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Abstract: High levels of hyaluronic acid (HA) in tumors correlate with poor outcomes with several
types of cancers due to HA-driven support of adhesion, migration and proliferation of cells. In this
study we explored how to enhance the degradation of HA into low-molecular fragments, which
cannot prevent the immune system to fight tumor proliferation and metastases. The physiological
solution of HA was exposed to oxidative degradation by ascorbate and cupric ions in the presence of
either one of three ortho isomeric Mn(III) substituted N-alkyl- and alkoxyalkylpyridylporphyrins or
para isomeric Mn(III) N-methylpyridyl analog, commonly known as mimics of superoxide dismutase.
The changes in hyaluronan degradation kinetics by four Mn(III) porphyrins were monitored by
measuring the alteration in the dynamic viscosity of the HA solution. The ortho compounds MnTE-2-
PyP5+ (BMX-010, AEOL10113), MnTnBuOE-2-PyP5+ (BMX-001) and MnTnHex-2-PyP5+ are able to
redox cycle with ascorbate whereby producing H2O2 which is subsequently coupled with Cu(I) to
produce the •OH radical essential for HA degradation. Conversely, with the para analog, MnTM-4-
PyP5+, no catalysis of HA degradation was demonstrated, due to its inertness towards redox cycling
with ascorbate. The impact of different Mn(III)-porphyrins on the HA decay was further clarified by
electron paramagnetic resonance spectrometry. The ability to catalyze the degradation of HA in a
biological milieu, in the presence of cupric ions and ascorbate under the conditions of high tumor
oxidative stress provides further insight into the anticancer potential of redox-active ortho isomeric
Mn(III) porphyrins.

Keywords: SOD mimics; Mn porphyrins; hyaluronic acid degradation; ascorbate/copper; relevance
to cancer; ROS production

1. Introduction

Mn(III) cationic ortho substituted N-alkyl- and alkoxyalkylpyridylporphyrins (MnPs)
were initially designed as superoxide dismutase mimics, i.e., the catalysts of O2

•− dismuta-
tion. As the knowledge of their chemistry increased along with the rising knowledge of
redox biology of a cell, it became obvious that such compounds undergo diverse reactions
in biological systems and carry large therapeutic potential [1,2]. Two compounds, Mn(III)
meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP5+ (AEOL10113, BMX-010)
and Mn(III) meso-tetrakis(N-butoxyethylpyridinium-2-yl) porphyrin, MnTnBuOE-2-PyP5+

(BMX-001, Figure 1) are now in five phase two clinical trials [1,3]. Most of the potent
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superoxide dismutase (SOD) mimics have Mn in a +3 oxidation state. Such a state is stabi-
lized by the porphyrin macrocyclic ring, which also assures the integrity of the Mn center,
preventing its loss from the porphyrin ligand [1]. Based on the favorable redox properties,
we aim here to see if MnTE-2-PyP5+ and MnTnBuOE-2-PyP5+, as well as Mn(III) meso-
tetrakis(N-n-hexylpyridinium-2-yl)porphyrin, MnTnHex-2-PyP5+, can assist Cu/ascorbate
system in degrading high-molar-mass hyaluronic acid (HA). We compared these ortho (2)
isomers to a para (4) isomer, Mn(III) meso-tetrakis(N-methylpyridinium-4-yl)porphyrin,
MnTM-4-PyP5+ (Figure 1). Relative to ortho isomers, MnTM-4-PyP5+ compound is stabi-
lized in a +3 oxidation state, and cannot be easily reduced with cellular reductants due
to its more than 160 mV negative metal-centered reduction potential for Mn(III)/Mn(II)
redox couple, E1/2 = +60 mV vs. NHE when compared to ortho analogs [3,4]. Namely, the
MnTE-2-PyP5+ and MnTnBuOE-2-PyP5+ have E1/2 of +228 mV vs. NHE and +277 mV vs.
NHE for Mn(III)/Mn(II) redox couples, respectively, [1]. Due to inferior redox properties,
MnTM-4-PyP5+ cannot be readily reduced with ascorbate in order to become oxidized
with oxygen in the second step to produce O2

•− and, subsequently, (enzymatically or via
self-dismutation) H2O2. While the mechanism of the catalysis of O2

•− dismutation by ortho
isomers and para MnTM-4-PyP5+ is identical, the thermodynamic yields controlled by their
reduction potentials are different. Importantly, ortho compounds are bulky and more so
those with long hexyl and butoxyethyl lipophilic chains. Para isomer with short methyl
chains, MnTM-4-PyP5+, is planar and that facilitates its interactions with biomolecules
such as intercalation into nucleic acids, which results in the loss of its SOD-like activity [5].

