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Marine mammals vary greatly in size and lifespan across species. This study determined
whether measures of adult body weight, length and relative telomere length were related
to lifespan. Skin tissue samples (n = 338) were obtained from 23 marine mammal
species, including four Mysticeti, 19 Odontoceti and one dugong species, and the DNA
extracted to measure relative telomere length using real-time PCR. Life span, adult body
weight, and adult body length of each species were retrieved from existing databases.
The phylogenetic signal analysis revealed that body length might be a significant factor
for shaping evolutionary processes of cetacean species through time, especially for
genus Balaenoptera that have an enormous size. Further, our study found correlations
between lifespan and adult body weight (R2 = 0.6465, p < 0.001) and adult body length
(R2 = 0.6142, p≤0.001), but no correlations with relative telomere length (R2 =−0.0476,
p = 0.9826). While data support our hypothesis that larger marine mammals live longer,
relative telomere length is not a good predictor of species longevity.

Keywords: age, body size, cetaceans, lifespan, sirenians

INTRODUCTION

Marine mammals consist of cetaceans (mysticetes and odontocetes), sirenians (manatees and
dugong), pinnipeds (phocids, otarids, and walrus), marine and sea otters, and the polar bear
(Jefferson et al., 1994). These species are not randomly distributed across the world’s oceans,
but rather occupy species-specific geographical niches that vary by depth, temperature, and food
resources (Jefferson et al., 1994). Many of these species are at risk of extinction (Reynolds et al.,
2009), and it has been estimated that nearly three-quarters of all marine mammals experience
high levels of human interference, with the most at-risk species inhabiting coastal areas in close
proximity to humans (Davidson et al., 2012). Today, a large number of species living in more
open waters, which generally have been considered safe from anthropogenic impact, also are being
negatively affected by human activities (McCauley et al., 2015). The greatest direct threats to marine
mammals are incidental catch (particularly by fisheries), pollution, commercial harvest, hunting,
and vessel strikes (Avila et al., 2018). Indirect threats include degradation of habitats and food
sources that increase disease susceptibility and reduce reproductive rates, all of which negatively
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impact population survival (Schipper et al., 2008; Simmonds
et al., 2014). Conservation efforts in situ have had mixed results
despite their visibility and high value. For example, according
to a 2019 report (Valdivia et al., 2019), of 62 marine mammal
and sea turtle species, 18 mammal (78%) and six turtle (75%)
populations increased after being listing by the United States
Endangered Species Act (ESA), while two marine mammal (9%)
populations declined and three mammal (13%) and two turtle
(25%) populations showed no change after ESA protection. And
while some marine mammal species breed well in captivity [e.g.,
bottlenose dolphin (Tursiops truncatus) (Jaakkola and Willis,
2019), Indo-Pacific bottlenose dolphins (Tursiops aduncus) (Koga
et al., 2019)], which can be a hedge against extinction in the
wild, most do not. Thus, life history data from captive bred
and wild animals are important for risk modeling, although it
is limited for most marine mammal species (Davidson et al.,
2012; IUCN, 2020).

In general, marine mammals are fairly long-lived (Bourg
and Bourg, 2020), but determining age is difficult, particularly
for those that live fully underwater. Births and deaths are
rarely observed in the wild, so reliable population demographics
are lacking for most species. A number of methods for age
estimation have been tested in marine mammals, including
measures of tissue amino acid racemization (Garde et al.,
2007, 2012), fatty acid signatures from blubber, bone mineral
density (Bourg and Bourg, 2020), counting dentine growth
layer groups (GLGs) in bone or teeth (Read et al., 2018;
Bourg and Bourg, 2020), radiographic imaging to determine
dentine thickness (Barratclough et al., 2019), measures of
telomere length (Olsen et al., 2018; Whittemore et al., 2019)
and epigenetic (Polanowski et al., 2014). Estimated lifespans of
211 years in bowhead whale (Balaena mysticetus) determined
by aspartic acid racemization in the eye lens (George et al.,
1999), 73 years in dugong (Dugong dugon) measured by GLG
counts in incisors (Marsh, 1980), and 110 years in the southern
hemisphere blue whale (Balaenoptera musculus) and 114 years
in the fin whale (Balaenoptera physalus) based on counts of
dark and light areas in the core of ear plugs (Ohsumi, 1979)
have been reported.

