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Simple Summary: Throughout history, combining drugs has been a common method in the fight
against complex diseases. However, potential drug–drug interactions could give rise to unknown
toxicity issues, which requires the urgent proposal of efficient methods to identify potential interac-
tions.We use computer technology and machine learning techniques to propose a novel computational
framework to calculate scores of drug–drug interaction probability for simplifying the screening
process. Additionally, we built an online prescreening tool for biological researchers to further verify
possible interactions in the fields of biomedicine and pharmacology. Overall, our study can provide
new insights and approaches for rapidly identifying potential drug–drug interactions.

Abstract: During the development of drug and clinical applications, due to the co-administration of
different drugs that have a high risk of interfering with each other’s mechanisms of action, correctly
identifying potential drug–drug interactions (DDIs) is important to avoid a reduction in drug thera-
peutic activities and serious injuries to the organism. Therefore, to explore potential DDIs, we develop
a computational method of integrating multi-level information. Firstly, the information of chemical
sequence is fully captured by the Natural Language Processing (NLP) algorithm, and multiple biolog-
ical function similarity information is fused by Similarity Network Fusion (SNF). Secondly, we extract
deep network structure information through Hierarchical Representation Learning for Networks
(HARP). Then, a highly representative comprehensive feature descriptor is constructed through the
self-attention module that efficiently integrates biochemical and network features. Finally, a deep
neural network (DNN) is employed to generate the prediction results. Contrasted with the previous
supervision model, BioChemDDI innovatively introduced graph collapse for extracting a network
structure and utilized the biochemical information during the pre-training process. The prediction
results of the benchmark dataset indicate that BioChemDDI outperforms other existing models.
Moreover, the case studies related to three cancer diseases, including breast cancer, hepatocellular
carcinoma and malignancies, were analyzed using BioChemDDI. As a result, 24, 18 and 20 out of the
top 30 predicted cancer-related drugs were confirmed by the databases. These experimental results
demonstrate that BioChemDDI is a useful model to predict DDIs and can provide reliable candidates
for biological experiments. The web server of BioChemDDI predictor is freely available to conduct
further studies.

Keywords: drug–drug interactions; attention mechanism; natural language processing; multi-level
information and graph collapse
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1. Introduction

Drugs play a crucial role in curing diseases and enhancing quality of life [1]. During
drug development, drug–drug interactions (DDIs) are a critical consideration and the drug
targeting of the selected protein should be bioavailable (e.g., favorable absorption and
metabolism) [2]. However, potential DDIs may lead to a strong rise or drop in the plasma
concentration of the drug or metabolite, and even generate toxic compounds [3]. From a
clinical perspective, a combination of drugs is used for the treatment of complex diseases,
but unexpected DDIs may induce adverse reactions, which can give rise to drug withdrawal
and even to the death of the patient [4,5]. Thus, the early identification of potential DDIs is
very critical for drug development and medical safety.

Alterations in drug pharmacokinetics and drug pharmacodynamics can be caused by
DDIs [6]. Pharmacokinetic DDIs crop up when the perpetrator drug disrupts the absorption,
distribution, metabolism and elimination (ADME) of the victim drug, and also when the
perpetrator drug interacts with the protein of the victim drug or other protein within the
same signaling pathway [4]. To screen and analyze unknown DDIs, biological techniques
are mainly used, which are regarded as the ultimate way to judge and validate the DDIs,
containing metabolism-based and transporter-based DDIs, such as testing whether the
drug is the inhibitor/inducer or substrate of CYP enzymes [7], and testing whether the
drug is the inhibitor/inducer or substrate of a P-gp transporter [3]. Then, based on the
in vitro parameters, a cumbersome dynamic model (e.g., PBPK) and expensive in vivo
experiment should be constructed and analyzed for the final validation.