Figure 1. Chemical structures of redox-active cationic Mn(III) porphyrins and the reduction po-
tentials, E1/2 vs. NHE for MnIII/MnII (in red) and O = MnIV/MnIII (in green, measured at pH 11)
redox couples [6,7]. The values shown for the kred and E1/2 [(O = Mn(IV)/Mn(III)] for the ortho analog,
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MnTE-2-PyP5+, are based on the reported values [6] for the methyl analog, MnTM-2-PyP5+. We
may safely assume that those values for methyl and ethyl analogs are similar based on the fact that
kinetic and thermodynamic values reported thus far for the methyl and ethyl analogs are similar,
if not identical [7]. Values for pH 11 are shown to indicate that E1/2 values are identical for all
isomers. The values for O = Mn(IV)/Mn(III) couple were obtained in the whole range of pH only
for MnTE-2-PyP [8] and at pH = 7 it is +517 mV vs. NHE [2]. Additionally, the initial ascorbate
oxidation rates, v0(Asc), which relate to the ability of Mn porphyrins to oxidize ascorbate to ascorbyl
radical employing MnIII/MnII redox couple were reported in [1], and the second order rate constants
kred[O = Mn(IV)P] at 37 ◦C for the reduction of the high valent oxo Mn(IV) state by ascorbate were
reported in [6].

Ascorbic acid (AscH2)—vitamin C—is an essential nutritional component for hu-
mans [9]. At physiological pH, ascorbic acid is in monodeprotonated form, AscH−. In vivo,
besides other physiological functions, ascorbate acts as an antioxidant; one of its major roles,
in concert with tocopherol, is the protection of the lipid membranes against peroxidation.
Yet, in the presence of transition metals such as Cu and Fe, ascorbate becomes involved in
oxidative processes. Under aerobic physiological conditions, ascorbate can reduce Cu(II)
to Cu(I) while being oxidized to ascorbyl radical, HAsc• [10]. Cu(I) subsequently reacts
with H2O2, producing hydroxyl radicals while it becomes reoxidized/regenerated into
Cu(II), closing a catalytic cycle; the catalysis continues as long as ascorbate and oxygen are
available.

The system is known as Weissberger’s biogenic oxidative system (WBOS) [11] and is
reportedly one of the most effective generators of •OH radicals, which are responsible for
the destruction of DNA, RNA, proteins, lipids, and polysaccharides in living organisms [12].
Such an •OH-generating system may be employed in exploring the antioxidative efficacy
of natural or synthetic compounds for therapeutic and industrial purposes [11,13].

On the outer surface of the cell, mammalian cells have a highly specific glycocalyx,
which is non-immunogenic for components of the immune system. We can assume that
glycocalyx of the cancer cells, including the metastatic ones, is somewhat different from
that of normal cells [14,15]. Consequently, a different glycocalyx in metastatic and cancer
cells could become immunogenic [16]. However, the reported data show that the surface
of the cancer cells is populated with CD44 receptors, which tightly bind high-molar-mass
hyaluronic acid extruding from cells [17]. Consequently, the cancer cell, enveloped with
non-immunogenic high-molar-mass HA, cannot be recognized by the immune system.

Therefore, our attention has been focused on developing strategies to destruct the
“invisibile” coat of the cancer cells by radical-based HA degradation, using WBOS further
enforced by MnPs. This should lead to the effective shortening of the long chains of HA
macromolecule towards the formation of the fragments of low-molecular HA mass. Such
fragments would become immunogenic, attracting components of the immune system to
reach the surface of the cancer cell, recognize a foreign glycocalyx and in turn, destruct
both cancer and metastatic cells.

