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Abstract

Several tumour types are sensitive to deactivation of just one or very few genes that are constantly active in the cancer cells,
a phenomenon that is termed ‘oncogene addiction’. Drugs that target the products of those oncogenes can yield a
temporary relief, and even complete remission. Unfortunately, many patients receiving oncogene-targeted therapies
relapse on treatment. This often happens due to somatic mutations in the oncogene (‘resistance mutations’). ‘Compound
mutations’, which in the context of cancer drug resistance are defined as two or more mutations of the drug target in the
same clone may lead to enhanced resistance against the most selective inhibitors. Here, it is shown that the vast majority of
the resistance mutations occurring in cancer patients treated with tyrosin kinase inhibitors aimed at three different proteins
follow an evolutionary pathway. Using bioinformatic analysis tools, it is found that the drug-resistance mutations in the
tyrosine kinase domains of Abl1, ALK and exons 20 and 21 of EGFR favour transformations to residues that can be identified
in similar positions in evolutionary related proteins. The results demonstrate that evolutionary pressure shapes the
mutational landscape in the case of drug-resistance somatic mutations. The constraints on the mutational landscape
suggest that it may be possible to counter single drug-resistance point mutations. The observation of relatively many
resistance mutations in Abl1, but not in the other genes, is explained by the fact that mutations in Abl1 tend to be
biochemically conservative, whereas mutations in EGFR and ALK tend to be radical. Analysis of Abl1 compound mutations
suggests that such mutations are more prevalent than hitherto reported and may be more difficult to counter. This supports
the notion that such mutations may provide an escape route for targeted cancer drug resistance.
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Introduction

The kinase inhibitor (KI) imatinib is prescribed since 2001 to

chronic myeloid leukemia (CML) patients [1]. Aimed at the

tyrosine kinase domain of the abnormal chimeric protein BCR/

Abl1, imatinib was the first successful targeted cancer drug.

Following its remarkable success and relative safety, additional KIs

are now administered for treatment of various cancers, and many

others are under development [2]. The specificity of KIs varies,

and some medications are used to treat several types of cancers.

Imatinib, for example, is registered in Sweden not only for

treatment of CML but also Philadelphia chromosome-positive

acute lymphoblastic leukemia (Ph+-ALL), various blood syn-

dromes, gastrointestinal stromal tumour (GIST) and dermatofi-

brosarcoma protuberans (DFSP). The advancement of genome

sequencing techniques enables identification of patients that are

more likely to benefit from targeted treatment based on the genetic

profile of the tumours. Moreover, new drug targets that are

distinct from kinases are being sought after. Examples include

farnesyltransferase inhibitors and heat shock protein antagonists.

Unfortunately, many patients eventually become insensitive to

treatment due to somatic mutations in the kinase domain of the

drug targets, which prevent the drugs from inhibiting the enzymes

[3,4]. The emergence of such ‘secondary mutations’ limits the

effectiveness of anti-cancer drugs in the long term [5]. The

discovery that resistance mutations result in treatment failure

prompted the development of second (dasatinib, nilotinib) and

third (bosutinib, ponatinib) generation Abl1 inhibitors. The

clinically most notorious Abl1 mutant is T315I, which is resistant

to all KIs except ponatinib (recently approved in the US and EU)

and rebastinib (currently studied in clinical trials). Studies with Ba/

F3 cells, a convenient model system for KI development, suggest

that resistance towards ponatinib and rebastinib may develop

through ‘compound mutations’, i.e., two resistant mutations that

occur in the same clone of tumour cells [6,7].

It is not possible to follow the development of drug resistance

mutations in single clones. This would require the ability to follow

the emergence of mutations dynamically, which cannot be

achieved because the samples must be sequenced, and because

many of the mutations will inevitably be lost rather than fixed in

the cell line. For this reason, mathematical models of drug

resistance in cancer have been developed and applied to study

drug resistance under different scenarios. e.g., modifying the

dosage or using multiple inhibitors [8–12]. Such models enable the

testing of various hypotheses in silico, often in relation to clinical

findings, before progressing to cell or clinical studies.