Traditional biological technologies face the challenges of high cost, limited participant
number, low efficiency and large number of pairwise drugs waiting for identification [2].
Additionally, the constantly increasing demand for drug therapy makes the identification
of potential DDIs before clinical medications are administered [8] more and more urgent.
Consequently, exploiting large-scale computational prediction methods as a decision aids
for a large number of DDI candidates prescreening to provide a direction or prioritize of the
in vitro–in vivo experiments, and improve efficiency for DDI research and development
(R&D). Computational methods have gained concern from the academy and the industry,
due to their promise to discover drug–drug interactions on the large scale [9,10]. The
performance of computers has been greatly improved as the precondition to consider
computational methods to realize DDI prediction. Furthermore, researchers constructed
many reliable bioinformatic databases on drugs through many biomedical experiments,
such as DrugBank [11], ChEBI [12], PubChem [13] and KEGG [14]. Recently, several
computational methods have been proposed to reduce the cost of predicting potential DDIs.
These methods can be roughly divided into four categories: similarity-based, network-
based, matrix-factorization-based and semanticity-based.

Similarity-based methods are one of the relatively main approaches, assuming that, if
drugs have similar function structures, they are more likely to have a similar interaction
structure. Gottlieb et al. put forward a model named INDI, extracting feature vectors
by calculating seven drug similarities and predicting interactions of the drugs by logistic
regression [15]. Cheng et al. merged many drug similarities to express drug–drug pairs and
exploited five classifiers to build predicting models [16]. Ferdousi et al. provided a method
to construct embedding vectors of drugs, using four biological elements, including carriers,
transporters, enzymes and targets (CTET), to predict potential DDIs through a Russell–Rao
similarity [17]. Rohani et al. predicted DDIs based on fusing similarity matrices and
tested the performance on three different scales of drug similarity datasets [18]. Due to the
structure information of the interaction network and chemical sequence information not
being considered, the final prediction effect was not very good.

Network-based methods infer novel drug–drug edges by the topological structure
of the network and biological network that involves biomedical entities, or learning the
high-order drug similarity and the propagating similarity. Zhang et al. predicted DDIs
using an integrative label propagation method with high-order similarity transitivity on
the multi-scale similarity-based network. It also can rank multiple drug information
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sources [19]. Park et al. exploited the random walk with restarting on the protein–protein
network method to the analog propagation of signals to predict drug–drug interactions [20].
Deepika et al. proposed a meta-learning framework, extracting representation on four
types of feature networks through Node2vec and containing chemical feature networks,
biological feature networks, phenotypic feature networks and disease feature networks,
then integrating the results of four classifiers to predict unknown DDIs [21]. Liu et al.
drew an approach DANN-DDI that contains five types of drug networks and learned the
features through the graph embedding algorithm SDNE. An attention neural network
is designed to learn concatenating representation and a deep neural network is used to
generate prediction results [22]. Although these methods have shown a good prediction
performance, most of them preserve higher-order structure features with difficulty and
stick to the local optimum with ease. The attention mechanism is not used to process
multiple pieces of information, which leads to a limited performance.

Matrix-factorization-based methods turn the DDI adjacency matrix into several decom-
posed matrices and then re-establish adjacency by the decompositions. The model, named
TMFUF, was developed by Shi et al. to identify DDIs, which uses drug additional informa-
tion to rebuild the interaction matrix through triple matrix factorization [23]. Zhang et al.
proposed an ensemble model that is based on sparse feature learning for predicting drug–
drug interactions [24]. Zhang et al. designed a method for DDIs prediction that uses
eight types of background information based on the matrix factorization of a manifold
regularization [25]. Yu et al. proposed DDINMF applying semi-nonnegative matrix factor-
ization to conclude the enhanced and degressive prediction of pairwise drugs [26]. Shi et al.
introduced a BRSNMF model, an optimization of the DDINMF model, technically utilizing
drug-binding protein as the feature to predict DDIs of new drugs [27]. These approaches
exploit the biological information of many supplements to ensure generalization, but the
important information on the chemical sequence is not fully considered.