In this manuscript we investigate the oxidative degradation of HA catalyzed by Mn
porphyrins in the presence of Cu(II) and ascorbate, using three ortho isomeric cationic Mn
porphyrins (MnTE-2-PyP5+, MnTnHex-2-PyP5+, and MnTnBuOE-2-PyP5+) and compare
them to the efficacy of the less redox active para isomer, MnTM-4-PyP5+. A general scheme
of their action in the presence of WBOS is proposed. Different behavior of investigated Mn
complexes—which can act as catalysts of HA oxidative degradation as well as scavengers
of alkoxy-/peroxy type HA macroradicals—is discussed.

2. Results and Discussion

When the HA was subjected to oxidative degradation by 1 µM Cu(II) and 100 µM
ascorbate, significant degradation of HA macromolecules by •OH radicals was observed
(Figure 2A, black curve, the reference). The addition of MnTE-2-PyP5+ at concentrations
of 0, 5, 20 and 100 µM resulted in dose-dependent enhancement of HA degradation. The
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highest rate of HA degradation occurred within 30 min and at 100 µM MnP and was
subsequently slowed down due to the consumption of oxygen and ascorbate (Figure 2A,
cyan curve).

Figure 2. Time-dependent changes in dynamic viscosity of the HA solution subjected to 1 µM Cu(II) and 100 µM ascorbate
in the presence of (A) MnTE-2-PyP5+ or (B) MnTM-4-PyP5+ at different concentrations: 0 (black curve), 5 (green curve), 20
(blue curve), and 100 µM (cyan curve). The concentration of HA was 1.75 mg/mL. Panel (C)—MnTE-2-PyP5+ was added at
1 h after HA degradation began. Panel (D)—MnTM-4-PyP5+ was added at 1 h after HA degradation began.

When MnTE-2-PyP5+ was added to the HA reaction mixture at 20 and 100 µM (but not
at low 5 µM concentration) at 1 h after the production of alkoxy-/peroxy-type radicals was
already established [18], again a large rate of HA degradation was initially observed and
was subsequently reduced due to the consumption of oxygen and ascorbate (see Figure 2C,
blue and cyan curve, respectively). The increased degradation of HA may be due to the
reduction of MnP with ascorbate, but also to the reaction of Mn porphyrins with peroxy-
and alkoxy-type radicals, producing high-valent and highly oxidizing Mn(IV) and Mn(V)
oxo species. These high-valent oxo species may undergo reduction with ascorbate and
could enhance the HA degradation.

However, with the para isomer, MnTM-4-PyP5+, we observed a different behavior
(Figure 2B). When used at 100 µM (where MnTE-2-PyP5+ is the most potent enhancer of
HA degradation), no HA degradation was demonstrated (see Figure 2B, cyan curve). HA
degradation was inhibited to a lower degree in the presence of 20 µM MnTM-4-PyP5+ (blue
curve), and more so in 5 µM MnTM-4-PyP5+ (green curve). We explain such data with the
differences in the MnP/ascorbate ratio. When the ratio was 1, no reduction of MnIIIP5+

with ascorbate happened; in turn, no reoxidation of MnIIP4+ occurred that would have
given rise to O2

•− and subsequently H2O2. However, when ascorbate is in 5 or 20-fold
excess over MnP, the reduction of MnTM-4-PyP5+ with ascorbate becomes thermodynam-
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ically permissible, apparently giving rise to lower inhibition of HA degradation. The
corresponding initial rates, −(dη/dt)t=0, are listed in Table 1.

Table 1. The values of initial rates of HA degradation, derived from the time-dependent changes in
dynamic viscosity (η) of the HA solution subjected to MnTE-2-PyP5+ or MnTM-4-PyP5+ at different
concentrations and 100 µM ascorbate in the in the presence of 1 µM Cu(II). Initial rates −(dη/dt)t=0:
were listed where Mn porphyrins were added at the start of HA degradation; rates −(dη/dt)t=60:
Mn porphyrins were added after 60 min of HA degradation.