More recently, relative telomere length (rTL) measurements
by quantitative real-time polymerase chain reaction (qPCR)
have been gaining attention for age estimation (Cawthon, 2002;
Hewakapuge et al., 2008; O’Callaghan et al., 2008; Heidinger et al.,
2012; Buddhachat et al., 2017; Eastwood et al., 2019; Kaewkool
M.K.W. et al., 2020). This method was first used by Cawthon
(2002) and based on amplification DNA portion of telomeric
repeats TTAGGG that share a conserved sequence of six base
5′-TTAGGG-3′ at the terminal end of vertebrate chromosome.
The validity of rTL measures by qPCR has been demonstrated by
comparisons with standard methods, such as terminal restriction
fragment length (TRF) in humans of known ages (5–94 years),
exhibiting a high correlation (R2 = 0.68) (O’Callaghan et al.,
2008). In zebra fish, rTL decreases with increasing age through
telomere attrition (Heidinger et al., 2012). Among bird species of
varying longevity, initial rTL was related to lifespan, as well as to
lifetime reproductive success (Eastwood et al., 2019). However,
Whittemore et al. (2019) has proposed it is not initial telomere

length that correlates with longevity across a wide range of
mammals, but rather the rate of telomere attrition.

This study investigated relationships and phylogenetic signals
between rTL in skin samples of 23 species of marine mammals
found along Thailand sea coasts (Andaman Sea and Gulf of
Thailand) and measures of body weight and length and degree
to which they may be used to estimate maximum life span.

MATERIALS AND METHODS

Samples and Metadata of Traits From
Some Cetaceans
This study analyzed 338 skin samples from 23 Sirenia and
Cetacea species (Table 1) from the Phuket Marine Biological
Center, Phuket, Thailand. According to the Animals for
Scientific Purposes Act, B.E. 2558 (2015), because a part of
this experiment was performed on carcasses of stranded marine
mammals, no ethical approval was required for this study, which
was confirmed by the Animal Ethics Committee, Faculty of
Veterinary Medicine, Chiang Mai University (License number
U1006312558). Information on maximum lifespan, adult weight
and length was obtained from several publicly available databases
as shown in Table 1 (Francis and Barrett, 2008; Stuart and Stuart,
2015; Cerchio and Yamada, 2018; Tacutu et al., 2018; Myers et al.,
2020; National Oceanic and Atmospheric Administration within
the Department of Commerce, 2020).

DNA Extraction and Real-Time PCR
Skin samples (2× 2 cm) were preserved in 95% ethanol for DNA
extraction according to manufacturer’s instructions (DNeasy
Blood and Tissue Kit, QIAGEN, Germany). DNA, diluted
to 50 ng/µl, was measured qualitatively and quantitatively
using agarose gel electrophoresis, and absorbance at A260,
respectively. To estimate the telomere length of individual
samples, qPCR was carried out using Eco Real-Time PCR
System (Illumina, United States) (Hewakapuge et al., 2008;
Buddhachat et al., 2017; Kaewkool M. et al., 2020). Briefly,
DNA amplification by qPCR consisted of 1X real time master
mix (Bioline, England), 270 nM of telomere primer of tel 1, 5′-
GGTTTTTGAGGGTGAGGGTGAGGGTGAGGGTGAGGGT-
3′, 900 nM of tel 2, 5′-TCCCGACTATCCCTATCCCTATCCC
TATCTATCCCTA-3′ and 50 ng of extracted DNA in a total
volume of 10 µl. Additionally, the single copy gene 36B4 was
used as a control and amplified using 400 nM of the forward
primer 5′-CAGAGTGAYGTGCAGCTGAT-3′, and for reverse
primer 5′-AAGCACTTCAGGGTTGTAGATGCTGCC-3′ to
normalize the copy of telomere for inter-individual comparison.
The cycling profile for the telomere (T) PCR was as follows:
40 cycles of 95◦C for 15 s, and annealing temperature for each
species (Table 2) for 2 min. For the 36B4 single copy gene (S),
the reaction was conducted with 30 cycles of 95◦C for 15 s,
and annealing temperature per species for 1 min (Table 2).
The cycle threshold (Ct) values acquired from qPCR were
used for analyzing the rTL through the following formula:
2[Ct(telomere)−Ct(36B4gene)] and was expressed as T/S or rTL (Livak
and Schmittgen, 2001). The measurement of rTL by qPCR has
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TABLE 1 | Maximum lifespan, adult body weight and length of Sirenia and Cetacea samples used in this study.