Accounting for the evolutionary forces that lead to drug

resistance is important for development of new treatment regimes
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that will be less likely to yield resistance. If the evolutionary

landscape is constrained, small molecular drugs that target the

known mutants are likely to succeed. On the other hand, if the

drug target can adopt additional mutations without a significant

selective pressure, any targeted treatment will eventually fail. The

current paradigm in studies of resistant mutations is that those

mutations occur prior to treatment. Mutation rates in protein

coding genes are in the order of 1029 substitutions per year per

site. Even if the mutation rates in cancer cells are greater by 3–4

orders of magnitude, it is unlikely that the mutations develop

during a treatment period of several years, whereas relapse often

occurs within months. Thus, resistance mutations must be

tolerated before treatment. To this end, two scenarios are possible.

First, one may assume that all kinase domain somatic mutations

are selectively neutral or slightly deleterious and therefore have a

non-negligible probability to be fixed in the population [13]. This

assumption may be justified by arguing that the targeted oncogene

was already subject to a ‘gain of function’ mutation that lead to its

primary role in the tumour, and is now relatively insensitive to

further mutations. If this is true, then the only limitation on the

emergence of resistance mutations is the substitution rate. In

contrast, it may be assumed that the active oncogene has a

biological function that may be compensated by mutations, and its

evolutionary landscape is limited not only by the rate of mutation

but also by purifying selection. In this case, understanding the

extent of selection can lead to development of treatments that will

be a priori less sensitive to drug resistance.

Here, I use bioinformatic analysis in order to estimate which of

these scenarios is more probable, i.e., whether resistance mutations

in the kinase domain are likely to be tolerated. To this end, I

analysed the prevalence of such mutations in sequences that are

homologous to three tyrosin kinases that are important drug

targets and where drug resistance due to missense mutations

presents an acute clinical problem: epidermal growth factor

receptor (EGFR), anaplastic lymphoma kinase (ALK) and the

kinase domain of the Abelson murine leukemia viral oncogene

homolog 1 (Abl1).

Epidermal growth factor receptor
EGFR is a cell-surface receptor tyrosin kinase (RTK) of the

ErbB family. Elevated expression of EGFR is observed in cancers

of various organs. Small molecule inhibitors of EGFR, such as

gefitinib and erlotinib were approved for treatment of non-small-

cell lung cancer (NSCLC). These molecules are competitive

inhibitors of ATP binding in the active site of the receptor. The

presence of several somatic mutations in EGFR, that seem to

confer increased kinase activity (activating mutations, also known

as driver or sensitive mutations), has been correlated with

sensitivity to EGFR inhibitors [14–16]. Yet, some of the patients

receiving tyrosin kinase inhibitors (TKI) do not respond to the

treatment, and only about 5% enjoy complete remission [17]. In

many cases, treatment failure is due to TKI resistance mutations,

that include insertions and six different missense mutations in the

tyrosine-kinase domain [17,18]. T790M is the most common of

these mutations and confers ligand independence.

Anaplastic lymphoma kinase
ALK is an RTK that has been associated with neuroblastoma

and lung cancer, through different mechanisms. In lung cancer,

the fusion of ALK and echinoderm microtubule-associated

protein-like 4 (EML4) leads to constitutive activation of the kinase

[19]. In neuroblastoma, on the other hand, increased ALK activity

is associated with ALK gene amplification, somatic and germline

mutations [20–22]. ALK inhibitors are now being developed as

drugs; the TKI crizotinib is in use in lung cancer patients carrying

the EML4-ALK fusion protein. Unfortunately, secondary muta-

tions may lead to crizotinib resistance [23].

Abl1
Abl1 is a proto-oncogene encoding a tyrosine kinase. The fusion

protein BCR-Abl leads to chronic myeloid leukemia (CML), which

can be treated by TKI. 20 missense mutations in Abl have been

shown to confer drug-resistance (or reduced sensitivity) to at least

one of the three commercial drugs imatinib, dasatinib and

nilotinib [24]. Another meta-analysis (i.e., analysis of findings

from multiple experiments reported in the literature) identified 34

such mutations based on in vitro studies [25]. Apparently, Bcr-Abl

displays a mutator phenotype, i.e., it leads to acquisition of

mutations [26]. TKI Treatment apparently leads to a decrease in

mutation frequency [25], indicating that mutations occur primar-

ily prior to treatment, whereas mutant clones become dominant as

the result of TKI treatment.