Mn Complex 0 µM 5 µM 20 µM 100 µM

Initial rates −(dη/dt)t=0/mPa·s·min−1

MnTE-2-PyP5+ 0.0209 0.0244 0.0434 0.0954
MnTM-4-PyP5+ 0.0311 0.0163 0.0085 0.0074

Rates at t = 60 min, −(dη/dt)t=60/mPa·s·min−1

MnTE-2-PyP5+ 0.0354 0.0354 0.0597 0.1282
MnTM-4-PyP5+ 0.0597 0.0401 0.0190 0.0190

In conclusion, due to the lack of Mn(III)/Mn(II) redox cycling with ascorbate and
thus to the lack of H2O2 production essential for HA degradation, the para MnTM-4-PyP5+

is an inefficient catalyst. Regardless of the time when MnP was added into the reaction
mixture, the data point to the critical role the reduction of MnIIIP5+ with ascorbate plays, as
its subsequent reoxidation is accompanied with the production of H2O2.

Additionally, we compared activity of four investigated Mn porphyrins at two time
points in Figure 3: 60 min (left panel) and 120 min (right panel). The dose-dependent
HA degradation at 60 min was seen with MnTE-2-PyP5+ (triangle) and MnTnHex-2-PyP5+

(star), but not with MnTnBuOE-2-PyP5+ (circle). The fastest degradation of HA occurred
at the concentration of 5 µM, where the large excess of ascorbate over MnP favored the
reduction of MnP. The three ortho isomeric Mn(III)Ps are easily reducible with ascorbate.
When cycling back to Mn(III)P with oxygen, these MnPs would give rise to H2O2 which
in turn would react with Cu(I) to make the hydroxyl radical. MnTM-4-PyP5+ (diamond),
however, cannot be easily reduced with ascorbate (E1/2(Asc•−, H+/AscH−) = +282 mV vs.
NHE) unless ascorbate is in excess. Thus MnTM-4-PyP5+ and ascorbate cannot contribute
to the hydroxyl radical production via reoxidation with oxygen to the same extent as
ortho analogs do. MnTE-2-PyP5+ (triangle) is the most potent promoter of alkoxy-/peroxy-
type-induced HA degradation at 120 min (Figure 3, right panel). Under these conditions,
dose-dependence was seen also with both MnTnBuOE-2-PyP5+ (circle) and MnTnHex-2-
PyP5+ (star). In the presence of MnTnHex-2-PyP5+ (star), the rate of HA degradation was
lower than the rate obtained in the presence of the two other complexes.

The long alkyl chains impose steric hindrance towards the reaction with ascorbate.
While MnTnBuOE-2-PyP5+ has equally long pyridyl substituents as MnTnHex-2-PyP5+,
the oxygen atoms facilitate the approach of ascorbate to the Mn center, presumably via hy-
drogen bonding between the oxygen atoms of butoxyethyl groups and the hydrogen atoms
of ascorbate. In turn, it is a better catalyst of ascorbate oxidation. The ascorbate oxidation
rate, v0 = 103 nM s−1, is the lowest for MnTnHex-2-PyP5+, followed by v0 = 160 nM s−1 for
MnTnBuOE-2-PyP5+ and v0 = 286 nM s−1 for MnTE-2-PyP5+ [1,19].
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Figure 3. Concentration-dependent changes in dynamic viscosity of HA solutions exposed to oxidative degradation by Cu(II)
(1 µM) and ascorbic acid (100 µM) in the presence of MnTnBuOE-2-PyP5+ (circles, dotted lines), MnTE-2-PyP5+ (triangles,
solid lines), MnTnHex-2-PyP5+ (stars, dash-dotted lines) or MnTM-4-PyP5+ (diamond, dashed lines) at concentrations of
5, 20 and 100 µM. The concentration of HA was 1.75 mg/mL. Left panel—MnPs were added to the HA mixture before
initiating HA degradation. The 60 min data are shown. Right panel—MnPs were added to the HA mixture 1 h later. The
120 min data are shown.

EPR spectroscopy using a spin trapping technique was applied to prove the proposed
reaction mechanism, as shown in Figures 4 and 5. For the reaction system (in the absence of
HA) containing MnTE-2-PyP5+ and ascorbate, a low level of reactive radicals was detected
in aqueous solutions in the presence of 5,5-dimethyl-1-pyrroline N-oxide (DMPO, black
lines in Figures 4 and 5A). When using CuCl2 instead of MnTE-2-PyP5+, at first a strong
increase in ascorbyl radical was observed, which was followed by a continuous slight
increase in •DMPO-OH adducts (red lines in Figures 4 and 5B).