Number Common name Scientific name Accession
number

N Maximum
lifespan (Year)

Adult body
weight (Kg)

Adult body
lengthe (m)

Sirenia

1 Dugong Dugong dugon KJ022758 128 73a 360,000.0a 3.00e

Cetacea

Mysticeti

Family Balaenopteridae

2 Blue whale Balaenoptera
musculus

JN801062 1 110a 136,000.0a 23.00e

3 Bryde’s whale Balaenoptera edeni KY938508 5 72a 16,000.0a 13.00e

4 Omura’s whale Balaenoptera
omurai

AB116097 4 95b 2,500.0a 11.00f

Odontoceti

Family Delphinidae

5 Common
bottlenose dolphin

Tursiops truncatus MF669486 1 51.6a 200.0a 2.95e

6 Fraser’s dolphin Lagenodelphis
hosei

AB610384 6 18c 164.0a 2.50e

7 Indo-Pacific
bottlenose dolphin

Tursiops aduncus KY542107 26 34b 280.0a 2.60e

8 Indo-Pacific
humpback dolphin

Sousa chinensis KX364256 4 40d 265.0d 5.20e

9 Irrwaddy dolphin Orcaella brevirostris MG703251 2 30a 190.0a 2.15e

10 Common dolphin Delphinus delphis U02664 2 40a 100.0a 2.50e

11 Pantropical spotted
dolphin

Stenella attenuata KY542112 29 46a 112.5a 2.50e

12 Rough-toothed
dolphin

Steno bredanensis AY842471 7 32a 114.0a 2.30e

13 Spinner dolphin Stenella longirostris NC032301 34 26d 51.5d 1.80e

14 Striped dolphin Stenella
coeruleoalba

AM498734 57 57.5a 112.5a 2.25e

15 False killer whale Pseudorca
crassidens

AB377526 8 62.5a 748.0a 3.60e

16 Risso’s dolphin Grampus griseus AM498741 4 42.5a 425.0a 3.80e

17 Short-finned pilot
whale

Globicephala
macrorhynchus

AJ226120 1 63a 2,200.0a 4.15e

Family Kogiidae

18 Dwarf sperm whale Kogia sima NC041303 4 22a 202.5d 2.40e

19 Pygmy sperm
whale

Kogia breviceps KY542109 3 17a 424.6a 3.05e

Family Phocoenidae

20 Finless porpoise Neophocaena
phocaenoides

MG719601 5 33a 32.5a 1.75e

Family Physeteridae

21 Sperm whale Physeter
macrocephalus

M93154 5 77a 28,500.0a 11.00e

Family Ziphiidae

22 Blainville’s beaked
whale

Mesoplodon
densirostris

KF032863.2 1 27d 925.0d 4.70e

23 Cuvier’s beaked
whale

Ziphius cavirostris AB610404 1 62a 2,701.0a 6.50e

aAnAge database (Tacutu et al., 2018).
bStuarts’ Field Guide to the Larger Mammals of Africa (Stuart and Stuart, 2015).
bNOAA Fisheries Web: https://www.fisheries.noaa.gov/ (National Oceanic and Atmospheric Administration within the Department of Commerce, 2020).
cAnimal Diversity Web: https://animaldiversity.org/ (Myers et al., 2020).
dGuide to the Mammals of Southeast Asia (Francis and Barrett, 2008).
eEncylopedia of Marine Mammals (Cerchio and Yamada, 2018).
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TABLE 2 | Annealing temperature of telomere primer and single copy gene primer.