The results reveal that drug-resistance mutations in the tyrosine

kinase domains of Abl1, ALK and exons 20 and 21 of EGFR

favour transformations to residues that can be found in similar

positions in evolutionary related proteins. Thus, it is demonstrated

that evolutionary pressure shapes the mutational landscape in the

case of drug-resistance somatic mutations. Analysis of compound

mutations reveals a larger proportion of such mutations that have

not been hitherto observed in related sequences.

Results

Epidermal growth factor receptor
Resistance to erlotinib and gefitinib has been linked to six

resistance mutations [17,18]. Analysis of sequences where the

kinase domain is homologous to that of EGFR reveals that in 4 of

the 6 resistance missense mutations, the same amino acid variation

is observed in other sequences of related proteins (Table 1 and

Table S1). These four resistance mutations are S768I, V769L, and

T790M (on exon 20), and T854A (on exon21), whereas the two

resistance mutations that cannot be observed as SNVs in the MSA

(L747S and D761Y) are located on exon 19. This may be

explained by exon 19 being a mutational hot-spot, where

mutations occur in as much as 45% of the NSCLC patients

[18]; it may be that the mutation rate in exon 19 is high enough

that the mutations emerge during treatment.

On the other hand, only 5 out of 12 activating mutations are

observed in the multiple sequence alignment (MSA) of EGFR and

homologous proteins. This finding may be explained by consid-

ering that the activating mutations can be described as ‘gain of

function’ mutations. These mutations make the kinase constitu-

tively active, which is not desired out of context of the tumour.

Hence, many of them cannot be observed as variations in related

sequences.

All of the studied missense mutations are due to single

nucleotide variance (SNV), and it is possible that a certain SNV

is observed in the MSA because all of the possible SNVs are

covered. In this case, the likelihood to identify this mutation in the

MSA is 1. Indeed, All of the non-synonymous SNVs of Ser768

have been observed in the MSA. Conversely, of the six possible

amino-acid replacements due to non-synonymous SNVs in

position 790, only two are observed in the MSA: T790A, which

is observed only in a single sequence; and T790M, which is

observed in 87 sequences (31%). T790M is the most prevalent

EGFR resistance mutation [18]. Thr790 is called the gatekeeper

residue of EGFR, because it is located at the entrance to a

hydrophobic pocket where KI bind, making it important for KI

Evolutionary Constraints of Resistance Mutations
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selectivity. The KI resistance due to the T790M mutation had

therefore been suggested to be due to steric clashes with the bound

KIs. However, it was later discovered that the T790M mutants are

able to bind KIs, but remain active due to increased affinity to

ATP [27]. The prevalence of Met at the same position as residue

790 in the MSA of EGFR homologues is in line with this finding.

Like Thr790, residue Thr854 can be mutated to six other residues

through SNVs, but only three such changes are observed: T854A

(146 sequences, 52%), T854I (one sequence) and T854S (51

sequences, 18%). In this case, the mutation may indeed prevent

the binding of the drug [28]. Unlike the radical mutation T854A,

T854S is a conservative mutation, and would probably not lead to

drug resistance. T854I is only present in one sequence. The other

possible mutations T854K, T854P, and T854R may lead to drug

resistance but are not found at the MSA at all, suggesting that they

are selected against even if they emerge.

Further analysis of the probability to observe a given residue in

the kinase domain can be obtained from the Conserved Domain

Database (CDD) [29], ncbi.nlm.nih.gov/cdd. The Conserved

Domain Database is a resource for the annotation of functional

units in proteins. Among other data, it portrays the probability to

find each of the 20 common nucleotide encoded amino acids at

any position of the alignment as a log2 based position specific

scoring matrix (PSSM) score. The larger the PSSM score, the

more conserved is the residue at the designated position. When

examining the positions of the resistance mutants in EGFR it is

found that Leu747, Asp761 and Ser768 are mutated to residues

that are less probable according to the conserved domain. On the

other hand, Val769, Thr790 and Thr854 are mutated to residues

that are more common in the CDD. The most common activating

(driver) missense mutations, G719A/C/S and L858R, are not

present in the MSA, and the resulting variant is estimated to be

much less common than the wt in the conserved TK domain

(Table S1). In fact, in only two activating mutations the mutant is

more common in the conserved domain than the wt, and in both

cases (L861Q and G863D) the position-specific score is 0,

indicating that the wt residue is not conserved. This is in

accordance with the point of view that these mutations lead to

gain-of-function.