Semanticity-based methods generally abstract the information from the semanticity of
sentences about drugs through text-mining, and then the candidates of drug interactions are
detected and classified. Chowdhury et al. applied a framework that can extract information
on multi-phase relations, exploiting the scope of negation cues and semantic roles to reduce
the skewness of the data, and used SVM to calculate the possibility of DDIs [28]. Zhu et al.
exploited the BioBERT method to pre-train word vectors of drug descriptions and extracted
the semantic representation of sentences by the BiGRU, integrating drug entity information
by entity-aware attention, obtaining prediction results by the MLP [29]. However, these
methods are heavily dependent on the clinical evidence in the post-market, which means
that there is no capability of providing potential DDI alerts before clinical medications
are administered.

Although the aforementioned methods have their own advantages and play a crucial
role in computational method development for drug–drug interaction prediction, there
are still some limitations. (i) Due to several existing relevant computational methods only
focusing on single information of drugs, they still cannot satisfy the demand for prediction
accuracy in reality applications. (ii) Furthermore, most of them rely on artificially designed
molecular representation, limited by the knowledge of domain experts. (iii) Ignoring deep
network structure information and integrating drug features without the attention machine
could lead to limited prediction performance.

In in silico research, data availability and accessibility are crucial factors in determining
the accuracy and precision of calculational methods [30]. In this paper, in order to address
the existing deficiencies, we propose a novel framework for fusing drug chemical sequence,
drug biological function similarity and deep network topology structure with an attention
machine (BioChemDDI) to predict potential DDIs. In particular, we first obtain the drug
biochemical features regarding chemical sequence information and biological function
information through a word-embedding algorithm and the similarity matrix fusing method,
respectively. Notably, the chemical sequence feature of each drug is firstly represented as a
matrix, whose dimension can be reduced by a Convolutional Neural Network (CNN). Then,
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the rich structural information of the interaction network is extracted by efficiently graph
embedding with graph collapse. Thirdly, we introduce the attention mechanism to fuse
multiple features and enhance the feature of each drug node. Finally, the interaction scores
are generated by the fully connected layer. The proposed model is trained end-to-end, and
each feature vector can be further screened for the characteristic factors through the hidden
layers. Additionally, in this work, four datasets are used to verify the robustness of our
model and are compared with state-of-the-art methods to demonstrate the high efficiency
of BioChemDDI. Then, the results of the five-fold cross-validation and the case studies
further investigate whether our model is suitable for interaction studies between drugs.
More meaningfully, case studies related to three cancer diseases can give insight to reveal
unknown drug–drug interactions for inferring combinations of the drug in treating complex
diseases. The BioChemDDI model can provide accurate predictions for the potential DDIs
and is anticipated to serve as the prioritization tool for the development of drug and
clinical applications, which can be used as pre-screening tools for potential DDIs. The
computational platform web server is accessible at: http://120.77.11.78/BioChemDDI/
(accessed on 11 April 2022).

2. Materials and Methods
2.1. Dataset Description

In this study, to demonstrate the robustness of BioChemDDI, we used four datasets
called DS1, DS2, D-DS3 and E-DS3. The DS1 was processed by Ren et al. [31], and its
biochemical information was downloaded from DrugBank [11], containing one chemical
sequence information and four types of biological function information, which are ex-
pressed by drug-related receptor-types of carriers, enzymes, targets and transporters. It
also includes 1940 drug nodes, and the 219,247 known pairwise DDIs have been proved [32].
Zhang et al. [33] collected DS2 from the databases of DrugBank [11], SIDER [34], KEGG [35],
PubChem [13] and OFFSIDES [36]. Additionally, the D-DS3 and the E-DS3 were processed
by Shi et al. [27], which, respectively, contain 1562 drugs with 55,278 depressive interactions
and 125,298 enhancive interactions and 4 types of biological functions, the tsame as the
DS1. Table 1 illustrates his information in more detail.

Table 1. The feature description and interaction details of the four datasets.