Figure 4. EPR spectra monitored after (A) 14 min and (B) 35 min of reaction in the aqueous solutions saturated with
oxygen at room temperature for the following systems: System 1 (black traces): 7.5 µM MnTE-2-PyP5+ + 0.75 mM AscH− +
0.053 M DMPO; System 2 (red traces): 7.5 µM CuCl2 + 0.75 mM AscH− + 0.053 M DMPO; System 3 (green traces): 7.5 µM
MnTE-2-PyP5+ + 7.5 µM CuCl2 + 0.75 mM AscH− + 0.053 M DMPO); (*—ascorbyl radical, #—•DMPO-OH adduct).
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Figure 5. EPR spectra (20 spectra were measured, each consists of 3 scans) measured for (A) System 1, (B) System 2 and
(C) System 3 as described in Figure 5. (*—ascorbyl radical, #—•DMPO-OH adduct).

This unambiguously confirms the enhancement in the production of reactive oxygen
species (ROS) in the reaction system containing MnTE-2-PyP5+, ascorbate and Cu(II).
Thus, Figure 6A demonstrates that a MnP/Asc system catalyzes HA degradation. The
catalysis is further enhanced in the presence of Cu(II) within 10 to 30 min of the main
degradation phase (Figure 6B). The initial rates at 20 min of reaction were calculated from
the first derivation of the time-dependent changes in dynamic viscosity (η) of the HA
solution. The solution comprised MnTE-2-PyP5+, and 100 µM ascorbate in the absence
(see Figure 6C) and presence of 1 µM Cu(II) (see Figure 6D). The corresponding rates at
t = 20 min, (defined as –(dη/dt)t=20), are listed in Table 2. The enhanced production of ROS
was further demonstrated by the EPR spin trapping technique for system MnTE-2-PyP5+ +
AscH− + Cu(II) at much lower concentrations of reagents in the presence of HA [20].
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Figure 6. Time-dependent changes in dynamic viscosity (η) of the HA solution subjected to MnTE-2-PyP5+ at concentrations
0 (black curve), 5 (green curve), 20 (blue curve), and 100 µM (cyan curve) and 100 µM ascorbate in the absence of Cu(II)
(A) and in the presence of 1 µM Cu(II) (B), as well as the corresponding first derivative curves in time (dη/dt = f(t)) in the
absence of Cu(II) (C) and in the presence of 1 µM Cu(II) (D). The HA concentration was 1.75 mg/mL.

Table 2. The values of the rates at 20 min of the process of HA degradation, −(dη/dt)t=20 are listed
and are derived from the time-dependent changes in dynamic viscosity (η) of the HA solution
subjected to MnTE-2-PyP5+ at different concentrations and 100 µM ascorbate in the presence or in
the absence of 1 µM Cu(II). Initial rates, −(dη/dt)t=0: the rate at t~0 min.

Rates at t = 20 min −(dη/dt)t=20/mPa·s·min−1

MnTE-2-PyP5+ 0 µM 5 µM 20 µM 100 µM
0 µM Cu(II) 0 0.006 0.017 0.115
1 µM Cu(II) 0.020 0.045 0.075 0.215

Initial rates at t ~ 0 –(dη/dt)t=0/mPa·s·min−1

MnTE-2-PyP5+ 0 µM 5 µM 20 µM 100 µM
0 µM Cu(II) 0 0.006 0.0331 0.0779

The following mechanism, depicted in Scheme 1, for the catalysis of HA degradation
was proposed. The redox cycling with ascorbate and oxygen allows ortho isomers to
produce O2

•− in the reoxidation step, which would dismutate (through self-dismutation
or enzymatically) to H2O2. The subsequent reaction of H2O2 with ascorbate-reduced Cu(I)
would give rise to a •OH radical and would cause oxidative degradation of HA (Scheme 1).
In such a scenario, ortho Mn porphyrins, by producing the additional amount of H2O2 and



Int. J. Mol. Sci. 2021, 22, 8608 9 of 14

in turn •OH radicals, act as catalysts of HA oxidative degradation. HA is present at high
levels in tumors and is reported to promote carcinogenesis and metastases [17,21]. Our
studies taught us that ortho Mn porphyrins are able to promote the HA degradation in the
presence of Cu(II) [or Fe(III)] and ascorbate. Such knowledge increases our insight into
their anticancer therapeutic potential [22–25].