Annealing temperature (◦C)

Common name Telomere gene 36B4 gene

Dugong 65.0 65.5

Blue whale 64.6 68.0

Bryde’s whale 64.0 68.0

Omura’s whale 61.9 67.8

Common bottlenose dolphin 61.9 65.5

Fraser’s dolphin 65.0 65.5

Indo-Pacific bottlenose dolphin 61.9 65.5

Indo-Pacific humpback dolphin 65.0 68.0

Irrwaddy dolphin 64.6 68.0

Common dolphin 63.1 68.0

Pantropical spotted dolphin 64.0 67.0

Rough-toothed dolphin 65.0 67.0

Spinner dolphin 65.0 68.0

Striped dolphin 65.0 65.5

False killer whale 60.4 68.0

Risso’s dolphin 63.1 67.0

Short-finned pilot whale 64.6 65.5

Dwarf sperm whale 64.6 68.0

Pygmy sperm whale 65.0 68.0

Finless porpoise 64.6 65.5

Sperm whale 64.6 67.8

Blainville’s beaked whale 63.1 65.7

Cuvier’s beaked whale 64.6 68.0

been validated for reliability, and shown that higher rTLs are
found in long-lived animals (Cawthon, 2002; Buddhachat et al.,
2017; Eastwood et al., 2019).

Phylogenetic Signal Analysis
A phylogenetic tree of a sirenian and 22 cetaceans was
constructed based on the sequences of control regions (trimmed
for approximately 220 bp) retrieved from GenBank (Table 1) and
aligned using MEGA X (Kumar et al., 2018). The phylogeny was
built through Bayesian inference under MrBayes 3.2 (Ronquist
and Huelsenbeck, 2003) with the appropriate substitution model
and corrected by Akaike Information Criterion (AIC) obtained
from jModelTest2 (Nylander, 2004) as GTR + 0 (a General
Time Reversible and a gamma-shaped distribution of rates across
site). The Bayesian inference was run with two independent
searches with random starting trees for 1,000,000 generations,
in which the diagnostic was calculated every 1,000 generations
and compared using four Markov chain Monte Carlo chains
(temp = 0.2). The log-likelihood scores were used for plotting
the convergence in Tracer v1.5 (Rambaut et al., 2013) and
building a strict consensus tree with dugong as the outgroup,
which was completed by removal of the first 25% of the
generations from each run. After obtaining the phylogeny of
cetaceans, a phylogenetic signal was tested to determine if
the traits (i.e., lifespan, body weight, body length, and relative
telomere) were similar within closely related species using
Blomberg’s K and Pagel’s λ under function phyloSignal in

package phylosignal (Keck et al., 2016). K and λ show the
level of relatedness between phylogeny and traits in evolutionary
process under Brownian motion (BM), namely phylogenetic
signal. The K and λ = 0 represents no phylogenetic signal,
K and λ = 1 suggests that a trait was evolved according to
BM model of evolution (i.e., gradual, random, non-directional
trait change through time) (Felsenstein, 1985), and K and
λ > 1 indicates stronger resemblance among closely related
species than expected under BM. We used Local Indicators
of Phylogenetic Association (LIPA) by Local Moran’s I (li)
through function lipaMoran in package phylosignal to describe
local traits patterns or detect hotspots of autocorrelation for
determining whether traits evolve similarly into the phylogeny
(Keck et al., 2016).

Statistical Analysis
Life history information of the marine mammal species in this
study that included lifespan, log(body weight), body length, and
log(rTL) are shown by heatmaps, circle graphs, bar plots, and box
plots, respectively. Relationships with lifespan were determined
by general linear model (GLM) univariate analyses including
the variables rTL, log(rTL), body weight, log(body weight), body
length, or log(body length), and for rTL with variables including
body weight, log(body weight), body length, or log(body length).
Relationships between lifespan and other variables including rTL,
body weight, log(body weight), body length, log(body length)
were further evaluated by general multivariate linear models.
The most suitable model for estimating life span was chosen
by the Akaike information criterion (AIC) value through R
program. The selected models with the lowest AIC were tested
for prediction accuracy by coefficient of determination (R2)
(Alexander et al., 2015).