Datasets
Name

Number of
Drugs

Number of
Pairs

Number of
Interactions

Biological Function
Information

DS1 [31,32] 1940 3,763,600 219,247 Carrier, Target,
Enzyme, Transporter

DS2 [33] 548 300,304 97,168
Pathway, Target, Enzyme,
Indication, Offside, Side

effect, Transporter

D-DS3 [27] 1562 2,439,844 55,278
Target, Carrier, Enzyme,

Transporter,
Molecular fingerprint

E-DS3 [27] 1562 2,439,844 125,298
Carrier, Target, Enzyme,

Transporter,
Molecular fingerprint.

Noteworthily, due to the use of testing datasets from different sources, high unbalanced
data regarding biological function information is contained, which can be addressed by
the biological function fusing module. Known drug–drug pairs were considered positive
samples and the negative samples can be presented by other drug–drug pairs in the
network. To avoid bias from the imbalance of positive and negative samples, the negative
samples were randomly chosen to be equivalent to the positive samples. We used a 5-fold
cross-validation and split train–test on our datasets to proceed with a meaningful contrast.
After disrupting the samples, 70% of them were seen as training datasets. We treated 20%

http://120.77.11.78/BioChemDDI/


Biology 2022, 11, 758 5 of 21

of them as test datasets, and regarded the other 10% as validation datasets. Inspired by
Feng et al. [37], different scales of datasets were used to validate the superior performance
of BioChemDDI. Because DS2 is often utilized to evaluate the ability of prediction, we also
used DS2 as the primary comparison experimental dataset to save time and costs. DS1,
D-DS3 and E-DS3 were selected to evaluate the stability of BioChemDDI.

2.2. Overview of the Methods

In this paper, we propose a learning framework, BioChemDDI, to efficiently predict
potential DDIs. As Figure 1 illustrates, BioChemDDI consists of four modules comprising a
drug chemical sequence information learning module, drug–drug network structural infor-
mation learning module, biological function information learning module and attentional
multi-feature integration module. At the beginning, the chemical sequence was indicated
by learning their corresponding SMILES through the NLP method of CBOW. Then, we
represented each type of biological function as the adjacency matrix and calculated the drug
similarity matrix under different function types. After that, all of the similarity matrixes
were fused efficiently by SNF. Before Hierarchical Representation Learning for Networks
(HARP) [38] was used to extract drug network structural information, we constructed
the DDI network from the positive samples in the train set. Furthermore, the attentional
integration mechanism integrates biochemical features and network structural features to
finally predict potential DDIs. Additionally, we used the binary cross-entropy loss and error
backpropagation (BP) feedforward network to implement end-to-end training. A detailed
description is given below, according to the order of the function module in the flowchart.
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Figure 1. The pipeline of BioChemDDI. After inputting data, the sub-model of chemical sequence
information obtains an embedding matrix of each drug that can be reduced as a 1-dimension vector
by the CNN. The network structural information is learned by the method of HARP, and the feature
vector can be further screened for the characteristic factors through the hidden layers. Multiple
biological function matrices are used to generate multiple drug similarity matrices, which can be
fused by SNF and further screened for characteristic factors by the hidden layers. The module of
feature integration with attention contains three hidden layers that finish the final DDI prediction.
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2.3. Drug Chemical Sequence Information

With deep learning technology springing up, the methods of word embedding are
utilized to raise downstream task performance. In order to make full use of the chemical
sequence of drugs, researchers regard SMILES as sentences and treat each symbol of a
chemical element or atom as a word. Chemical sequence learning consists in transforming
each symbol into a digital vector, thereby each drug sequence can be represented as a matrix.
Based on the “natural biological language”, chemical sequence information is learned by
word2vec [39], which is a method for learning distributed vector representation of words
through a large corpus. CBOW is a word2vec model, which calculates the probability of a
certain center word according to the context of the word. It contains an input layer, a hidden
layer and an output layer. The embedding vectors of each context word are calculated by
the weight matrix ω. Additionally, the arithmetic average of embedding vectors h of the
center word is calculated by the hidden layer, as follows:

h =
1
c

ω>(x1 + x2 + . . . + xc) (1)

where xC is the one-hot vector representation of C-th context words, which are the V
dimension. The h is the average of the embedding vectors of context words. By the weight
matrix ω′ of the output layer, the co-occurrence probabilities are calculated, and each word
is the center word to calculate the embedding vector. Moreover, the probability of the actual
central word occurring is maximized by the function:

