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Abstract: Cancer-related microRNAs (miRNAs) are emerging as non-invasive biomarkers for colorectal
cancer (CRC). This study aimed to analyze the correlation between the levels of tissue and plasma
miRNAs and clinicopathological characteristics and surgical resection. This study was a prospective
study of CRC patients who underwent surgery. Forty-four sample pairs of tissue and plasma were
analyzed. The miRNA levels were evaluated by RT-qPCR. The level of tumor tissue MIR92a showed a
significant difference in CRC with lymph node metastasis, stage ≥ III, and high lymphatic invasion.
In preoperative plasma, there were significant differences in CRC with stage ≥ III (MIR29a) and
perineural invasion (MIR21). In multivariate analysis of lymphatic invasion, the levels of both
preoperative plasma MIR29a and tumor tissue MIR92a showed significant differences. Furthermore,
in cases with higher plasma miRNA level, the levels of plasma MIRs21 and 29a were significantly
decreased after the operation. In this study, there were significant differences in miRNAs levels with
respect to the sample type, clinicopathological features, and surgical resection. The levels of tumor
tissue MIR92a and preoperative plasma MIR29a may have the potential as a biomarker for prognosis.
The plasma MIRs21 and 29a level has the potential to be a predictive biomarker for treatment efficacy.
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1. Introduction

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of
cancer-related death in both men and women globally [1]. Therefore, for reducing the mortality
associated with CRC, biomarker development associated with clinicopathological characteristics is
essential in terms of planning an appropriate treatment strategy for each patient. Although it is possible
to obtain more detailed information by conducting many tests before and during treatment, evaluation
steps are expensive and time-consuming. Thus, alternative minimally invasive and inexpensive
pretreatment tests for CRC would be helpful for patients.

One candidate examination is measuring the levels of cancer-related microRNAs (miRNAs) by
liquid biopsy. MiRNAs are short (20–24 nucleotides) RNAs that are involved in the post-transcriptional
regulation of gene expression in multicellular organisms, affecting both the stability and translation
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of mRNAs [2–4]. MiRNA targets protein-coding mRNA at the post-transcriptional level via direct
cleavage of mRNAs or by inhibition of protein synthesis.

MiRNA biogenesis is tightly controlled, and their dysregulation is associated with carcinogenesis.
Additionally, miRNAs function as signaling molecules, influencing the behavior of the recipient cells.
Recent studies identified miRNAs in tissue and plasma of cancer patients, and their importance
as minimally invasive liquid biomarkers for the early detection of cancer has been reported [5–7].
These results are important as they showed the potential of the miRNA level reflecting tumor
characteristics and status in the body, but there are some limitations; almost all past studies were
retrospective examinations using only a single sample (e.g., tissue sample only), the quality of the
sample (e.g., frozen tissue sample without treatment with RNA stabilization reagent), and lack of
detailed clinicopathological information on the patients studied (e.g., only TNM classification). In light
of these limitations, it is unclear how miRNAs can be used in actual clinical situations, which ambiguity
has been an obstacle to practical application.

In addition, it was unclear in those previous reports whether circulating miRNA or exosomal
miRNA is appropriate for use as a biomarker. Total miRNA in the blood, called circulating miRNAs,
is conventionally divided into three main categories: (i) microparticles, (ii) exosomes, and (iii) apoptotic
bodies [8]. In particular, exosomal miRNA may provide the much needed layer of specificity for the
development of tissue/organ-specific biomarkers; and some studies reported that it could reflect disease
status and treatment response in human malignancies [9–11]. However, there are also some limitations
including standardization of specimen handling, appropriate normalizers, isolation techniques, and low
level in plasma compared to that of circulating miRNAs. Due to this, the use of the exosomal miRNA
is considered unrealistic in clinical practice. Thus, circulating miRNA is expected to be used clinically
as a biomarker, we decided to measure circulating plasma miRNAs levels in this study. Regarding the
examined miRNAs, MIRs21, 29a, and 92a were selected as they are candidate biomarkers frequently
reported in the literature [12–19].

In this study, we analyzed reliable tissue and plasma paired samples from prospectively enrolled
CRC patients to clarify (i) differences in the levels of miRNAs between various samples from the
same patient, and (ii) the potential of miRNAs as minimally invasive biomarker associated with the
clinicopathological characteristics of CRC and surgical resection.

2. Experimental Section

2.1. Study Population

Study subjects were prospectively enrolled 44 patients at the Gifu University Hospital between
July 2019 to March 2020. Case subjects consisted of patients who underwent colorectal resection of
CRC (Figure 1).

The enrolled patients in this study had to meet all of the following criteria: (1) no previous
history of cancer-related disease, (2) no diagnosis as synchronous double cancer, (3) did not receive
radiotherapy or chemotherapy prior to surgery, (4) diagnosed as CRC pathologically following surgery,
(5) no clinical diagnosis of familial adenomatous polyposis or hereditary nonpolyposis, and (6) no
clinical diagnosis of inflammatory bowel disease.

The present study was conducted in accordance with the World Medical Association Declaration
of Helsinki and was approved by the Ethics Committee of Gifu University (approval number 2019-074).
As this study was a prospective study and included potentially identifiable patient data, informed
consent was obtained from the enrolled patients. The institutional review board gave the ethics
approval for this prospective study.
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Figure 1. Study flow chart.

2.2. Sample Processing

All tissue sample pairs were collected during surgery, with these paired samples being from
the primary colorectal tumor and its adjacent non-tumor mucosal tissue in the same patient.
Non-tumor mucosal tissue was collected, taking care not to include the muscular layer, at least
5 cm away from the primary tumor. All samples were immediately stored in RNA stabilization reagent
(RNA later; Qiagen, Hilden, Germany) in the operating room and kept in this reagent at 2–8 ◦C
overnight. Then, the tissues were removed from the RNA stabilization reagent and stored at −80 ◦C.