RESULTS

Telomere Assay
In the present study, rTL was estimated by real-time PCR,
expressed as the ratio of telomere to reference gene (single
copy gene) for each individual and measured in triplicate. The
precision of the assay based on average coefficient of variation
(CV) values of each individual was 40%, demonstrating relatively
high intra-individual variation and low repeatability of the assay
(data not shown).

Phylogenetic Signals and Trait
Divergences Across Cetaceans
To determine if traits (lifespan, body weight, body length
obtained from metadata and rTL) of 22 cetacean species were
similar within closely related species or the same clade, a
phylogentic signal based on Blomberg’s K and Pagel’s λ was
calculated as shown in Table 3. We found that lifespan and body
length showed a significant phylogenetic signal for Blomberg’s
K (K > 0, p < 0.05), whereas for Pagel’s λ, lifespan, body
weight and body length indicated a high phylogenetic signal
(λ > 0, p < 0.05). By contrast, rTL did not show phylogeny
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TABLE 3 | Phylogenetic signal for traits based on the phylogenetic tree of 22
cetacean species.

Traits Blomberg’s K p-value Pagel’s λ p-value

lifespan 0.53 0.0030 0.96 0.0259

body weight 0.66 0.0810 1.04 0.0010

body length 1.10 0.0030 1.05 0.0010

relative telomere length (rTL) 0.16 0.8700 0.00 1.0000

random 0.11 0.9560 0.28 1.0000

Brownian motion 0.12 0.9670 0.00 1.0000

Trait value with significant difference at p < 0.05 are in bold.

across cetacean species. As illustrated in Figures 1B,C, three
closely related species belonging to genus Balaenoptera tended
to share similar trait values, especially lifespan, body length and
body weight. By contrast, two adjacent clades differed, except
for Physeter macrocephaslus, which has a large body size and
long life expectancy similar to Balaenoptera. The hotspot of
autocorrelation across traits was assessed by local Moran’s I for
each species into the phylogeny of cetacean species (Figure 1).
LIPA analysis exhibited remarkable local positive autocorrelation
in two clades: the genus Balaenoptera with high values for
lifespan, body weight and body length, and the majority of family
Delphinidae (genus Orcaella, Tursiops, Stenella, Sousa, Delphinus,
and Lagenodelphis, Steno) with low values for lifespan, body
weight and body length (Figure 1). However, there were no
species with hotspot autocorrelations for rTL.

The Relationships of Each Traits for
Cetacean Species
The maximum lifespan of the marine mammals in this study
ranged from 18 to 110 years, with L. hosei having the shortest
and B. musculus the longest longevity (Figure 1A). Based on
morphometrics (body weight and length), B. musculus was the
largest, while L. hosei was the smallest species (Figures 1, 2).
In addition, baleen whales were larger in size (both in body
weight and length) than species belonging to Odontoceti in
parallel with longer maximum lifespans. Body sizes, both
weight and length, were positively correlated with maximum
lifespan, with adjusted R2 = 0.6465 (p < 0.0001) and 0.6142
(p < 0.0001), respectively (Figures 2A,B). Median rTL values
revealed variation across species (Supplementary Table 1),
with the highest and lowest values observed in K. breviceps
(rTL = 0.24, maximum lifespan = 22) and D. delphis (rTL = 0.008,
maximum lifespan = 40), respectively, but no relationship
between maximum lifespan and median rTL noted (adjusted
R2 of −0.0476, p = 0.9826) (Figures 1B,C, 2B). As depicted in
Figure 3, relationships between maximum lifespan and median
rTL of species within Mysticeti or Odontoceti also were not
observed (Figure 3C). However, maximum lifespan of species
within the Odontoceti was associated with log body weight and
length, with an adjusted R2 = 0.2786 (p = 0.0118) and 0.3759
(p = 0.0031), respectively (Figures 3A,B).

The mixed model used for creating a model for lifespan
prediction of marine mammals is shown in Table 4. Log-
transformed data of body weight was the best univariate model,
with AIC = 192.26 and adjusted R2 = 0.6465 (p < 0.0001)

(Table 4). The best multivariable model included the
log of body weight and the untransformed body length
(AIC = 193.04, adjusted R2 = 0.6479), given a function
as lifespan = 5.839 × log(body weight) + 1.543 × body
length + 4.102 (Table 3). Notably, median rTL had no statistical
significance in any models.