E = − log P(ωO|ωI1, ωI2, . . . , ωIC) = log
V

∑
j′=1

exp(v′ωj
> × h)− v′ωo

> × h (2)

where v′ωj means the j-th row of the weight matrix ω′. In this paper, SMILES was seen
as the drug structure corpus to make use of the word embedding method. The Python
package of gensim was used to obtain the drug feature matrix. Then, in addition to the
parameters of “size” being set to 64 and “min_count” being set to 1, the parameter values
were default. So, as shown in Figure 2, each symbol is shown as a 64-dimension vector,
thereby obtaining the drug feature matrix.
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Figure 2. The guideline for extracting features of chemical sequence. The SMILES of all drugs
were obtained from DrugBank. Additionally, vector representation, the matrix of 60 × 64, of all
60 biological symbols is learned by word2vec. Then, the SMILES of each drug corresponds to its
own symbolic vector representation. Finally, N drugs can be indicated as N matrixes. To ensure the
identical scale of the drug matrix, the strategies were adopted as follows: a. If the sequence length of
the drug is shorter than 64, the vector of zero is attached to the drug matrix; b. If the sequence length
of the drug is longer than 64, it is reduced to 64.
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2.4. Network Structural Information

The network structural information is a crucial character for potential interaction
analysis and prediction. Under the entire drug network, each node can be represented by
the structural relationship of nodes. In this subsection, we focus on the task of extracting
the embedding vector-containing node structural information. The node structure is more
similar, and the embedding vectors of the nodes are closer to each other. To fully utilize
the network relation of DDIs and to globally express the straight or potential information
flow between nodes, we formulated graph embedding representation by a method named
HARP, proposed by Chen et al. [38]. Recently, for large-scale networks, some existing
learning algorithms of network representation demand complex computational complexity
and many of them are local embedding methods. Relationships of long-distance global
network may be ignored by focusing on local embedding configurations, and the learning
representations are incapable of revealing vital global patterns of distribution [38]. HARP-
LINE, improved from LINE, is suitable for embedding a large global information network
into a low-dimensional space of vectors and can catch the deep structure of the interaction
network. HARP-LINE consists of three parts: graph coarsening, graph embedding and
representation refining, as Figure 3 shows. For a given graph G = (V, E), finding a mapping
function Φ : V → R|V|×d, d�

∣∣∣V∣∣∣ is the first important task of graph representation.
In order to gain a better global embedding, HARP firstly performs a graph coarsening

operation, and then a small subgraph GS = (VS, ES) is generated, in which |VS|�|V| and
|ES|�|E|. In this way, because of the smaller subgraph containing more coarse-grained
information, embedding learning on GS can gain a wider global structure, although the
learning method is based on a partial structure. Therefore, as the original graph structure
collapses constantly until the number of nodes reaches a certain threshold, LINE [40]
is exploited to learn representations in the part of graph embedding. LINE defines the
first-order proximity and second-order proximity to indicate, respectively, the nodes’ direct
relationship and the relationship of nodes that are not direct, which have a common
neighbor node. If the nodes share the same neighbor, they are proximal to each other. The
co-occurrence probability of vertexes, vj and vi, keeping a similar context can be defined as:

p2(vj|vi) =
exp(uj′

> × ui)

|V|
∑

k=1
exp(uk′

> × ui)

(3)

where ui and uj
′ are, respectively, the vector representation of the vertex of vi and its context

vj, and |V| indicates the quantity of context vertex. To assure proximity, the following
objective function should be minimized:

minimizeO2 = −∑
i∈V

λid(p2(·
∣∣vi), p2(·

∣∣vj)) (4)