Peripheral blood samples for miRNA measurement were collected from each patient the day before
the operation (Pre), on postoperative day 7 (POD7), and one month postoperatively (POM1). Peripheral
blood (4 mL) was added to an ethylenediamine tetra-acetic acid (EDTA)-coated anticoagulant tube,
and then the plasma was isolated by centrifugation at 3000 rpm for 15 min at 4 ◦C. The plasma was
carefully moved to a new 2.0 mL microfuge tube and stored at −80 ◦C until measurement of miRNA
levels could be performed.

To minimize the RNA degradation, we only used samples that had been frozen/thawed only once.

2.3. Preparation of Exosome-Enriched Fractions

Exosome fractions were prepared by a step-wise centrifugation-untracentrifugation method.
A 300 µL volume of frozen plasma samples was thawed and centrifuged for 3 min at 11,000× g
to remove residual cell debris, and then diluted eight-fold with phosphate-buffered saline (PBS).
After that, these diluted plasma samples were centrifuged at 90,000 rpm for 90 min in a TLA-110
rotor (BECKMAN COULTER, Brea, CA, USA). The pellets were resuspended in 300 µL of PBS and
designated as exosome-enriched fractions. The process for extraction of exosomal miRNA from
the exosome-enriched fractions was the same as that for circulating miRNA extracted from plasma,
as described below.
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2.4. Extraction of MiRNA from Tissue and Plasma Samples

MiRNAs from the frozen tissues and plasma were extracted by using a NucleoSpin®

microRNA kit (MACHEREY-NAGEL, Düren, Germany) and a NucleoSpin® microRNA plasma kit
(MACHEREY-NAGEL, Düren, Germany) according to the respective standard protocols. Tissue samples
were thawed and homogenized under sterile conditions. A 300 µL volume of frozen plasma sample
was thawed and centrifuged for 3 min at 11,000× g to remove residual cell debris. Proteins in the
supernatant were precipitated by using a reagent provided in the kit and removed by centrifugation.
After adjustment of the binding conditions with ethanol (tissue sample) or isopropanol (plasma sample
and exosome-enriched fraction), respectively, miRNAs were bound to a miRNA collection column.
To avoid contamination by cell-free tissue DNAs, a recombinant DNase in the kit was applied to digest
these DNAs on the column. The miRNA was then eluted into 30 µL of RNase-free water. The yield of
miRNA from tissue was checked for integrity and quality by using a microvolume spectrophotometer,
and the concentration was adjusted to 10 µL/mL with RNase-free water before the RT process. The yield
of circulating miRNA from plasma is usually very small, and a microvolume spectrophotometer
was hardly able to detect them, unlike total miRNA from tissues. The miRNA quality was assessed
by measuring circulating MIR16 levels. MIR16 is abundantly and stably found in plasma similar
to ribosomal RNA among cellular RNAs and, thus, its level should reflect the degree of miRNA
degradation and quality of the plasma samples.

The purified miRNA was immediately subjected to the RT process to prevent degradation of the
RNA before the PCR step.

2.5. Reverse Transcription-Quantitative Polymerase Chain Reaction Using Real-Time Polymerase
Chain Reaction

The miRNA reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed
for measuring levels of miRNAs. Total RNA was reverse-transcribed with a TaqMan® Advanced
miRNA cDNA Synthesis Kit (Applied Biosystems®, Thermo Fisher Scientific, Waltham, MA, USA).
According to manufacturer’s protocols, RT-qPCR was performed with a Thermal cycler Dice Real Time
System II (TaKaRa, Otsu, Japan). We performed a primer RT-PCR using TaqMan® Advanced miR Assays
(Applied Biosystems®) for hsa-MIR21-5p (Assay ID 478587_mir), hsa-MIR29a-3p (Assay ID 477975_mir),
hsa-MIR92a-3p (Assay ID 477827_mir), and hsa-MIR16-5p (Assay ID 477860_mir). The sequences of these
primers were as follows: 5′UAGCUUAUCAGACUGAUGUUGA3′ (hsa-MIR21-5p), 5′UAGCACCAU
CUGAAAUCGGUUA3′ (hsa-MIR29a-3p), 5′UAUUGCACUUGUCCCGGCCUGU3′ (hsa-MIR92a-3p),
and 5′UAGCAGCACGUAAAUAUUGGCG3′ (hsa-MIR16-5p). PCR amplifications were performed
in triplicate by using a THUNDERBIRD probe qPCR Mix (Toyobo, Osaka, Japan), following the
manufacturer’s procedures.

The threshold cycle (Ct) was automatically calculated by the second-derivative maximum
method to minimize errors due to variation in the manual threshold determination and to differences in
background fluorescence in the samples and runs. The Ct values were identified at the cycle of maximum
fluorescence acceleration, the beginning point of the log-linear phase in the amplification curve.

MIR16 was selected as an internal control of plasma samples in this study because it was the
best internal control available for normalizing plasma miRNAs according to our previous study [20].
For relative quantification, the –∆Ct method was performed.

2.6. Collection of Clinical and Pathological Characteristics

We collected information on patient characteristics including gender, age, body mass index
(BMI), primary colorectal tumor location, preoperative tumor marker level, macroscopic types (Type 0:
superficial type, Type 1: polypoid type, Type 2: ulcerated type with clear margin, Type 3: ulcerated
type with infiltration, Type 4: diffusely infiltrating type, Type 5: unclassified type), maximum tumor
diameter, pathological Union for International Cancer Control-TNM classification (8th edition) (T: depth
of tumor invasion, N: lymph node metastasis, M: distant metastasis) [21], histological types, lymphatic
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invasion (Ly: invasion of tumor cells into lymphatic vessels), venous invasion (V: invasion of tumor
cells into blood vessels), and perineural invasion (Pn: invasion of tumor cells along nerve fascicles).
All histological characteristics were based on the Japanese Classification of Colorectal, Appendiceal,
and Anal Carcinoma: the 3rd English Edition [22]. In this study each pathological characteristics
was classified into two groups according to the degree; (i) histological types: well and moderately
differentiated group (tub1: well differentiated type,tub2: moderately differentiated type) vs. poorly
differentiated group (por: poorly differentiated type, muc: mucinous type), (ii) Ly: mild invasion
group (Ly0: no lymphatic invasion, Ly1a: minimal lymphatic invasion) vs. high invasion group (Ly1b:
moderate lymphatic invasion, Ly1c: severe lymphatic invasion), (iii) V: mild invasion group (V0: no
venous invasion, V1a: minimal venous invasion) vs. high invasion group (V1b: moderate venous
invasion, V1c: severe venous invasion), and iv) Pn: negative (Pn0: no perineural invasion) vs. positive
(Pn1: presence of perineural invasion).