DISCUSSION

In the present study, our results revealed two significant findings:
(i) lifespan and body size appeared to be phylogenetically
conserved, especially body length, based on Blomberg’s K and
Pagel’s λ = 1; and (ii) lifespan is likely to be connected
to body size, both weight and length, but not to median
rTL. This information can provide insight into the drivers
of conserved traits in the evolutionary process of cetacean
species, as well as relationships among life variables that might
contribute to longevity.

The phylogeny of 22 cetaceans and traits including lifespan
and body sizes (weight and length) gave statistically significant
phylogenetic signals using both Blomberg’s K and Pagel’s λ. K
and λ-value for body length showed phylogenetic conservatism
(K = 1.10 and λ = 1.05) corresponding to evolution processes
superior to the BM model (e.g., genetic stabilizing and genetic
drift). In addition, LIPA analysis revealed that the genus
Balaenoptera showed a considerable hotspot autocorrelation
for body length. This was consistent with a study of Slater
that explained the independent evolution of mysticete body
size might be driven by ocean dynamics like wind-driven
upwellings, with high prey density as the primary determinant
of efficient foraging of baleen whales (Slater et al., 2017). The
ecological prey scape might be an important driver rather than
predatory avoidance and niche partitioning (Slater et al., 2017).
A phylogenetic signal of λ-value for lifespan and body weight
in cetacean species was also significant, but lower than that
for body length. This suggested that those two traits might be
more rapid diversification than body length causing the relatively
variation among the closely related species (Smith et al., 2004;
Kamilar and Cooper, 2013). The relative variation in lifespan and
body weight were noted in the closely related species of family
Delphinidae. However, several studies found similar body size
among congeneric species or within the same clade [e.g., primates
(Kamilar and Cooper, 2013), mammals (Smith et al., 2004)].
For the study of phylogenetic signals in primate traits, lifespan
showed a low phylogenetic signal (Kamilar and Cooper, 2013) in
contrast to marine mammal lifespans in the present study, which
had a moderate, but significant phylogenetic signal. This might
represent a difference in ecological niches between terrestrial and
marine mammals affecting the extrinsic mortality risk. A study by
Healy et al. (2014) demonstrated that, in addition to the positive
correlation between lifespan and body size, there was a striking
difference between flying and non-flying vertebrates related to
maximum lifespan, as birds with similar body sizes to non-flying
vertebrates live longer. Thus, the volant ability and enormous
size appear to be important traits for investment in long-term
evolution because they reduce the risk of extrinsic mortality
(Healy et al., 2014; Slater et al., 2017; Whittemore et al., 2019).
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FIGURE 1 | Phylogenetic tree of marine mammals based on sequences of control regions with information about average lifespan, body weight, body length, and
relative telomere length of each species found in Thailand oceans (A). Phylogenetic tree with value of each trait centered and scaled (B) and with Local Moran’s
index (Ii ) values for each species for traits including lifespan, body weight, body length, relative telomere length (rTL), random dataset, and Brownian Motion (BM)
dataset (C). The red bar indicates the significant Ii values at p < 0.05. The phylogeny was built based on 220 pb control region of 22 cetacean species under
GTR + 0 through Bayesian inference. Dugong was rooted.
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FIGURE 2 | Relationships of maximum lifespan with body weight (A), body length (B), and median relative telomere length (C) across marine mammal species found
in Thailand oceans. The size of the figures illustrates accordance to the real ratio. The numbers represent species of marine mammals as depicted in Table 1.

FIGURE 3 | The relationship of the maximum lifespan with log (body weight) (A), body length (B), and median rTL (C) across Mysticeti and Odonotoceti. The size of
the figures illustrates in accordance to the real ratio. The numbers represent species of marine mammals as depicted in Table 1.

TABLE 4 | Mixed model for average lifespan using body weight, body length and median rTL for estimating average lifespan.

