L in the diagnosis of 

sepsis showed 69% sensitivity and 70% specificity and PCT has been used in combination 

with other biomarkers in EOS82. Canpolat et al. reported that PCT (>1.74 ng/ml) and CRP 

(>0.72 mg/dL) had 76% and 58% sensitivity and 58% and 85% specificity respectively on 

the 3rd day of life in neonates with preterm premature rupture of membranes83. Eschborn et 

al. evaluated 29 studies comparing PCT with CRP and found that mean sensitivity for EOS, 

LOS and EOS+LOS was 73.6%, 88.9% and 76.5% for PCT; 65.6%, 77.4% and 66.4% for 

CRP while mean specificity for EOS, LOS and EOS+LOS was 82.8%, 75.6% and 80.4% for 

PCT; 82.7%, 81.7% and 91.3% for CRP, respectively72. Authors concluded that performance 

of both biomarkers will be better with serial measurements, and correlation with clinical 

findings is needed for decision making.

Serum Amyloid A—Serum Amyloid A (SAA) is another acute phase reactant synthesized 

by hepatocytes, monocytes, endothelial and smooth muscle cells in 8–24 h after bacterial 

exposure and is regulated by proinflammatory cytokines. SAA levels increase with age, with 

the lowest levels seen in umbilical cord blood and highest levels seen in the old age84. In 

response to infection or injury, SAA levels rapidly increase up to 1000 times higher than 

baseline but can be significantly influenced by the patient’s hepatic function and nutritional 

status85. In a study by Arnon et al, when compared with healthy infants at 0, 8, and 24 

hours, SAA levels in septic infants were significantly higher (p < .01) at all time points53. 

When compared with CRP, SAA had an overall better diagnostic accuracy for predicting 

EOS. Cetinkaya et al. also determined that SAA concentrations had better sensitivity and 

area under the curve when compared with CRP and PCT, though the difference was not 

statistically significant86. Different cut-off points between 1–68 mg/L were reported with a 

pooled 78% sensitivity and 92% specificity87.

Proadrenomedullin is a stable precursor of ADM, which modulates circulation, has 

antimicrobial properties and protects against organ damage88. High sensitivity (86.8%), 

specificity (100%), PPV (100%) and NPV (83.9%) with a cut-off value 3.9 nmol/L of 

pro-ADM were observed in 76 neonates with neonatal sepsis89. Higher pro-ADM levels 

were associated with increased sepsis severity and mortality90.

Adipokines are released from adipose tissue and may initiate secretion of inflammatory and 

anti-inflammatory cytokines. Visfatin (>10 ng/mL) and resistin (>8 ng/mL) had sensitivity 

and specificity over 90% in 62 septic neonates91. Subsequent studies reported lower 

sensitivity and specificity for resistin, but levels were positively correlated with IL-6 and 

CRP92,93. Hepcidin, progranulin, stromal cell-derived factor 1, endocan and pentraxin-3 

are less studied APRs which have a role in inflammation, chemoattraction, complement 

activation, angiogenesis and future studies are needed to evaluate diagnostic accuracy of 

these markers94–98
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Vascular Endothelium—Vascular endothelium interacts with leukocytes, soluble 

mediators, PAMPs and DAMPs, which have a role in sepsis pathogenesis. E-selectin, 

L-selectin, sICAM-1 and sVCAM-1 and angiopoietin 1–2 were studied in diagnosis of 

neonatal sepsis99. But limitation of these markers includes no normative data in neonates, 

physiological increase in the first month of life and lack of large studies.

Interleukins—IL-6 increases immediately after exposure to pathogens and normalizes in 

24 h100. IL6 has a proinflammatory effect inducing CRP, fibronectin and SAA release from 

liver, T cell differentiation and B cell maturation101. IL-6 has been studied more than other 

cytokines and found to be increased in neonates with EOS and LOS, and various cut-off 

levels between 18 and 300 pg/mL were reported in 31 studies with 1448 septic neonates102. 

The pooled sensitivity and specificity of IL-6 were 88% and 82% while PLR and NLR were 

7.03 and 0.2, respectively. Combination of IL-6 with other markers such as CRP, pro-ADM, 

PCT showed better diagnostic accuracy19,89,103.

Cortes et al. evaluated diagnostic accuracy of IL-6 and CRP in EOS and LOS104. Authors 

concluded that IL-6 (>17.75 pg/mL) showed greater accuracy in EOS while CRP (>0.53 

mg/dL) was more accurate in LOS. Kurul et al. showed that IL-6 (>580 pg/mL) and PCT 

(>0.94 ng/mL) were associated with 7-day mortality while CRP was not105.