2.7. Statistical Analysis

For comparisons of variables between groups, Student’s t-test and ANOVA followed by the
Turkey–Kramer test was used in independent cases, and paired t-test was used in paired cases for
continuous variables. Pearson’s rank correlation coefficient was used for the correlation between
two continuous variables. A logistic regression model was used to estimate odds ratio (OR) and 95%
confidence interval (CI) for multivariate analysis. A p-value less than 0.05 was considered significant.
All statistical analyses were performed by using JMP software (SAS Institute Inc., Cary, NC, USA).

3. Results

3.1. Patient Characteristics

Patient characteristics are presented in Table 1. The cohort consisted of 17 male (38.6%) and
27 female (61.4%) patients. Their age ranged from 42 to 85 years, with a median of 72 years. The primary
tumor location was the colon in 27 cases (61.4%) and in the rectum in 17 cases (38.6%), and on the right
side in 17 cases (38.6%) and on the left side in 27 cases (61.4%). The pathological stage was stage I
in nine cases (20.5%), stage II in 13 cases (29.5%), stage III in 17 cases (38.6%), and stage IV in five
cases (11.4%). Compared with the cancer statistics in Japan published in 2019 [23], the enrolled patient
population had a slightly higher proportion of females, but the distributions of age, tumor location,
and pathological stage (surgical cases only) were generally in agreement.

3.2. Evaluation of the Relative Levels of Exosomal MiRNAs to the Circulating MiRNAs in Plasma

We evaluated the relative levels of exosomal miRNAs to circulating miRNAs in four preoperative
plasma samples. The results showed that the relative levels of all exosomal miRNAs (MIRs16, 21, 29a,
and 92a) were very small, being less than 0.05 (Table 2 and Supplemental Figure S1). Therefore, in terms
of stable level in plasma and ease of extraction and measurement, we decided to select circulating
miRNA in the plasma as an evaluation target according to the initial plan.

3.3. Evaluation of the Potential Internal Control for Quantification of Tumor Tissue MiRNA

To reliably select an internal control for quantification of tissue miRNA, we examined the levels
of MIRs16, 186, and 361 by using RT-qPCR for 12 pairs of tissue samples. Both MIRs186 and 361
were recommended as the candidate internal control miRNAs for use in Taqman® Advanced Assays
(Applied Biosystems®, Thermo Fisher Scientific, Waltham, MA, USA). No significant differences were
identified in terms of the level of MIR16 (p = 0.76), MIR186 (p = 0.86), and MIR361 (p = 0.23) between
tumor and normal mucosa (paired t-test, Supplemental Table S1). Next, we compared the abundance
of MIRs16, 186, and 361 in tissue and found that the MIR16 level was significantly the highest among
them (ANOVA followed by the Turkey Kramer test, Supplemental Figure S2). Therefore, MIR16 was
selected as the normalization internal control for tissue miRNA, the same as for plasma miRNA.
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Table 1. Patients’ and clinicopathological characteristics.

Patient Total n = 44

Gender, n (%) Male 17 (38.6) Female 27 (61.4)
Age (years), median (range) 72 (42–85)
BMI, median (range) 22.1 (15.1–40.3)

Primary colorectal tumor location, n (%)
C 3 (6.8)/A 8(18.2)/T 6 (13.6)/D 2 (4.5)/S 8 (18.2)/R 17 (38.6)

Colon 27 (61.4)/Rectum 17 (38.6)
Right side 17 (38.6)/Left side 27 (61.4)

Macroscopic types§, n (%) Type0 4 (9.1)/Type1 4 (9.1)/Type2 29 (65.9)/Type5 7 (15.9)
Maximum tumor diameter (mm), median (range) 45 (15–180)
Pathological T Stage§, n (%) T1 4 (9.1)/T2 7 (15.9)/T3 21 (47.7)/T4 12 (27.3)
Pathological N Stage§, n (%) N0 24 (54.6)/N1 14 (31.8)/N2 6 (13.6)
Pathological Stage§, n (%) I 9 (20.5)/II 13 (29.5)/III 17 (38.6)/IV 5 (11.4)
Histological types¶, n (%) tub1 9 (20.5)/tub2 29 (65.9)/por 1 (2.3)/muc 5 (11.4)
Lymphatic invasion¶, n (%) Ly0 8 (18.2)/Ly1a 23 (52.3)/Ly1b 8(18.2)/Ly1c 5 (11.4)
Venous invasion¶, n (%) V0 12 (27.2)/V1a 17 (38.6)/V1b 8 (18.2)/V1c 7 (15.9)
Perineural invasion¶, n (%) Pn0 19 (43.2)/Pn1 25 (56.8)
Preoperative CEA, n (%) Normal 26 (59.1) Elevated 18 (40.1)
Preoperative CA19-9, n (%) Normal 32 (72.7) Elevated 12 (27.3)

C: Cecum, A: Ascending colon, T: Transverse colon, D: Descending colon, S: Sigmoid colon, R: Rectum, Right side:
Cecum, ascending colon, and transverse colon, Left side: Descending colon, sigmoid colon, and rectum, CEA:
Carcinoembryonic antigen level, normal upper limit at 5 ng/mL, CA19-9: Carbohydrate antigen 19-9 level, normal
upper limit at 37 ng/mL, §: UICC TNM classification (the 8th edition); ¶: the Japanese Classification of Colorectal,
Appendiceal, and Anal Carcinoma: the 3rd English Edition.