Scheme 1. Proposed mechanism of hyaluronic acid degradation in the presence of ortho isomeric
Mn(III)-porphyrins, Cu(II) and ascorbate giving rise to enhanced production of •OH radicals and
HA oxidation (note that the formation of hydroperoxyl radical HO2

• is valid for acidic environment
while at physiological pH 7.8 the superoxide anion dominates. During inflammation, which accom-
panies cancer, the tissues are in a slightly acidic environment [26]. The bottom part of Scheme 1
represents WBOS.

The participation of transition metals Cu(II) [or Fe(III)] in free radical generation in
the presence of ascorbate under aerobic conditions is shown by the Haber-Weiss reaction
(Equation (1)). In that reaction O2

•− and H2O2 interact in the presence of transition metal
catalysts via the reaction:

O2
•− + H2O2 → •OH + OH− + O2 (transition metal, Cu or Fe catalyzed) (1)

The HA degradation by •OH radicals, produced in a reaction mixture containing
Cu(II), ascorbate and Mn porphyrins results in polymer fragments of lower molecular
weight [11,13,20] as illustrated in Scheme 2. This is a consequence of a reaction of hydroxyl
radicals with HA forming carbon centered radicals that react with molecular oxygen,
resulting in the generation of peroxyl radicals serving as a source of •OOA peroxyl radicals
and consequently a source of •DMPO-OA adducts in spin trapping studies [20,27].

While the same mechanism as shown in Scheme 1 with regards to ascorbate would
operate with both ortho and para isomers, the reduction of para MnTM-4-PyP5+ into MnTM-
2-PyP4+,with ascorbate is not thermodynamically favored due to its more negative E1/2
for the Mn(III)/Mn(II) redox couple (more than 160 mV) than that of an ortho analog. It
cannot be easily reduced in order to get reoxidized unless ascorbate is in excess (Figure 1).
Moreover, the reduced and planar MnTM-4-PyP4+ would intercalate into HA which would
prevent its reoxidation with oxygen and production of superoxide/H2O2 and eventually
•OH radical. Thus, MnTM-4-PyP5+ would have not given rise to a significant amount of
H2O2 to allow for Cu(I)/H2O2-driven production of •OH radical. Indeed, neither enhance-
ment of HA degradation nor generation of •OH radical was demonstrated (Figure 7B).
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Scheme 2. HA degradation by •OH radicals, produced in a reaction mixture containing Cu(II),
ascorbate and Mn porphyrins, leading to the polymer fragments of lower molecular weight as e.g.,
an alkoxy-type macroradical and a HA-like macromolecule bearing a terminal C=O group.

Figure 7. Time evolution of EPR spectra of DMPO spin adducts and of ortho Mn(II)TE-2-PyP4+ (A) and para Mn(II)TM-
4-PyP4+ (B) state in the aqueous solutions saturated with air at room temperature for the system: 250 µL water solution
containing 1 µM Cu(II), 100 µM Mn(III)P, 1.75 mg/mL HA and 100 µM AscH− + 50 µL DMPO (25 µL DMPO/1 mL H2O) for
MnTE-2-PyP5+ (A) and for MnTM-4-PyP5+ (B) (*—ascorbyl radical; #—•DMPO-OH adduct; χ—signal from Mn(II) state).