Ye et al. evaluated utility of cytokines in 420 neonates with neonatal sepsis106. Interleukin-2, 

IL-4, IL-6, IL-10, TNF-α and INF-γ were measured and compared with CRP. Interleukin-6 

(>12.5 pg/mL) and IL-6/IL-10 ratio (>3.5) were found as valuable as CRP while most 

sensitive and specific ILs were IL-6 (94.1%) and IL-6/IL-10 ratio (100%), respectively. 

Celik et al. observed that a cut-off level of 202 pg/mL for IL-6 differentiated gram negative 

(n=73) from gram positive (n=82) sepsis with 68% sensitivity and 58% specificity107. In a 

later study, IL-6 (>400 pg/mL) alone or combination with TNF-α (>32 pg/mL), IL-8 (>200 

pg/mL), G-CSF (>1000 pg/mL) had 100% sensitivity, specificity, NPV and 38 to 69% PPV 

to differentiate gram negative neonatal sepsis108.

IL-8 is another proinflammatory cytokine promoting chemotaxis and activation of 

granulocytes and increases within 1–3 h with a half-life <4 h. Diagnostic accuracy was 

evaluated in a meta-analysis with 8 studies, 548 neonates (cut-off levels between 0.65 and 

300 pg/mL), which reported a pooled sensitivity and specificity of 78% and 84% similar to 

CRP109.

TNF-α is secreted from natural killer cells by IL-2 to induce T cell proliferation, 

vasodilatation and neutrophil adhesion110. In a systematic review, (where TNF-α cut-off 

values was ranged from 1.7 to 70 pg/mL) at a mean cut-off value of 18.94 pg/m/L, the 

sensitivity was 79% and specificity was 81% and better accuracy in LOS than EOS111. 

Meta-analyses of data from neonates show variable sensitivity and specificity for of IL-6, 

IL-8, and TNF-α with only moderate accuracy in diagnosing neonatal sepsis16,109,111. 

However, when combined with other cytokines or late proinflammatory markers, such 

as CRP, sensitivity and specificity increase106,112,113. Currently, measuring cytokines 

for diagnosis of neonatal sepsis may not be practical or cost-effective because enzyme 

immunoassays are expensive and time consuming.
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CELL ADHESION MOLECULES

Leukocyte antigens are upregulated after bacterial exposure and can be quantified by 

flow cytometry114,115. These markers increase in minutes after infection and levels were 

not affected by GA, timing of sepsis onset, type of microorganism or non-infectious 

diseases116,117. Limitation of these markers are need of high technology and non-

standardized normal ranges.

Cluster differentiation molecule-64 (CD64) expressed from neutrophils and monocytes 

facilities phagocytosis and intracellular killing of opsonized microorganisms. Increased 

levels can be detected in 1 hour and stable for 24 hours. Shi et al. performed a meta-

analysis of CD64 levels from 17 studies including 3478 neonates and found that pooled 

sensitivity, specificity, PLR and NLR were 77%, 74%, 3.58 and 0.29, respectively118. 

Serial measurements and combination with other markers have been reported with varying 

diagnostic accuracy119,120. Increased CD11b expression was found both in EOS and LOS 

with high sensitivity and specificity up to 100%112. In a recent meta-analysis including 9 

studies with 843 neonates showed that CD11b is a promising biomarker with sensitivity, 

specificity, PLR and NLR as 82%, 93%, 11.51 and 0.19, respectively121.

Soluble CD14 fragment (presepsin) is a specific and high affinity receptor complexes of 

lipopolysaccharides and activates TLR to proinflammatory cytokine secretion. Both meta-

analysis revealed that presepsin was as accurate as PCT and CRP in the diagnosis of 

neonatal sepsis77,122.

Gram negative infections lead to higher sCD14 levels123. Cord blood presepsin levels were 

evaluated in 288 preterm infants with premature rupture of membranes for EOS and a cut-off 

level ≥1370 pg/mL yielded a odds ratio of 12.6 (95% CL 2.5–28.1)124. Presepsin, PCT, IL-6 

and IL-8 were compared in diagnosis of EOS and presepsin was found as the most accurate 

biomarker with 88.9% sensitivity and 85.7% specificity125.

Soluble triggering receptor expressed on myeloid cells-1 (sTREM1) regulates the innate 

immune system and inflammation by promoting the release of proinflammatory cytokines. 