Table 2. Expression levels of exosomal MIR16, 21, 29a, and 92a relative to those of circulating microRNAs
in plasma.

Target MicroRNAs

MIR16 MIR21 MIR29a MIR92a

−∆Ct value ‡, median (range) −6.35 (−9.72–−5.10) −4.81 (−6.86–−3.72) −5.11 (−7.10–−4.50) −6.35 (−9.72–−5.1)
Relative expression level §,
median (range)

0.014 (0.001–0.029) 0.038 (0.009–0.076) 0.029 (0.007–0.12) 0.036 (0.014–0.044)

‡: −∆Ct = −(Ct value (exosomal target MIR)–Ct value (circulating target MIR)), §: calculated by 2−∆Ct method.

3.4. Levels of MIRs21, 29a, and 92a Evaluated by RT-qPCR in Colorectal Tumor Tissues and the Relationship
with Clinicopathological Characteristics

We firstly analyzed the levels of MIRs21, 29a, and 92a by performing RT- qPCR on 44 pairs of
tissue samples from tumor and normal mucosa. We found that the levels of MIRs21, 29a, and 92a in
the tumor tissue were significantly higher than those in the normal mucosa (MIR21: p < 0.001, MIR29a:
p < 0.001, and MIR92a: p < 0.001, respectively; Figure 2 and Supplemental Table S2).

Based on these results, we next focused on the relationship between the level of miRNAs in
the tumor tissues and the clinicopathological characteristics of CRC patients (Table 3). The level of
tumor tissue MIR92a was significantly decreased in CRC patients who were positive for lymph-node
metastasis (p = 0.01), who showed a pathological Stage III + IV (p = 0.04), a poorly-differentiated tumor
(p = 0.03), and high lymphatic invasion (p = 0.02). Thus, tumor tissue MIR92a showed a significant
relationship between its level and the clinicopathological characteristics (Figure 3).
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Figure 2. Levels of MIRs21, 29a, and 92a in tumor and normal mucosa tissues of 44 CRC patients.
The paired t-test was performed. (***: p < 0.001).

Figure 3. Relationship between levels of MIRs21, 29a, and 92a in tumor tissue and clinicopathological
characteristics of 44 CRC patients. Student-t test was performed. (*: p < 0.05).

3.5. Correlation of MiRNA Levels Between Tumor Tissue and Preoperative Plasma

We analyzed the correlation for the miRNA levels between tumor tissue and preoperative plasma
in CRC patients. However, there was no significant correlation between them for each miRNA (MIR21:
p = 0.94, MIR29a: p = 0.17, MIR92a: p = 0.88; Figure 4). In particular, the relationship between tumor
tissue and plasma levels of MIR92a may be the weakest among these miRNAs.
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Table 3. Relationship between the levels of microRNAs in tumor tissue and clinicopathological characteristics.

Target MicroRNAs

MIR21 MIR29a MIR92a

−∆Ct value ‡ p-value −∆Ct value‡ p-value −∆Ct value ‡ p-value

Gender
Male 17 (38.6) 2.58 (1.51–5.91)

0.87
0.92 (−0.16–3.5)

0.25
1.04 (−0.56–2.07)

0.41Female 27 (61.4) 2.57 (1.55–4.86) 1.36 (−0.44–5.75) 1.01 (−0.82–3.87)

Age ≥75 14 (31.8) 2.30 (1.51–5.91)
0.66

1.42 (−0.44–5.75)
0.54

0.75 (−0.44–3.55)
0.82

<75 30 (68.2) 2.61 (1.55–4.86) 1.17 (−0.14–2.50) 1.04 (−0.82–3.87)

BMI
≥22 22 (50.0) 2.48 (1.55–3.87)

0.03* 0.4 (−0.17–2.50)
0.09†

0.75 (−0.82–2.41)
0.28

<22 22 (50.0) 2.96 (1.51–5.91) 1.62 (−0.44–5.75) 1.10 (−0.44–3.87)

Tumor location

Colon 27 (61.4) 2.67 (1.51–5.91)
0.70

1.14 (−0.44–3.5)
0.47

0.71 (−0.82–2.79)
0.25Rectum 17 (38.6) 2.53 (1.55–4.86) 1.32 (−0.16–5.75) 1.12 (−0.56–3.87)

Right side 17 (38.6) 2.52 (1.51–4.1)
0.16

0.84 (−0.44–2.19)
0.06†

0.68 (−0.82–2.41)
0.11Left side 27 (61.4) 2.65 (1.55–5.91) 1.36 (−0.16–5.75) 1.12 (−0.56–3.87)

Preoperative CEA Elevated 18 (40.1) 2.57 (1.55–5.91)
0.87

1.21 (−0.44–5.75)
0.64

1.04 (−0.82–3.55)
0.57Normal 26 (59.1) 2.61 (1.51–4.86) 1.27 (−0.17–2.5) 0.86 (−0.56–3.87)

Preoperative CA19-9 Elevated 12 (27.3) 2.54 (1.55–3.13)
0.14

1.01 (−0.16–2.05)
0.21

1.10 (−0.82–1.56)
0.07 †Normal 32 (72.7) 2.62 (1.51–5.91) 1.36 (−0.44–5.75) 1.08 (−0.56–3.78)

Maximum tumor diameter
≥45 22 (50.0) 2.57 (1.51–5.91)

0.95
1.34 (−0.17–3.5)

0.97
0.75 (−0.56–2.07)

0.16
<45 22 (50.0) 2.65 (1.84–4.86) 1.04 (−0.44–5.75) 1.07 (−0.82–3.87)

Pathological
T stage §

T3 + T4 33 (75.0) 2.67 (1.51–5.91)
0.77

1.14 (−0.44–5.75)
0.79

0.78 (−0.82–3.55)
0.51T1 + T2 11 (25.0) 2.57 (1.84–4.86) 1.28 (0.43–1.99) 1.07 (−0.56–3.87)