Variable d.f. AIC Adjusted R2 p-value Estimate of coefficients The best model for life span estimation

Lifespan ∼ Log(body
weight)

Lifespan ∼ Log(body
weight + body length)

univariate analyse: lifespan ∼ a variable log(body weight) 9.039 ± 1.408 5.839 ± 3.373

rTL 21 217.25 −0.0476 0.9826 body length - 1.543 ± 1.479

log(rTL) 21 217.25 −0.0431 0.7662 intercept −8.490 ± 9.510 4.102 ± 15.354

body weight 21 202.80 0.4410 0.0063

log(body weight) 21 192.26 0.6465 < 0.0001

body length 21 194.25 0.6145 < 0.0001

log(body length) 21 193.83 0.6216 < 0.0001

univariate analyse: rTL ∼ a variable

body weight 21 −60.09 −0.0390 0.6805

log(body weight) 21 −60.03 −0.0415 0.7280

body length 21 −60.04 −0.0414 0.7263

log(body length) 21 −59.91 −0.0470 0.9119

multivariate analyse: life span ∼ variables

rTL, log(body weight) 20 194.03 0.6285 < 0.0001

rTL, body length 20 195.98 0.6000 < 0.0001

log(body weight), body length 20 193.04 0.6479 < 0.0001

rTL, log(body weight), body length 19 195.03 0.6296 < 0.0001
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It was not surprising, however, that the rTL in marine
mammals was not a good phylogenetic signal due to the presence
of high variation of rTL within the same clade, indicating non-
directional change or random rTL values through time within
mammal marines. For example, the lifespan of K. breviceps
(n = 3) was 22 years and had median rTL of 0.23, whereas
B. musculus (n = 1) with the longest lifespan (110 years) had a
median rTL of 0.03. The rTL variation observed across different
species in this study may be due to (i) the limited number of
specimens for some species, (ii) the uneven distribution of age
classes within species, and/or (iii) inaccurate estimates of true
lifespans (Magalhães et al., 2007), (iv) the variation of telomere
assays, or (v) the variation of rTL within intra-individual and
low repeatability (Olsen et al., 2012). Quality control for rTL
estimates using real-time PCR is important in identifying a
suitable assay with high consistency, accuracy, and resolution
(Olsen et al., 2012). While our findings showed that there were
no significant relationships between median rTL and lifespan
across marine mammal species, the lifespan of Odontoceti
species actually appeared to be inversely related to median rTL.
A study of telomeres in 60 different mammals demonstrated
that species with long telomeres have shorter lifespans, which is
in agreement with marine mammal data (Gomes et al., 2011).
It was suggested that median rTL might be not be a major
factor in determining lifespan in these groups. Further, a wide
variety of bird and mammal species has been studied with no
strong correlations found between lifespan and initial telomere
length, although there were significant relationships between
telomere shortening rate and lifespan of a species (Whittemore
et al., 2019). Several other studies also have reported correlations
between telomere attrition and a species’ lifespan, including
in birds (Haussmann et al., 2003; Boonekamp et al., 2014;
Tricola et al., 2018), chimpanzees (Tackney et al., 2014), and
cynomolgus monkeys (Lee et al., 2002). However, one study in
zebra finches clearly showed that initial telomere length measured
at 25 days was reliable for lifespan estimation of individuals
(Heidinger et al., 2012).

In the present study, we were not able to measure absolute
telomere length, and so had to rely on estimate ages for
some cetacean species with limited demographic data (Taylor
et al., 2007); i.e., based on five life history parameters obtained
from 58 cetacean species. A one-point-in-time measure for rTL
was determined from carcasses, contributing to an inability to
estimate either initial telomere length or rate of shortening as
predictors of longevity.

Relationships between genetically related species were
empirically created using a phylogenetic tree annotated with
datasets of body index and median rTL. The phylogenetic
tree was created based on partial control region sequences
of 23 marine mammal species inhabiting Thailand oceans
and consisted of a sirenian (D. dugon) and six families of
cetaceans, including Balaenopteridae (three species), Ziphiidae
(two species), Physeteridae (one species), Kogiidae (two species),
Phocoenidae (one species), and Delphinidae (14 species).
Thailand accounts for a quarter of cetacean species worldwide
(Jefferson et al., 2015), and so represents a highly diverse region
for marine mammals. Balaenopteridae members showed a larger

body size than the others, but median rTL appeared not to relate.
We suggest that each species may undergo specific evolutionary
changes with respect to aging in response to their ecological
habitat, behavior, and intrinsic factors (heart rates, metabolic
rates), which then leads to different median rTL and maximum
lifespan relationships.