Anaplastic lymphoma kinase
According to our analysis, five out of the six crizotinib-resistant

mutants and all 11 neuroblastoma-associated ALK missense

mutations lead to a residue that can be observed in related

proteins at the same position (in marked difference to driver

mutations in EGFR). All of the neuroblastoma-associated muta-

tions involve a change from a residue which is highly conserved in

the CDD to one that is uncommon (Table S2), which is also the

case for three of the six resistance mutations. Apparently, both

resistance and activating mutations in ALK are subject to

evolutionary constraints that reduce the mutational landscape.

Bcr-Abl
Single mutations. I have analysed 43 Abl1 mutations carried

by CML patients where drug resistance was evident in vitro.

Remarkably, none of the 43 SNVs is novel, i.e., variations of the

same type are evident in related proteins (Table 1 and Table S3),

and in all but two cases the change results in a residue that is less

conserved in the CDD (in L387F and L387M the mutant has a

similar conservation score), which may indicate selective pressure.

Compound mutations. Recently, Khorashad and co-work-

ers identified a set of double mutations in CML patients treated

with TKI [30]. About 70% of those mutations were compound

mutations, where the two mutants arise in the same clone of

cancer cells. Some of these compound mutations presumably

contribute to increased drug-resistance. It is interesting to examine

the compound mutations from an evolutionary point of view.

Examination of the 21 reported compound mutations [30], reveals

that five are completely novel, i.e., a similar (double) variation can

not be observed in any of the 1282 sequences homologous to Abl1

(Figure 1 and Table S4). Some of the other 16 variations are quite

common. For example, the multiple drug resistance mutant T315I

was observed in the same clone with M244V, G250E, E255K,

F311L, F359V, F359C, L387M or H396R. 56% of the sequences

that, according to the MSA, have isoleucine at the position

corresponding to residue 315 of Abl1, also have lysine at the

position corresponding to residue 255 - i.e., they align with the

T315I/E255K compound mutation (Figure 1, bottom). Note that

the order of the occurrence of the mutations may be important, as

only 8% of the sequences that correspond to the E255K carry

isoleucine at the position corresponding to T315 in Abl1

(compared with 56% if T315I is considered first). Interestingly,

when examining all of the possible combinations of the 43 resistant

mutants (see data sheet S8) we observe seven variations that are

always observed together in natural sequences: (K247N/F317L,

E292V/F311I, E292V/F359I, Y253F/T315A, Y253F/F317I,

T351A/V379I and Y253F/H375P). These mutations were not

reported hitherto, but this may be due to the lack of sensitivity in

the sequencing and the small number of patients that were

screened. Better sequencing methods [31] are likely to reveal

additional compound mutations in Abl1 and other cancer drug

targets.

Discussion

Most of the resistance mutations are not novel
Analysis of the SNVs leading to drug resistance in EGFR, ALK

and Abl1 reveals that in the vast majority of these non-

synonymous SNVs (52 of 55, Table 1), a certain residue is

modified to one that can be observed in homologous sequences.

This may indicate that resistance mutations are subject to

purifying selection to some extent. Otherwise, one would expect

that novel mutations will be more prevalent.

Table 1. Amino acid residue variations in cancer drug
resistance and drug sensitivity mutations.