Pathological
N stage §

Present 20 (45.4) 2.53 (1.51–5.91)
0.35

1.23 (−0.16–3.5)
0.57

0.64 (−0.82–1.87)
0.01 *Absent 24 (54.5) 2.67 (1.84–4.86) 1.24 (−0.44–5.75) 1.06 (−0.44–3.87)

Pathological
Stage §

III + IV 22 (50.0) 2.53 (1.51- 5.91)
0.55

1.44 (−0.16–3.50)
0.85

0.86 (−0.82–1.92)
0.04 *I + II 22 (50.0) 2.665 (1.84–4.86) 1.12 (−0.44–5.75) 1.03 (−0.44–3.87)

Histological differentiation ¶ Poorly 6 (13.6) 2.23 (1.51–2.83)
0.03*

0.6 (−0.16–1.92)
0.16

0.13 (−0.56–1.38)
0.03 *Well and moderately 38 (86.4) 2.66 (1.84–5.91) 1.32 (−0.44–5.75) 1.06 (−0.82–3.87)

Lymphatic
invasion ¶

High 13 (29.5) 2.53 (1.51–3.24)
0.14

0.84 (−0.17–2.05)
0.13

0.6 (−0.82–1.46)
0.02 *Mild 31 (70.4) 2.65 (1.55–5.91) 1.35 (−0.44–5.75) 1.08 (−0.44–3.87)

Venous invasion ¶ High 15 (34.1) 2.83 (2.14–5.91)
0.29

1.55 (−0.17–3.5)
0.33

1.12 (−0.56–1.87)
0.97Mild 29(65.9) 2.52 (1.51–4.86) 1.04 (−0.44–5.75) 0.71 (−0.82–3.87)

Perineural invasion ¶ Positive 25 (56.8) 2.68 (1.51–5.91)
0.97

1.35 (−0.44–3.5)
0.97

1.04 (−0.44–2.41)
0.61Negative 19 (43.2) 2.58 (1.84–4.86) 1.01 (0.2–5.75) 0.71(−0.82–3.87)

CEA: Carcinoembryonic antigen level, normal upper limit at 5 ng/mL, CA19-9: Carbohydrate antigen 19-9 level, normal upper limit at 37 ng/mL, ‡: −∆Ct value = −(Ct value (target
MIR)–Ct value (internal control MIR16)), §: UICC TNM classification (the 8th edition), ¶: the Japanese Classification of Colorectal, Appendiceal, and Anal Carcinoma: the 3rd English
Edition (†: p < 0.1 *: p < 0.05).
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Figure 4. Correlation between the levels of MIRs21, 29a, and 92a in preoperative plasma and in tumor
tissue of 44 CRC patients. Pearson’s rank correlation coefficient (r) is shown.

3.6. Relationship between Levels of MiRNAs in Preoperative Plasma and Clinicopathological Characteristics

We next analyzed the relationship between levels of miRNAs in preoperative plasma and
clinicopathological characteristics of CRC patients, the same as we had done for tumor tissue (Table 4).
The level of preoperative plasma MIR21 was significantly increased in CRC patients with perineural
invasion (p = 0.01). On the other hand, the level of preoperative plasma MIR29a was significantly
increased in CRC patients with large tumor (≥45 mm) (p = 0.046), and a pathological Stage III +

IV (p = 0.02). Furthermore, the levels of both preoperative plasma MIRs21 and 29a showed a very
significant tendency in CRC patients with high lymphatic invasion (p = 0.05, both; Figure 5). Thus,
in contrast to the case of tumor tissue, these 2 miRNAs, excluding MIR92a, showed some significant
relationships between their levels in preoperative plasma and the clinicopathological characteristics.

Figure 5. Relationship between levels of MIRs21, 29a, and 92a in preoperative plasma and clinico
pathological characteristics of 44 CRC patients. Student’s t-test was performed. (†: p < 0.1 *: p < 0.05).
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Table 4. Relationship between the levels of microRNAs in preoperative plasma and clinicopathological characteristics.

Target MicroRNAs

MIR21 MIR29a MIR92a

−∆Ct value ‡ p-value −∆Ct value ‡ p-value −∆Ct value‡ p-value

Gender
Male 17 (38.6) −2.54 [−3.91–0.14)

0.63
−3.86 (−5.63–−1.3)

0.44
−1.79 (−2.95–−0.59)

0.98Female 27 (61.4) −2.61 (−4.31–0.07) −3.76 (−1.14–−6.33) −1.70 (−2.78–−0.95)

Age ≥75 14 (31.8) −2.74 (−3.91–0.07)
0.22

−3.58 (−5.42–−2.32)
0.74

−1.66 (−2.36–−0.92)
0.17

<75 30 (68.2) −2.86 (−4.31–0.14) −4.03 (−6.33–−1.14) −1.85 (−2.95–−0.59)

BMI
≥22 22 (50.0) −2.62 (−4.31–0.14)

0.92
−4.08 (−6.33–−1.35)

0.21
−1.80 (−2.95–−0.59)

0.34
<22 22 (40.0) −2.57 (−3.98–−0.93) −3.61 (−5.97–−1.14) −1.73 (−2.36–−0.90)

Tumor location

Colon 27 (61.4) −2.52 (−3.91–0.07)
0.71

−3.92 (−6.33–−1.14)
0.67

−1.81 (−2.95–−0.90)
0.70Rectum 17 (38.6) −2.61 (−4.31–0.14) −3.76 (−5.97–−1.35) −1.75 (−2.57–−0.59)

Right side 17 (38.6) −2.48 (−3.91–0.07)
0.17

−3.38 (−6.13–−1.14)
0.16

−1.66 (−2.36–−0.90)
0.23Left side 27 (61.4) −2.84 (−4.31–0.14) −4.01 (−6.33–−1.35) −1.83 (−2.95–−0.59)