With MnTE-2-PyP5+, a clear production of ROS was observed in the presence of
HA within the first 40 min (EPR spectra of •DMPO-OH adducts are marked by circles,
Figure 7A). Due to its rapid reoxidation, a significant EPR signal of reduced Mn(II) was not
seen (Mn(II) line in Figure 7A). With MnTM-4-PyP5+, no ROS formation was observed as a
negligible amount of DMPO spin adducts was detected (Figure 7B). Data are in agreement
with the differences in kinetics and thermodynamics of the reaction of ortho and para
Mn porphyrins with ascorbate and oxygen [4,19,28]. MnTE-2-PyP5+ gets readily reduced
with ascorbate (see Figure 1) and the reduced Mn(II) cycles back to Mn(III) state (with
kox(MnP) ~8 × 104 M−1s−1 [28]), while reducing oxygen to the superoxide anion radical
(see Scheme 1).
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Moreover, MnTM-4-PyP5+ inhibited HA degradation regardless of the time point at
which it was added into the Cu(II)/ascorbate/HA reaction mixture (see Figure 2B). A small
enhancement in HA degradation was seen only when the ascorbate (100 µM) was present
at a huge excess over MnP (5 µM). Such scenario allowed only for a low extent of MnP
reduction and consequently for a very low yield of reoxidation reaction (with kox(MnP)
~1.1 × 106 M−1 s−1).

The behavior of MnTM-4-PyP5+ may be explained as follows: as compared to ortho
isomer, para MnTM-4-PyP5+ is a planar molecule. It was reported that, when reduced to
MnTM-4-PyP4+, it loses axially bound molecules and becomes even more planar and thus
intercalates readily into nucleic acids (RNA and DNA) [5]. Axially bound water molecules
would have otherwise imposed steric hindrance to intercalation. Such interactions resulted
in a loss of its SOD-like activity [5]. Once nucleic acids were removed, the SOD-like
activity was restored [5]. It may be thus safely assumed that the planar reduced MnTM-
4-PyP4+ would intercalate into the HA and stabilize the polymer. Being trapped within
the HA polymer, the reduced MnTM-4-PyP4+ would not be able to cycle back to Mn(III)P
with oxygen in order to give rise to reactive species and degrade HA, despite its faster
reoxidation rate with oxygen [kox(MnP)] than that of MnTE-2PyP4+. It is well known that
charge/charge interactions, hydrogen bonding and intercalations have a dramatic impact
on the in vivo actions of molecules [5,29,30].

3. Materials and Methods
3.1. Chemicals

Hyaluronan (Mw = 1.69 MDa, Mw/Mn = 1.64) was obtained from Lifecore Biomedical
Inc., Chaska, MN, USA (content of transition metals: copper <1 ppm, iron 6 ppm). NaCl
p.a. and CuCl2·2H2O p.a. were purchased from Slavus Ltd., Bratislava, Slovakia. Ascorbic
acid used was obtained from Merck KGaA, Darmstadt, Germany. Aqueous solutions of
MnTE-2-PyP5+, 19.6 mM, MnTnHex-2-PyP5+, 7.23 mM, and MnTnBuOE-2-PyP5+, 5.69 mM
were obtained from Batinic-Haberle’s lab, Duke University School of Medicine, North
Carolina, USA. MnTM-4-PyP5+ was obtained from the University of Aveiro, Aveiro, Por-
tugal and was prepared via alkylation of metal-free ligand followed by its metalation.
5,5-Dimethyl-1-pyrroline N-oxide (DMPO, ≥97%) was purchased from Sigma-Aldrich
Chemie GmbH, Steinheim, Germany. Deionised high-purity grade water, with conduc-
tivity of ≤0.055 µS/cm, was made by using the TKA water purification system (Water
Purification Systems GmbH, Niederelbert, Germany).

3.2. Preparation of Stock and Working Solutions

The HA samples (16 mg) were dissolved in 0.15 M aqueous NaCl solution for 24 h in
the dark in two steps: first, 4.0 mL of 0.15 M NaCl was added to HA swelling and after 6 h,
0.15 M NaCl in the volumes 3.90, 3.85, 3.79 or 3.76 mL was added. Ascorbic acid (16 mM)
and cupric chloride solutions (160 µM) were prepared in 0.15 M aqueous NaCl. Solutions of
MnTM-4-PyP5+ and MnTE-2-PyP5+ (16 mM) were made and diluted to concentrations 3.2
and 0.8 mM in deionized water. Solutions of MnTnBuOE-2-PyP5+ and MnTnHex-2-PyP5+

at concentrations 3.2 and 0.8 mM were made in deionized water. The DMPO solution was
prepared by dissolving 25 µL of DMPO (distilled prior to the application and stored at
−18 ◦C) in 1 mL of deionized water.