Measuring telomere shortening in cetaceans is challenging
owing to the difficulty of collecting samples from free-ranging
animals, and the limited number of species held in captivity.
Thus, other traits such as average body weight and body length
were used to correlate with maximum lifespan and found that
larger species like baleen whales were longer-lived, whereas
species of Odontoceti that had a smaller size also had a shorter
lifespan. Similarly, P. macrocephalus belonging to Odontoceti
has a larger mass and long lifespan (77 years). Moderate
correlations (>0.6) between lifespan and log-transformed body
weight and/or body length were observed for all species in this
study. Our findings further suggest that body size, including
body weight and length, is a factor associated with species
lifespan in accordance with the results of Magalhães et al.
(2007). Ecological factors or the absence of predators likely drive
larger animals to have longer lifespans (Kirkwood and Austad,
2000; Magalhães et al., 2007). In addition, higher heart rates
are associated with shorter lifespans, in addition to increased
risks of cardiovascular mortality through processes involving
protein oxidation, free radical production, inflammation, and
telomere shortening (Levine, 1997; Zhang and Zhang, 2009).
Membrane composition might also be linked to longevity,
with longer lifespans being associated with more saturated and
monounsaturated fatty acids membrane structures (Hulbert,
2008). More recently, it has been shown that mitochondrial
DNA (mtDNA) GC content exhibits significant correlations with
maximum lifespan (MLS), and when included as a variable
with body mass to predict the MLS is highly predictive
(Lehmann et al., 2008, 2013; Toren et al., 2016). MtDNA GC
content based on MitoAge database (Toren et al., 2016) might
be used as a determinant factor to increase the predictive
power to estimate lifespan of marine mammals. Animals
such as the bowhead whale (B. mysticetus) and gray whale
(Eschrichtius rubustus) are recognized as among the top 1% of
longest-lived mammals, possibly due to adaptive mechanisms
of cell physiology that support cell survival under extreme
environmental conditions, such as DNA maintenance and
repair, ubiquitination, apoptosis, immune responses, and insulin
signaling (Seim et al., 2014; Keane et al., 2015; Toren et al.,
2020). In addition, a study by Yanai et al. (2017) revealed
that longevity-associated genes (LAGs), especially Sod2, Sirt1,
Mtor, and Rps6 kb1, that have a high number of orthologs are
overrepresented across diverse taxa with a high evolutionary
distance (yeast, worm, fruit fly, and mouse) and may affect the
extension of lifespan.

Finally, longevity may be related to survival tactics and how
susceptible species, large and small, are to predation (Ballance,
2018). Dolphins and porpoises with a small body size are likely to
be maimed or killed by larger-bodied sharks (Ballance, 2018) and
so do not live as long, whereas baleen and larger toothed whales
such as P. macrocephalus live longer than smaller dolphins and
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porpoises because they are less susceptible to predation. Species
with a higher likelihood of survival may have evolved to age more
slowly (Kirkwood and Austad, 2000).

CONCLUSION

Our study revealed two significant findings that: (i) lifespan
and body length appear to be important traits involved in the
evolutionary process of cetacean species, particularly the genus
Balaenoptera; and (ii) median rTL of 23 marine mammal species
was not correlated with maximum lifespan of individual species,
whereas body size (body weight and length) was. This study was
limited by a lack of basic information on maximum lifespans
of cetacean species retrieved from secondary sources (e.g., text
book and online databases), and because they are free-ranging
in habitats that are difficult to monitor. However, we attempted
to use data from accredited sources as much as possible to
compare across species, and provide the first comparative analysis
of how life traits may be related to longevity. A one-point-in-
time measure of rTL to obtain the median rTL was not a good
predictor for longevity, which was not unexpected given the
limitations of that measure and findings in other studies. We
believe that the enormous size of Balaenoptera species likely
reduces the extrinsic mortality risk from environmental pressures
(e.g., predators). Finally, our model could be used for lifespan
prediction of other marine mammal species based on basic
morphometric data.
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