EGFR Resistant
mutants

Activating
mutants

Total
mutants

Occurred 4 5 9

Novel 2 7 9

Total 6 12 18

ALK Resistant
mutants

Neuroblastoma
mutants

Total mutants

Occurred 5 11 16

Novel 1 0 1

Total 6 11 17

Abl1 Resistant
mutants

Occurred 43

Novel 0

The number of residue variations that have an evolutionary origin (i.e., a similar
variation that is observed in at least one homologous sequence) and those that
are novel are indicated for cancer mutations in EGFR, ALK and Abl1.
doi:10.1371/journal.pone.0082059.t001

Evolutionary Constraints of Resistance Mutations
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Activating mutations tend to favour a change to a less-
conserved residue

When it comes to activating mutations, there is a marked

difference between the proteins. In EGFR, most of the mutations

are novel, which is in line with them being gain-of-function

mutations. In ALK, the mutations are not novel. In both cases,

however, analysis of the conserved domains reveals that the new

variant is almost always less conserved within the domain (Tables

S1 and S2). This is in line with the hypothesis that such mutations

involve gain-of-function.

Variability of the mutated residues
In the three proteins surveyed here, some positions have no

evolutionary limitations for SNVs, whereas other positions are

restricted. For example, six non-synonymous SNVs are possible at

the protein level for Ser768 of EGFR. All of these are observed in

sequences homologous to EGFR at position 768 (where mutation

from Ser to Ile confers drug resistance). On the other hand,

threonine in position 790 of the same sequence can only be

mutated to methionine or alanine, and the latter is only observed

in one sequence. It may be concluded that in the first case, the

finding that the resistance mutation is already observed in the

evolution is merely a coincidence: after all, all SNVs are possible;

whereas in the second case it is meaningful from an evolutionary

point of view. An alternative explanation is that all variations in

position 768 are possible because they do not lead to a significant

reduction in the biological activity of the protein. This reasoning is

plausible based on evolutionary theories [32,33]. To this end, the

proportion of all non-synonymous SNVs that occur in the three

sequences should be considered, and can be compared with the

proportion of resistance mutations in which non-synonymous

SNVs are observed in the MSA. If non-synonymous SNVs that

lead to resistant mutations are subject only to the constraint that

they lead to drug resistance and are otherwise evolutionary

neutral, one would expect that the corresponding SNVs fall

outside of the MSA which describes evolutionary related proteins.

If, on the other hand, these SNVs are subject to evolutionary

constraints, the vast majority of such SNVs should correspond to

residues that can also be identified in other proteins. As shown in

Table 2, in the absence of any evolutionary constraints, 1508 non-

synonymous SNVs could be observed for the kinase domain of

EGFR. The 1038 SNVs that are observed are 31% less than those

possible. Only 5% of the resistance mutations involve SNVs that

are not observed in the kinase domain - much less than 31% as

would be expected for random SNVs. This is a strong indication

Figure 1. Variations in the evolution of Bcr-Abl1 compound mutations. (Top) Compound mutations are double mutants that arise in the
same clone and are detected in treated patients. Using MSA of the Abl1 protein, related sequences where one of the identified mutations is observed
as a variation were identified. Each sequence was then analysed in order to examine whether any of the other variations is observed together with
the first variation. The results of this analysis are given here as percentage. For example, 50% of the sequences where a His residue is located at a
position that is the same as Tyr253 of Abl1 (corresponding to the Y253H mutation) the residue which corresponds to position 250 is Glu (similar to
the G250E mutant). Note that the matrix is not symmetric. Taking the same example, only 0.8% of the sequences where Glu is located in the position
corresponding to Gly250 in Abl1 (G250E) also posses His in the position corresponding to Tyr253. This difference arises from the relative rarity of the
Y250H mutation (0.3%, Table S3) and the relative abundance of the G250E mutation (21%). Compound mutations identified by Khorashad and co-
workers [30] are shown within a bold frame. Only double mutants where both single mutations are known to confer drug resistance are analysed, and
only residues that are involved in compound mutations reported by Khorashad et al. are displayed here; for a full list, see data sheet S8. 102 of 240
possible mutations are not observed in the MSA. The matrix cells are coloured according to the abundance of the conditional variation: less than 10%,
white; 10–19%, yellow; 19–50%, orange; more than 50%, red. (Bottom) Sequence alignment between human Abl1 and human STK10. Part of the
pairwise alignment between human Abl1 and human STK10 with the location of Abl1 residues Glu255 and Thr315 indicated (red rectangles). The
alignment to human STK10 is given as an example, to clarify the findings displayed above. The two residues align with lysine and isoleucine,
respectively, corresponding to the E255K/T315I compound mutation. 56% of the sequences that, according to the MSA, have isoleucine at the
position corresponding to residue 315 of Abl1, also have lysine at the position corresponding to residue 255.
doi:10.1371/journal.pone.0082059.g001

Evolutionary Constraints of Resistance Mutations
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that resistance mutations are subject to evolutionary constraints.