Preoperative CEA Elevated 18 (40.1) −2.52 (−4.31–−0.93)
0.51

−3.66 (-6.13–−1.14)
0.51

−1.78 (−2.57–−0.59)
0.74Normal 26 (59.1) −2.86 (−3.98–0.14) −3.86 (−6.33–−1.35) −1.77 (−2.95–−0.99)

Preoperative CA19-9 Elevated 12 (27.3) −2.45 (−3.54–0.14)
0.07†

−3.66 (−4.76–−1.14)
0.10

−1.81 (−2.95–−0.99)
0.58Normal 32 (72.7) −2.77 (−4.31–0.07) −3.86 (−6.33–−1.35) −1.77 (−2.95–−0.95)

Maximum tumor diameter
≥45 22 (50.0) −2.50 (−3.61–0.14)

0.07†
−3.68 (−5.32–−1.30)

0.046*
−1.77 (−2.95–−0.59)

0.30
<45 22 (50.0) −2.99 (−4.31–0.07) −4.08 (−6.33–−1.35) −1.70 (−2.78–−1.38)

Pathological
T stage §

T3 + T4 33 (75.0) −2.52 (−4.31–0.14)
0.14

−3.70 (−6.13–−1.14)
0.19

−1.75 (−2.95–−0.59)
0.64T1 + T2 11 (25.0) −2.99 (−3.98–−1.46) −4.03 (−6.33–−2.32) −1.79 (−2.78–−1.39)

Pathological
N stage §

Present 20 (45.4) −2.53 (−3.97–0.14)
0.22

−3.70 (−5.56–−1.14)
0.09†

−1.77 (−2.33–−0.59)
0.39Absent 24 (54.5) −2.77 (−4.31–0.07) −4.03 (−6.33–−1.61) −1.76 (−2.95–−0.95)

Pathological
Stage §

III + IV 22 (50.0) −2.52 (−3.97–0.14)
0.21

−3.66 (−5.56–−1.14)
0.02*

−1.77 (−2.33–−0.59)
0.24I + II 22 (50.0) −2.90 (−4.31–0.07) −4.09 (−6.33–−2.32) −1.76 (−2.95–−1.07)

Histological differentiation ¶ Poorly 6 (13.6) −2.70 (−3.21–0.14)
0.24

−3.66 (−3.86–−1.30)
0.22

−1.98 (−2.33–−0.92)
0.56Well and

moderately 38 (86.4) −2.58 (−4.31–0.07) −4.03 (−6.33–−1.14) −1.73 (−2.95–−0.59)

Lymphatic
invasion ¶

High 13 (29.5) −1.92 (−3.98–0.14)
0.05†

−3.58 (−5.97–−1.14)
0.05†

−1.75 (−2.29–−0.9)
0.61Mild 31 (70.4) −2.69 (−4.31–0.07) −4.03 (−6.33–−1.61) −1.81 (−2.95–−0.59)

Venous invasion ¶ High 15 (34.1) −2.43 (−3.98–−1.20)
0.85

−4.14 (−5.97–−1.30)
0.43

−1.75 (−2.26–−0.59)
0.10Mild 29 (65.9) −2.84 (−4.31–0.14) −3.66 (−6.33–−1.14) −1.81 (−2.95–−0.92)

Perineural invasion ¶ Positive 25 (56.8) −2.48 (−3.61–0.14)
0.01*

−3.66 (−6.13–−1.14)
0.26

−1.81 (−2.95–−0.59)
0.58Negative 19 (43.2) −3.08 (−4.31–−1.49) −4.03 (−6.33–−1.35) −1.69 (−2.78–−1.39)

CEA: Carcinoembryonic antigen level, normal upper limit at 5 ng/mL, CA19-9: Carbohydrate antigen 19-9 level, normal upper limit at 37 ng/mL, ‡: −∆Ct value = −(Ct value (target
MIR)–Ct value (internal control MIR16)), §: UICC TNM classification (the 8th edition), ¶: the Japanese Classification of Colorectal, Appendiceal, and Anal Carcinoma: the 3rd English
Edition (†: p < 0.1 *: p < 0.05).
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3.7. Multivariate Analysis of MiRNAs and Pathological Characteristics in the CRC with High
Lymphatic Invasion

These results indicate that the levels of miRNAs may be associated with tumor characteristics,
especially as regards lymphatic invasion. A multivariate analysis of six factors (three pathological
factors: pathological T stage, venous invasion, perineural invasion, and three levels of miRNAs: tumor
tissue MIR92a, preoperative plasma MIRs21 and 29a) was then carried out to identify the independent
factors affecting lymphatic invasion. The levels of miRNAs were classified into high and low groups
based on the median. As a result, venous invasion (p < 0.0001, OR = 66.84, 95% CI = 5.10–2853.98),
the level of tumor tissue MIR92a (p = 0.01, OR = 0.08, 95%CI = 0.003–0.60), and the level of preoperative
plasma MIR29a (p = 0.009, OR = 30.72, 95%CI = 2.24–1038.11) were confirmed to be independent
factors of lymphatic invasion in CRC patients (Table 5).

Table 5. Multivariate analysis of microRNAs and pathological characteristics in CRC with the high
lymphatic invasion.

Prognostic factors p-Value Odds Ratio 95% Confidence Interval

Pathological T stage §

(T3+T4/T1+T2)
0.66 1.84 0.12–33.45

Venous invasion ¶

(high/mild)
<0.001 *** 66.84 5.10–2853.98

Perineural invasion ¶

(positive/negative)
0.53 0.46 0.03–5.70

Level of MIR92a in tumor tissue
(−∆Ct value‡) (high/low) 0.01 * 0.08 0.003–0.60

Level of MIR21 in preoperative plasma
(−∆Ct value ‡) (high/low) 0.19 0.20 0.008–2.16

Level of MIR29a in preoperative plasma
(−∆Ct value ‡) (high/low) 0.009 ** 30.72 2.24–1038.11

‡: −∆Ct value = −(Ct value (target MIR)–Ct value (internal control MIR16)), §: UICC TNM classification (the 8th
edition), ¶: the Japanese Classification of Colorectal, Appendiceal, and Anal Carcinoma: the 3rd English Edition
(*: p < 0.05 **: p < 0.01 ***: p < 0.001).