3.3. Studies of Inhibition of Hyaluronan Degradation

The assays used to explore the effect of the MnPs on oxidatively degraded hyaluronan
were as follows:

i. A volume of 50 µL of CuCl2 solution was added to the HA solution (7.90, 7.85, 7.79 or
7.76 mL), and the mixture, after a stirring of 30 s, was left to stand for 7.5 min at room
temperature. Then, the MnP solution (0, 50, 110 or 140 µL) was added to the reaction
mixture, followed by stirring again for 30 s. Finally, 50 µL of ascorbic acid solution
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was added to the solution, and the mixture was stirred for another 30 s. The solution
was then immediately transferred into the viscometer Teflon® cup reservoir.

ii. In the second experimental design, a procedure similar to that described in (i) was ap-
plied; however, after 7.5 min, the 50 µL of ascorbic acid solution was added and stirred
for 1 h. Then 50, 110 or 140 µL of the MnP solution was added, followed by stirring
for 30 s. The solution mixture was then immediately transferred into the viscometer
Teflon® cup reservoir. Dynamic viscosity of the reaction mixture (8 mL) containing
HA (1.75 mg/mL), ascorbate (100 µM), Cu(II) ions (1 µM) and Mn porphyrins (final
concentrations of 0, 5, 20, 100 µM) was measured by a Brookfield LVDV−II+PRO
digital rotational viscometer (Brookfield Engineering Labs., Middleboro, MA, USA)
at 25.0 ± 0.1 ◦C, 180 rpm at a shear rate of 237.6 s−1 for 2 h. All details of how the
degradation of HA can be assessed by dynamic viscosity is described in [31].

3.4. Electron Paramagnetic Resonance (EPR)

The generation of free radicals during HA degradation was examined by a spin
trapping technique in an EPR X-band EMX spectrometer (Bruker, Rheinstetten, Germany)
at ambient temperature. The reaction mixture was composed of HA solution (1.75 mg/mL),
Cu(II) ions (1.0 µM), MnPs (100 µM), and ascorbic acid (100 µM). The spectra were recorded
at 2, 20, 60, 90, or 150 min after the addition of ascorbic acid. Each solution (250 µL) was
thoroughly stirred with 50 µL of 0.212 M DMPO spin trap prior to its insertion in a thin flat
EPR quartz cell. The operational parameters of the equipment were adjusted as follows:
center field 3354 G, sweep width 100 G, time constant 81.92 ms, conversion time 20.48 ms,
receiver gain 5 × 105, microwave power 10 mW, and modulation amplitude 2 G, number
of scans from 3 to 20.

4. Conclusions

We have demonstrated herein the enhancement of the Cu(II)/ascorbate-driven ox-
idative degradation of hyaluronic acid by redox active cationic ortho isomeric Mn(III)
alkyl-alkoxyalkylpyridylporphyrins, but not by para isomer MnTM-4-PyP5+. Their catalytic
abilities or lack thereof are due to the differences in their thermodynamic and kinetic
properties. The reduction of para MnTM-4-PyP5+ with ascorbate is not thermodynamically
favored due to its more negative E1/2 for the Mn(III)/Mn(II) redox couple than that of an
ortho analogs and happens only at sufficient excesses of ascorbate. In turn, no reoxidation
of reduced Mn(II)TM-4-PyP4+ happens which would have otherwise enabled formation
of •OH radical. Importantly, the planar para MnTM-4-PyP5+ and more so when reduced,
intercalates into the HA and stabilizes the polymer. In turn, the strongly intercalated
reduced complex within the HA network is not easily accessible to molecular oxygen and
remains inactive.

Our data point to another possible in vivo action of Mn porphyrins, commonly known
as SOD mimics. Due to the high level of HA in cancer (which seems to promote cancer
proliferation and metastases), its oxidative degradation catalyzed by MnPs (in the pres-
ence of endogenously available Cu(II)/Fe(III) and ascorbate) may further strengthen the
anticancer therapeutic potential of redox active cationic ortho isomeric Mn(III) N-alkyl-
alkoxyalkylpyridylporphyrins.
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