The expectation value to get the same number of observed

resistance mutations at random (i.e., that 52 of the 55 resistance

mutations are observed in the MSA due to chance alone, assuming

that all non-synonymous SNVs are equally probable) is 5.6E-05.

Conservation of the mutated residues at the protein level
Given that resistance mutations, unlike driver mutations, should

not interfere with the biological activity of the protein, one may

assume that evolutionary conserved residues will have a lower

tendency to be affected (note that residue conservation at the

protein level is different than its probability to be observed in the

CDD and is not only a function of the number of possible

alternations [32]). However, analysis of evolutionary conservation

on the protein residue level [34–36] reveals that the mutated

residues are relatively conserved (Figure 2, Tables S5, S6, S7). This

can be explained by reasoning that these residues are either

located at the substrate binding site, affect its structure or modify

the protein’s conformational dynamics; otherwise, mutations

cannot lead to drug resistance. Wide differences between the

individual residues are observed, however. Some residues are

highly conserved (e.g., the gatekeeper residues Thr854 in EGFR,

Leu1196 in ALK and Thr315 in Abl1), whereas others are

somewhat variable. Interestingly, the median variability score is

higher for the activating mutations in EGFR and ALK than for

the resistance mutations, indicating that a mutation of a conserved

residue is more likely to yield a drug-resistance mutant. This

finding is somewhat counter-intuitive because driver mutations are

expected to yield functions that are important for tumour growth

or proliferation [37], and it is therefore reasonable to expect that

they would tend to occur at conserved sites and will not be so

sensitive to evolutionary constraints.

Given that, by and large, resistance mutations occur at

conserved sites, how is the protein able to maintain its function?

A possible explanation is that the resistance mutations are

conservative, i.e., they involve modifications of amino acid

residues that do not alter their biochemical properties. Empirical

quantification of the biochemical distance between residues was

suggested by Grantham [38], who devised a metrics known as the

‘Grantham distance’. The more radical the substitution, the higher

is the Grantham distance. Thus, the Grantham distance between

isoleucine and leucine is 5, whereas cysteine and phenylalanine are

205 Grantham units away from each other. The mean Grantham

distance is 100, corresponding to the biochemical difference

between phenylalanine and histidine, indicating that most of the

possible alternations are radical rather than conservative. Exam-

ination of the Grantham distances (Table S5, Table S6 and Table

S7) reveals that both radical and conservative mutations are

observed. The median Grantham distance, however, is higher for

resistance mutations than for activating mutations in EGFR and

ALK. Interestingly, the median Grantham distance for resistance

mutations in Abl1 is quite small (51). This indicates that relatively

small changes at the binding site already lead to drug resistance,

and explains why drug resistance due to point mutations is so

common in CML.

Resistance mutations are subject to evolutionary
constraints

Bioinformatic analysis of resistance mutations in EGFR, ALK

and Abl1 reveals that although many non-synonymous SNVs are

possible, few of the drug resistance mutations are novel in the sense

that similar variations were not observed in the evolution. This

limits the potential number of SNVs by 19–35%, depending on

the protein (Table 2). Further limitation comes from the fact that

resistance mutations are more likely to occur at conserved

residues, although they can also involve mildly conserved-residues.

Comparison between resistant and activating mutations in EGFR

and ALK indicates that the resistant mutations are more likely to

be radical from a biochemical point of view. This may have

implications for example when whole genomes of treated cancer

patients are analysed for unknown mutations and there is a need to

separate between driver mutations, passenger mutations and

resistance mutations.