Increased levels were found in neonatal sepsis with a cut-off value of 310 pg/mL although 

higher levels were reported in culture proven sepsis126. Urine sTREM-1 >78.5 pg/mL 

had 90% sensitivity, 78% specificity, 68% PPV and 94% NPV in 62 neonates with 

sepsis, respectively127. A meta-analysis including 8 studies with 667 neonates reported that 

sensitivity and specificity of sTREM-1 were 95% and 87%, respectively128. Limitations 

include small number of studies and different cut-off levels between 77.5 and 1707 pg/

mL128.

The challenge of biomarker identification is reflected by the fact that over 3000 sepsis 

biomarker studies have been published with almost 200 candidate biomarkers evaluated129. 

However, there is not a single biomarker that has sufficient diagnostic accuracy for diagnosis 

of neonatal sepsis. Combination of biomarkers or their serial measurements may be 

strategies to enhance diagnostic accuracy. Combination of IL-6, sTREM-1, and PCT has 

been suggested, as each biomarker represents a different component in the pathophysiology 

of sepsis130. Others propose that early- and mid-phase markers such as neutrophil CD64 
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and procalcitonin should be combined with the late-phase biomarker CRP for maximal 

diagnostic benefit40. A recent literature review summarizes the utility of combining both 

early and late biomarkers for neonatal sepsis130.

5. Strategies for the future

Mass spectrometry for identification of pathogens from blood culture 
specimens—Matrix-assisted laser desorption-ionization/time -of-flight (MALDI-TOF) 

mass spectroscopy is a relatively new approach that can identify microorganisms within 30 

min after blood culture positivity131.Meta-analyses have found that use of MALDI-TOF for 

diagnosis of infection from culture bottles has acceptable sensitivity and specificity132 and 

with higher sensitivity in gram negative infections compared to gram-positive infections133.

Point-of-care devices for diagnosis of neonatal sepsis—Rapid tests done at the 

bedside that could confirm diagnosis or provide prognostic information have the potential 

to improve patient outcomes and decrease healthcare costs (Figure 3). Novel techniques 

such as analysis of volatile organic compounds in the breath has been demonstrated to be 

reasonably sensitive and specific134 and capable of distinguishing sepsis from inflammation 

in rat models135, yet to be validated in human studies. Point-of-care (POC) devices 

using a variety of biomarkers including blood plasma protein quantification and leukocyte 

monitoring are being evaluated for the diagnosis of sepsis136.

Omics technologies and personalized medicine—Omics technologies provide data 

on genome-wide gene expression, protein translation and metabolite production that are 

differentially regulated in neonatal sepsis137,138. Proteomics measures protein components 

released after infection or inflammation. Cord blood and amniotic fluid proteomics have 

provided information regarding the fetal response to intra-amniotic inflammation and have 

successfully predicted EOS with >92% accuracy139,140. Proteomics including neutrophil 

defensin 1–2, cathelicidin, S100A12, S100A8, pro-apolipoprotein C2, apolipoprotein A-E-

H, β-2 microglobulin, haptoglobin, desarginin from amniotic fluid, cord blood, plasma were 

found to be valuable in diagnosis of EOS and LOS141–143.

Metabolomics by nuclear magnetic resonance imaging (NMR) and mass spectrometry 

(GC-MS) has also been investigated in adult sepsis with favorable results144. Urinary 

metabolomics profile of adult pneumococcal pneumonia, for example, has been found to 

be distinctly different from viral and other bacterial causes of pneumonia145. This indicates 

that evaluation of urinary metabolite profiles may be useful for effective diagnosis and lead 

to faster targeted antibiotic treatment. Urine samples of neonates with sepsis were evaluated 

with H-NMR and GC-MS showed increase in glucose, maltose, lactate, acetate, ketone 

bodies, D-serine and also normalization of variations with treatment146.

A prospective observational study comparing genome-wide expression profiles of 17 VLBW 

infants with bacterial sepsis identified distinct clusters of gene expression patterns in gram-

positive and gram-negative sepsis when compared with controls147. Genomic analysis may 

determine sepsis risk, treatment response and prognosis while evaluating gene variants 

responsible for PRPs, signaling molecules and cytokines143,148.
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Machine Learning—Machine learning and artificial intelligence are increasingly used to 

sort transcriptomic, proteomic and metabolomic data for biomarker screening, developing 

prognostication models and for identifying the right patients for specific therapies 

(personalized medicine). One example is the Pediatric Sepsis Biomarker Risk Model 

(PERSEVERE), which was developed and validated as a prognostic enrichment tool for 

pediatric septic shock and in predicting mortality138,149. Ongoing research is investigating 

the application of the PERSEVERE model in neonatal sepsis prognostication150.