3.8. Changes in Level of Plasma MIR21, 29a, and 92a Between Pre- and Post-Surgical Resection

The levels of MIRs21, 29a, and 92a were analyzed in paired pre-and post-operative plasma samples.
The plasma levels of MIRs21, 29a, and 92a of all 36 patients (excluding eight non-curative resection
cases) did not show any significant difference between pre- and post-operative samples (MIR21: Pre
and POD7; p = 0.32, Pre and POM1; p = 0.83, MIR29a: Pre and POD7; p = 0.25, Pre and POM1; p = 0.62,
MIR92a: Pre and POD7; p = 0.42, Pre and POM1; p = 0.68 respectively; Figure 6a). There was, thus,
no clear correlation between surgical resection and changes in the levels of plasma miRNAs tested in
CRC patients who had undergone curative resection.

However, there was very close relationship between the level of plasma miRNA (classified into
high and low groups based on the median) and change in the level of plasma MIR21 and 29a before and
one month after surgery (p < 0.001, p = 0.002, respectively; Figure 6b). Then, limited to CRC patients
with high plasma miRNA level, the levels of both postoperative plasma MIRs21 and 29a showed a
significant decrease compared to the preoperative level (MIR21: Pre and POD7: p = 0.003, Pre and
POM1: p = 0.03, MIR29a: Pre and POD7; p = 0.002, Pre and POM1; p = 0.046; Figure 6c). On the other
hand, there was no significant difference in the CRC patients with low plasma miRNA level (MIR21:
Pre and POD7: p = 0.94, Pre and POM1: p = 0.83, MIR29a: Pre and POD7; p = 0.93, Pre and POM1;
p = 0.99; Figure 6d). A similar analysis was conducted for MIR92a, but significant difference was found
only one week after surgery, and not one month after surgery in the CRC patients with high plasma
miRNA level (Figure 6c,d).
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Figure 6. (a) Levels of MIRs21, 29a, and 92a preoperatively and at POD7 and POM1 of 36 CRC
patients who underwent curative resection. The paired t-test was performed for comparisons between
pre–and post-operative groups. (b) Relationship between the −∆∆CT levels (before operation and
one month after operation) of MIRs21, 29a, and 92a in plasma of 36 CRC patients and plasma MIR
level. Student’s t-test was performed for comparisons between groups. (c) Levels of MIRs21, 29a, and
92a preoperatively and at POD7 and POM1 of CRC patients with high plasma MIR level. The paired
t-test was performed for comparisons between pre- and post-operative groups. (d) Levels of MIRs21,
29a, and 92a preoperatively and at POD7 and POM1 of CRC patients with low plasma MIR level. The
paired t-test was performed for comparisons between pre- and post-operative groups (Pre: the day
before the operation, POD7: on postoperative day 7, POM1: on postoperative one month).

4. Discussion

In this study, we analyzed 44 tumor tissue and plasma paired samples from prospectively enrolled
CRC patients, and found significant differences between the levels of miRNAs, sample types, and
clinicopathological features. Especially, the levels of tumor tissue MIR92a and preoperative plasma
MIR29a could discriminate CRC with high lymphatic invasion. Lymphatic invasion is a traditional
factor used in estimating the aggressiveness of CRC [24–26]. Akagi et al. [27] revealed that lymphatic
invasion was significantly associated with not only lymph-node metastasis but also recurrence-free
survival and overall survival, based on their prospective study including 1,616 patients with a median
follow-up period of 100 months. Furthermore, in cases with high plasma MIR levels, the levels of
both plasma MIRs21 and 29a may rapidly reflect the residual amount of cancer cells in the body after
surgical resection. Thus, these miRNAs are likely to be noninvasive biomarkers reflecting cancer
progress, treatment efficacy, recurrence, and prognosis more than just a diagnosis of CRC. To our
knowledge, this is the first prospective study to collect five samples (tissue (tumor/normal mucosa)
and plasma (Pre/POD7/POM1)) from the same patient and to analyze relationship between the levels
of miRNAs and clinicopathological characteristics and surgical resection.

Firstly, previous reports demonstrated that the level of MIR92a is significantly up-regulated in
CRC and may present a novel screening biomarker for the early diagnosis of CRC [18,19]. Although the
target and precise role of MIR92a in the pathogenesis of CRC is still contentious, dysregulation of
MIR92a level has been detected in various cancers and is likely to be correlated with the biological
mechanism of tumor development [28–31]. MIR92a belongs to the MIR17-92 cluster and is located on
chromosome 13q13. MIR17-92 is known as one of the representative cancer-related miRNAs [32,33].
Tsuchida et al. [34] reported that MIR92a plays an oncogenic role in colon cancer as a key component of
the MIR17-92 cluster. They found that MIR92a induces apoptosis and directly targets the anti-apoptotic
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molecule BCL-2 interacting mediator of cell death (BIM) in CRC tissues. Huiqing et al. [35] reported
that MIR92a may promote the proliferation and migration of CRC cells through targeting Krüppel-like
factor 4 (KLF4) as well as downstream p21, identified as a negative regulator in cell-cycle progression.
In our previous study [36], we found that extracellular MIR92a packed within microvesicles secreted
by CRC cells is delivered into endothelial cells and contributes to the proliferation and motility of these
cells through down-regulation of Dikkopf-3 (Dkk-3), a presumed tumor suppressor gene. Furthermore,
we found the level of tumor tissue MIR92a is lower in the larger tumors (<40 mm vs. ≥40 mm;
p = 0.017). In this study, although up-regulation of MIR92a in the tumor compared with its level in the
normal mucosa was observed, the levels of tumor tissue MIR92a were also lower in the CRC with
lymph node metastasis and high lymphatic invasion. We also found that tumor tissue MIR92a may
not affect the level in the plasma. Thus, the level of MIR92a in tumor tissue but not in plasma may be
suitable for use as a prognostic biomarker.