Compound mutations
Compound mutations that lead to drug resistance typically

involve a combination of two single resistance mutations that

together lead to improved drug resistance and may result in

relapse over treatment. The analysis of compound mutations lead

to two conclusions. First, 24% of the known compound mutations

are not observed together in any Abl1 homologue, whereas all single

mutations were observed. This may indicate that multiple

mutations that do not significantly impair the function of the

enzyme are not subject to additional evolutionary pressure that

would prevent their accumulation. Alternatively, the accumulation

of multiple mutations may be slightly deleterious which does not

prevent them from being fixed [39]. Second, several alternations

seem to occur together in homologous sequences but have hitherto

not been identified in patients, either due to experimental

limitations, small sample sizes, or because they are less beneficial

for resistance. Both findings suggest that additional compound

resistance mutations will be reported in the future, in Abl1 and

other genes, and will be difficult to target. Moreover, compound

mutations have recently been observed also in the context of

EGFR activating mutations [40,41], further indicating that such

mutations should be expected in other genes.

Our understanding of cancer evolution is becoming better

owing to better sequencing methods [42], new analysis tools for

cancer gene networks [43] and development of evolutionary

models [44–47]. Several methods are available for distinguishing

between driver and passenger mutations [37,48–51]. Many studies

Table 2. The number of possible and observed non-
synonymous SNV.

Protein Kinase domain
% of Resistance
mutations

Possible Observed
observed in the
MSA

EGFR (Total) 1508 1038 (69%) 67%

exons 20–21 679 438 (65%) 100%

ALK 1627 1090 (67%) 83%

Abl1 1541 1254 (81%) 100%

All 4676 3382 (72%) 95%

The total number of possible non-synonymous SNVs, the number of which are
observed in the MSA, and the proportion of resistance mutations that are
observed in the MSA are shown. For example, if no evolutionary constraints
whatsoever had been in effect, 679 non-synonymous SNVs would have been
possible in exons 20 and 21 of EGFR. In reality, only 438 are observed. The other
241 non-synonymous SNVs presumably interfere with the biological activity of
the enzyme and are selected against. When examining only the residues that
are linked to resistance mutations (Table S1), none of the variations falls outside
of the MSA. Overall, only 5% of the non-synonymous SNVs that lead to
resistance mutations fall within 38% of the SNVs that are possible but not
observed in the MSA, which indicates that the resistance mutations are subject
to evolutionary constraints.
doi:10.1371/journal.pone.0082059.t002

Evolutionary Constraints of Resistance Mutations
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demonstrate the necessity for taking the evolutionary forces that

drive cancer progression into account [52–58]. In this article it is

shown that evolutionary reasoning should also be considered for

the analysis of resistance mutations.

Methods

Analysis of sequence variations in EGFR, ALK and Abl1
Analysis of the sequence variations in the three drug targets

EGFR, ALK and Abl1 was performed as follows. First, the protein

sequences (accession numbers: EGFR, NP_005219.2; ALK,

AAB71619.1 and Abl1, NP_005148.2) were downloaded from

www.ncbi.nlm.nih.gov. The tyrosin kinase (TK) domains of each

protein were extracted. These domains correspond to EGFR

residues 713–968, ALK residues 1109–1385, and Abl1 residues

235–497. Homologous sequences were identified by using the

recently developed DELTA-BLAST method [59], employing a

threshold of 500 sequences for EGFR and ALK and 2000 for Abl1

(using additional sequences for EGFR and ALK did not

significantly modify the results). Homologous sequences were

identified in the Swiss-Prot database of manually curated proteins

[60], www.uniprot.org. A representative set of similar sequences

for each protein was prepared by removing nearly identical

sequences based on a 95% similarity criterion, using the

skipredundant program available from EMBOSS [61], http://

emboss.sourceforge.net, which employs the global alignment

algorithm of Needleman and Wunsch [62]. The remaining

sequences (276 for EGFR, 273 for ALK, and 1282 for Abl1)

were aligned together by use of the FFT-NS-2 method within the

MAFFT program [63]. The GUIDANCE program [64] was used

to provide an estimated accuracy for each position in the multiple

sequence alignment (MSA), and generate a more robust MSA.

MAFFT and the FFT-NS-2 algorithm were used within

GUIDANCE. The size of the ALK MSA was too large to employ

GUIDANCE on this set of sequences.

Evolutionary conservation at the residue level
The Consurf server [35,36] was used to estimate the evolution-

ary conservation at the residue level for EGFR, ALK and Abl1.