Reduced heart rate variability and transient decelerations were detected in hours to days 

before diagnosis of sepsis151,152. In these studies, early diagnosis of sepsis and reduced 

mortality has been reported. Recently predictive models using machine learning were 

developed. These models use the vital signs, clinical and laboratory features of patients. 

Mithal et al. calculated a triggering score ≥5 by using heart rate, respiratory rate, 

temperature, desaturation and bradycardia events. Authors found that LOS was diagnosed 

43.1±79 h before culture positivity with 81% sensitivity, 80% specificity, 57% PPV and 

93% NPV in 72 patients153. Clinical findings such as birth weight, gender, catheter use and 

laboratory findings such as blood gas parameters, CBC were also integrated into prediction 

models and found valuable in diagnosis of sepsis154,155.

New Genetic Techniques—Non-coding RNAs (transcriptomics) including microRNAs 

(miRNA), circular RNAs (circRNAs) regulate many cell signaling pathways including 

cell proliferation, differentiation, development, metabolism, apoptosis and proinflammatory 

cytokine production156. Both increased (miRNA 15-16a-23b-451) and decreased (miRNA 

25-129-132-181a-223) expression were reported while 80–89% sensitivity and 79–98% 

specificity were found in diagnosis of neonatal sepsis157,158. Exosomes and neutrophil 

extracellular traps (NETs) released during inflammation may be therapeutic targets in the 

future.

Conclusions—Identification of an ideal biomarker to diagnose neonatal sepsis is still the 

holy grail but advances in technology have given us a glimpse of the promising tests for the 

future. Inflammatory markers such as CRP and PCT as well as other hematological indices 

used currently have limited value in neonates. Serial measurements of an ideal combination 

of biomarkers have shown to increase diagnostic accuracy but remain expensive and 

cumbersome for clinical practice. Molecular diagnostic tools such as PCR and sequencing, 

and mass spectrometry offer promise for more rapid and sensitive detection of disease. 

Omics technology and machine learning may provide us diagnostic and prognostic models 

that could be personalized for the future.
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Impact

1. Reviews the clinical relevance of currently available diagnostic tests for sepsis

2. Summarizes the diagnostic accuracy of novel biomarkers for neonatal sepsis

3. Outlines future strategies including the use of omics technology, personalized 

medicine and point of care tests.
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Figure 1: A Schematic on the categories of diagnostic tests available for neonatal sepsis
Traditional methods of blood cultures have changed to automated blood culture 

monitoring for bacterial growth by CO2 detection. Newer tests involve rapidly identifying 

organisms from positive cultures by fluorescent in situ hybridization techniques. Molecular 

microbiological diagnostics using PCR for bacterial and fungal genes can be applied directly 

to blood specimens. Inflammatory biomarkers including CRP, procalcitonin and cytokines 

are another category of adjunctive diagnostic tests. Multiomic technology enables us to 

scour genome wide gene expression, protein and metabolites for developing diagnostic tests 

and prognostic models.
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Figure 2. The relationship between host immunity and biomarkers
CD, cluster of differentiation; sTREM-1, soluble triggering receptor expressed on myeloid 

cells-1; ICAM, intracellular adhesion molecule; VCAM, vascular cell adhesion molecule; 

RNA, ribonucleic acid; DNA, deoxyribonucleic acid; DAMPs, damage associated molecular 

patterns; HGM-1, high mobility group box 1; LPS, lipopolysaccharide,; LTA, lipoteichoic 

acid; NETs, neutrophil extracellular traps; TLR, toll-like receptor; HSP, Heat shock protein; 

TNF-α, tumor necrosis factor-α; INF-γ, interferon-γ; IL, interleukin; MCP-1, monocyte 

chemoattractant protein-1; CXCL-10, chemokine ligand-10

Celik et al. Page 22

Pediatr Res. Author manuscript; available in PMC 2022 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Point of care testing for diagnosis of neonatal sepsis
Blood samples are drawn on suspicion of infection on laboratory chips that are 

microbiology, immune, or molecular based diagnostics. The results enable us to initiate 

targeted therapy. The rapid results and targeted therapy will improve clinical outcomes.
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