The function of d(·, ·) is used to calculate the distance of distribution, λi, viewed as
the importance of vi; the empirical distribution probability p2(·|vi) is designed as:

p2(vj

∣∣∣∣vi) =
wij

degreei
(5)

where wij is the weight between vj and vi, and degreei stands for the degree of the vertex
vi. KL divergence is utilized to measure the similarity of distributions. For the sake of
simplicity, λi was set in this paper as the degree of vi, i.e., λi = degreei and certain constants
were left out. The loss function can be reduced as follows:

minimizeO2 = − ∑
(i,j)∈V

wij log(p2(vj
∣∣vi)) (6)
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After obtaining the subgraph nodes embedding vectors, using them to initialize
the node of the upper-level subgraph can finely collect global information of the coarse
graph. Finally, improved embedding vectors can be obtained after optimizing coarse
graph embedding by upward iteration. We used the default parameters of the HARP
Python package. As all graph embedding methods have a common drawback, that is,
that extremely few nodes of the test set do not exist in the train set, these nodes cannot
be embedded by graph embedding methods. The biochemical features can increase the
information content of the feature to some extent and reduce the impact of the missing
graph structural information on the model performance. On the one hand, in reality, many
new drugs may have no interaction with known drugs, which can be regarded as no
embedded nodes in the network. On the other hand, a few drugs missing some information
can also indicate the generalization of our model. In this work, the no embedded nodes
were given priority to use the embedding characteristics of their nearest neighbor as their
embedding characteristics; otherwise, their embedding was set to a zero vector as their
embedding characteristic.
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HARP: graph coarsening, graph embedding and representation refining. After generating the drug
network from the training of the positive samples, the original network is folded continuously to gain
many coarse subnetworks. For example, in the level-1 coarsening network, according to the folded
rule, node 1 and node 2 are seen as a whole sharing the same embedding vector, when extracting
embedding vectors of nodes in the level-1 coarsening network. The final embedding vectors of the
lower-level subnetwork are exploited as the initial vector of its superior level subnetwork. Iterating
upward constantly, ending at the original graph, and finally obtaining all of the node embedding
vectors, which have rich structural information. The LINE method is utilized to obtain embedding
vectors for the nodes of each subnetwork.
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2.5. Biological Function Information

The biological function of drugs is another important feature that can be represented
by drug-related receptors. All of the biological function information can be fused by the
multiple calculating similarity matrixes. In this work, M types of receptor bound to drugs
are used to establish the adjacency matrixes with different dimension spaces. In each matrix,
the values 1 or 0 indicate the existence or the inexistence of the drug-receptor relation,
respectively, and the dimension is determined by the number of receptors. For example,
there are 1660 receptors of the target type, so a drug can be embedded as a 1660-dimensional
initial vector. Given a drug D1 and a drug D2, their initial embedding vectors are d1 and
d2, and the similarity between them is based on the Euclidean distance and satisfies the
formula as follows:

S(D1, D2) =

√
n

∑
i=1

(d1i − d2i)
2 (7)

where d1i and d2i are, respectively, the element representation of the vectors d1 and d2,
and n means the number of dimensions. Therefore, the weak similarity matrices among
these initial vectors are calculated in each function space type. Then, it is particularly
important to integrate M weak similarity matrices into a strong similarity matrix. Similarity
Network Fusion (SNF), proposed by Wang et al. [41], is a competent approach to fusing
massive biological context similarities [18]. SNF is a non-linear similarity fusion method,
combining multi-similarity matrices into a single integrated similarity matrix, which carries
all appropriate representation information. Eventually, SNF is applied to fuse M similarity
N × N matrix into one N × N matrix, where N is the number of drugs. Figure 4 reveals the
details of this process.
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Figure 4. Illustration of the extracting process of the fusion drug similarity matrix. At first, M types
of biological function information are used to construct adjacency matrixes, whose row indicates the
drug’s initial vector and the number of receptors decides the dimension. Thus, each row is regarded as
a high-dimensional space representation of drugs. Then, the drug similarity matrix based on different
kinds of space can be obtained by calculating the Euclidean distance on each pairwise embedding
vector of drugs. Finally, it exploits the SNF method to produce a comprehensive representation of the
biological function information by fusing similarity matrixes of all types of space.