Multiple sequence alignment within Consurf was built with

MAFFT [63]. For each protein, up to 500 homologues were

collected from Swiss-Prot [60]. The CS-Blast algorithm [65,66]

was employed to search for homologues. Default parameters were

used otherwise. Protein figures were generated with VMD [67].

Supporting Information

Table S1 Analysis of drug-resistant and drug-sensitive
mutants of EGFR. The most common mutations [18] are

shown in bold-face. a Confidence scores are between 0 and 1,

where 1 means robust, see [64]. Guidance scores are given for the

position. b PSSM = position specific scoring matrix. Log-odds

scores calculated as the log (base 2) of the observed substitution

frequency at a given position divided by the expected substitution

frequency at that position. Positive scores for a given residue

indicate that it is more common at a given site than expected for a

random protein sequence. c NP = not present. The CDD domain

is CDD:173654. Tyrosine kinase, catalytic domain.

(PDF)

Table S2 Analysis of ALK drug-resistant mutations
(lung cancer) and activating mutations (neuroblastoma).
Only mutations in the catalytic domain are analysed. See the

legend of Table S1 for explanation on the scores. The CDD

domain is cd05036, catalytic domain of the Protein Tyrosine

Kinases, Anaplastic Lymphoma Kinase and Leukocyte Tyrosine

Kinase. The most medically relevant mutations are shown in bold

face. NP = not present.

(PDF)

Table S3 Analysis of Abl-1 drug-resistant mutations.
Only mutations in the catalytic domain are analysed. See the

legend of Table S1 for explanation on the scores. The CDD

Figure 2. Conservation of resistance mutations at the residue level. The structures of EGFR [68] ALK [69], and Abl1 [70] are shown in a ribbon
representation, coloured according to the evolutionary conservation at the residue level. Colouring is at the BWR scale, i.e., highly conserved residues
are shown in dark blue, moderately conserved in light blue, mildly conserved or mildly variable in white, moderately variable in pink and highly
variable in red. Residues where mutations lead to drug resistance are represented by spheres and indicated (only for EGFR and ALK, note that EGFR
residue Leu747 was not resolved in the X-ray structure and is not displayed).
doi:10.1371/journal.pone.0082059.g002
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domain is cd05052, catalytic domain of the protein tyrosine

kinase.

(PDF)

Table S4 Analysis of Abl-1 drug-resistant compound
mutations. The frequency of sequences in the MSA that carry

out the indicated double mutants that have shown to occur in the

same clone in patients [30] is shown. See also Figure 1 of the main

text.

(PDF)

Table S5 Evolutionary analysis of drug-resistant and
drug-sensitive mutants of EGFR. Grantham distances [38]

and Consurf conservation scores [34,36] are shown for each

mutation. Mutations that are observed in the MSA are underlined.

Lower (negative) values indicate conserved residues. The average

Grantham distance between pairs of amino acids, if one takes into

account all possible substitutions, is 100. Median Consurf score are

calculated per residues, i.e., if several non-synonymous SNVs are

observed for a residue it is only counted once. Variations that are

observed in the MSA (see Table S1) are underlined.

(PDF)

Table S6 Evolutionary analysis of drug-resistant and
drug-sensitive mutants of ALK. Grantham distances [38] and

Consurf conservation scores [34,36] are shown for each mutation.

(PDF)

Table S7 Evolutionary analysis of drug-resistant and
drug-sensitive mutants of Abl11. Grantham distances [38]

and Consurf conservation scores [34,36] are shown for each

mutation.

(PDF)

Data S1 Variations in the evolution of all Bcr-Abl1
compound mutations. This tab-delimited file can be read by

text editor and spreadsheet programs such as LibreOffice Calc or

Microsoft Excel, and provides the same information as given in

figure 1 for all of the possible combination of the 43 resistant

mutants.

(CSV)

Data S2 This data file contains a list of the sequences that were

aligned to EGFR, ALK and Abl1.

(ZIP)
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65. Biegert A, Söding J (2009) Sequence context-specific profiles for homology

searching. Proc Natl Acad Sci U S A 106: 3770–3775.
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