Secondly, MIR21 is located at the 10th intron of the coding region for transmembrane protein
49 (TMEM49) at chromosome 17q23; and it is one of the most prominent miRNAs implicated in
the carcinogenesis and progression of human malignancy [37]. Its level is notably up-regulated
in many cancers, including CRC, lung cancer, glioblastoma, hepatocellular carcinoma, and gastric
cancer. In addition, its elevated level has been causally associated with tumor aggressiveness and poor
prognosis [13–15,38–43].

MIR21′s targets include phosphatase and tensin homolog (PTEN), programmed cell death 4
(PDCD4), methylthioadenosine phosphorylase (MTAP), and Transforming Growth Factor-β (TGF-β),
all of which regulate the cell cycle. Numerous reports have demonstrated that MIR21 acts as a
potential oncogene in CRC by promoting tumorigenesis, invasion, and metastasis through regulation
of these genes.

Wu et al. [44] reported that the level of PTEN protein in CRC tissues and cells is inversely correlated
with MIR21 expression. The PTEN protein was reported to be a tumor suppressor gene acting by
inhibiting the phosphoinositide-3 kinase (PI3K)/protein kinase B (Akt) pathway. They suggested that
MIR21 modulates malignant phenotypes such as proliferation, anti-apoptosis, cell-cycle progression,
and invasion in CRC cells by down-regulating PTEN protein expression. In our study, the level of
preoperative plasma MIR21 was significantly increased in CRC patients with lymphatic and perineural
invasion. This result is consistent with the function of MIR21 as a cancer-related miRNA, and the
level of preoperative plasma MIR21 may serve as a potential prognostic biomarker reflecting cancer
micro invasion.

We also analyzed the relationship between the levels of miRNAs and surgical resection. In our
previous study on canine hemangiosarcoma [20], we showed that tumor-related circulating miRNAs
are significantly elevated in plasma and decrease after surgical resection. From this result, we proposed
that the level of tumor-related circulating miRNAs has the potential to be used as a biomarker reflecting
the amount of tumor in the body, that is, as a prediction biomarker of treatment efficacy and recurrence.
Juan et al. [45] also analyzed how cancer treatments affect the level of plasma MIR21 in non-small
cell lung cancer. They showed that the level of MIR21 significantly decreases after chemotherapy,
being more significantly reduced in the effectively treated group than in the non-effectively treated
one. In contrast, after surgical resection, the level of plasma MIR21 remains high. They suggested
that surgery can decrease the plasma MIR21 level, but not bring it back to normal. Similar results
were obtained in our study, but a significant decrease in the plasma level of MIR21 was observed in
CRC patients with high plasma MIR21 level. From this result and past reports we speculate as one
hypothesis that it is possible to accurately detect a change in the miRNA level due to surgery if the
target miRNA is sufficiently expressed in the preoperative plasma. In conclusion, MIR21 could be a
sensitive biomarker reflecting tumor status.

Finally, MIR29a is processed from an intron of a long non-coding transcript from chromosome 7.
Like the other two miRNAs, previous reports also suggested that MIR29a is frequently up-regulated in
CRC tissues, implying that MIR29a is a potential cancer-promoting miRNA in CRC [46]; and the level
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of MIR29a has been proposed as a novel biomarker for early and noninvasive diagnosis of CRC [16,17].
In this study, we found that plasma MIR29a had significant relationships with both clinicopathological
characteristics (especially lymphatic invasion) of CRC and surgical resection. Tang et al. [47] reported
that an increased level of MIR29a promotes CRC metastasis by regulating matrix metalloproteinase
2 (MMP2)/E-cadherin through direct targeting of KLF4. Yuan et al. [48] showed that a decrease in
the level of MIR29a can elevate PTEN expression, suppress CRC cell proliferation, and facilitate cell
apoptosis. As mentioned above, PTEN and KLF4 are also reported to be target genes of MIRs21 and
92a [31,35,40,44]. Thus, the levels of different miRNAs may be correlated with each other and have
common characteristics.

Interestingly, sample type (tissue or plasma), changes in levels of miRNAs (increase or decrease),
and changes after surgical resection (present or absent) differ depending on the kind of miRNAs.
We would like to propose that it is necessary to identify the appropriate sample type, appropriate target
patients, and appropriate purpose of the biomarker (early detection, treatment efficacy, recurrence,
or prognosis) according to each miRNA for practical clinical use.

Some limitations of this study need to be addressed. First, as the sample size was small, requiring
further validation of these markers by using larger samples. Second, because the interval between pre-
and post-operation was as short as only a month, the correlation between (i) the changes in levels of
miRNAs and treatment effect and recurrence, and (ii) the preoperative levels of miRNA and prognosis
is still unclear. Therefore, we are planning to increase the number of enrolled patients in this study and
to continue to measure the levels of miRNAs in plasma samples and to investigate prognosis in our
on-going studies. In the future, by conducting large-scale prospective research in multi institutions,
it will be necessary to build a biomarker system that enables more accurate understanding of the tumor
status in CRC patients.

5. Conclusions

Our results indicate that the levels of MIRs21, 29a, and 92a showed the significant differences in
sample types, clinicopathological characters of CRC, and surgical resection. In particular, the levels
of tumor tissue MIR92a and preoperative plasma MIR29a showed a significant correlation with high
lymphatic invasion. Thus, they have the potential as a biomarker for prognosis. The levels of plasma
MIRs21 and 29a significantly decreased after surgical resection, limited to CRC patients with high
plasma miRNA level. In addition, the level of plasma MIRs21 and 29a may be biomarker used for
treatment efficacy.
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comparisons between groups of MIRs tested, Table S1. Levels of MIRs16, 186, and 361 in colorectal tumor and
normal mucosa tissues, Table S2. Levels of MIRs21, 29a, and 92a in colorectal tumor and normal mucosa tissues.
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