2.6. Attentional Multi-Feature Integration and Prediction

To integrate the chemical sequence feature, the network structural distribution feature
and the biological function feature for interaction prediction, the attentional multi-feature
integration module is proposed. The attention [42] module can fuse multi-level features by
using attention scores to reflect adaptive weights, namely, fusing each feature according
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to a score of feature significance level. Given the initial representation vectors θ and the
attention enhance vectors θ̃ can be obtained as the following function:

θ̃ = Attention(Q, K, V) = so f tmax(
QK>√

dk
)V (8)

where Q, K and V stand on behalf of the product of input vector and three matrices. The
dk represents a normalization coefficient. Then, after calculating by a hidden layer, the
classification result can be captured.

For the further screening of the efficient characteristic factors, before the three features
were input into the attention module, a series of dimension-reducing processes were carried
out. Firstly, we used CNN to reduce the feature matrix dimension of the chemical sequence,
which contains 64 kernels. Inspired by NIN [43], we used a two-dimensional global average
pooling, instead of the flattening operation. Then, the network structural feature vector
was put into a fully connected layer containing 64 neurons, and the biological function
features passed through a hidden layer of 300 neurons and a hidden layer with 64 neurons.
Ultimately, after the elements’ weight of feature vectors were redistributed over attention,
all of the processed features were put into the attention module. During the end-to-end
training process, the Adam optimizer was used to adjust the learning rate automatically
from 1× 10−3. To avoid overfitting, we adopted the dropout rate of 0.3 on the hidden layers.

3. Experimental Results and Discussion
3.1. Evaluation Criteria

In this paper, classifying each pair of drugs as interaction or non-interaction, we
utilized metrics that are frequently used in classification to assess the effectiveness and
robustness of our model through distinct perspectives, including five parameters: Accu-
racy (Acc), Sensitivity (Sen), Precision (Prec), F-measure (F1) and Matthews’s Correlation
Coefficient (MCC). These evaluation parameters are represented as follows:

Acc =
TP + TN

TN + TP + FN + FP
(9)

Prec =
TP

TP + FP
(10)

Sen =
TP

TP + FN
(11)

F1 =
2× Prec× Sen

Prec + Sen
(12)

MCC =
TP× TN − FP× FN√

(TP + FP)× (TN + FN)× (TN + FP)× (TP + FN)
(13)

where true positive, false negative, true negative and false positive are, respectively, are
represented by TP, FN, TN and FP.

Meanwhile, according to these parameters, we evaluated the performance of the pro-
posed model by constructing an AUC, the area under the receiver operating characteristic
(ROC) curves, and AUPR, which is the area under the precision-recall (PR) curve. AUPR
represents an appropriate criterion if the count of negative and positive samples is not the
same, just as suggested by [44]. A larger AUC shows a better predictor. We also exploited a
five-fold cross-validation and the mean value to assess the performance of methods.

3.2. Assessment of Prediction Ability

In this experiment, to demonstrate the superior performance and robustness of
BioChemDDI, we employed it on the four datasets. The jack-knife and q-fold cross-
validation (CV) tests [45] are often used to examine whether the predictor is effective
or not. We adopted the five-fold cross-validation to enhance the persuasion of the results,
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which are displayed in Table 2. The average values of AUC and AUPR can reach 0.9711
and 0.9701 or more in all four datasets. Specifically, on DS1, reaching the highest score of
0.9927 and 0.9921. In addition, the average scores of other evaluation criteria are also high;
thus, the MCC of the four datasets gained the scores of 92.32, 81.48, 91.08 and 92.05. It can
be concluded that the data scale produces an impact on model performance and results,
but the worse performance, among the four datasets, also reached 90.72%, 89.54%, 92.21%,
90.86% and 81.48% on the evaluation criteria.

Table 2. Five-fold cross-validation results through BioChemDDI.

Datasets Fold Acc Prec Sen F1 MCC AUC AUPR

DS1

0 0.9583 0.9436 0.9748 0.9589 0.9170 0.9915 0.9907
1 0.9619 0.9469 0.9787 0.9626 0.9244 0.9930 0.9925
2 0.9616 0.9458 0.9793 0.9622 0.9237 0.9930 0.9925
3 0.9610 0.9449 0.9792 0.9617 0.9227 0.9927 0.9920
4 0.9634 0.9469 0.9817 0.9640 0.9273 0.9934 0.9929

Average 0.9612 ±
0.0019

0.9456 ±
0.0014

0.9787 ±
0.0025

0.9618 ±
0.0019

0.9232 ±
0.0038

0.9926 ±
0.0007

0.9921 ±
0.0009

DS2

0 0.9101 0.8991 0.9237 0.9113 0.8204 0.9708 0.9694
1 0.9063 0.8964 0.919 0.9075 0.8130 0.9706 0.9695
2 0.9051 0.8913 0.9227 0.9067 0.8106 0.9707 0.9701
3 0.9073 0.8931 0.9253 0.9089 0.8151 0.9713 0.9702
4 0.9073 0.8973 0.9198 0.9084 0.8148 0.9721 0.9713

Average 0.9072 ±
0.0018

0.8954 ±
0.0032

0.9221 ±
0.0027

0.9086 ±
0.0017

0.8148 ±
0.0036

0.9711 ±
0.0006

0.9701 ±
0.0008

D-DS3

0 0.9545 0.9370 0.9745 0.9554 0.9097 0.9848 0.9794
1 0.9549 0.9385 0.976 0.9557 0.9105 0.9865 0.9822
2 0.9539 0.9515 0.9565 0.9540 0.9078 0.9872 0.9843
3 0.9559 0.9408 0.9730 0.9566 0.9123 0.9865 0.9826
4 0.9567 0.9432 0.9719 0.9573 0.9138 0.9863 0.9815

Average 0.9552 ±
0.0011

0.9422 ±
0.0057

0.9699 ±
0.0076

0.9558 ±
0.0013

0.9108 ±
0.0023

0.9863 ±
0.0009

0.9820 ±
0.0018

E-DS3

0 0.9551 0.9360 0.9771 0.9561 0.9111 0.9897 0.9879
1 0.966 0.9511 0.9773 0.9641 0.9275 0.9928 0.9915
2 0.9586 0.9469 0.9718 0.9592 0.9176 0.9912 0.9901
3 0.9615 0.9475 0.9771 0.9621 0.9235 0.9918 0.9904
4 0.9613 0.9493 0.9745 0.9618 0.9228 0.9917 0.9897

Average 0.9600 ±
0.0033

0.9462 ±
0.0059

0.9756 ±
0.0024

0.9607 ±
0.0031

0.9205 ±
0.0063

0.9914 ±
0.0011

0.9900 ±
0.0013

It is obvious that the proposed model has an excellent capability to identify positive
and negative samples and predict novel DDIs. Furthermore, the higher AUC and AUPR
show that our framework has a superior predictive performance, and the stability and
the robustness of the proposed framework can be indicated by the lower variance of
the results. As all of the evaluation results show, the performance can improve as the
number of data increase. Four ROC curves and four PR curves were drawn as shown in
Figures 5 and 6. Finally, it can be concluded that the framework is effective and robust in
drug–drug interaction prediction.
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3.3. Ablation Experiments

A set of ablation experiments were conducted to validate the contribution levels of the
biochemical and network structural information on DS1. The strategy of the training and the
evaluation was similar to the procession of model training in Section 3.1. For convenience,
we set the experimental number for each ablation experiment and Table 3 shows the results.
For a fair comparison of each contribution level of feature, the attention machine should not
be used, that is, comparing between (a), (b), (c) and (d). Without chemical sequence level,
the values of AUC and ACPR declined by 0.0028 and 0.0031, respectively. Without network
structure information, the performance decreased by 0.0135 and 0.0157 in terms of AUC
and AUPR, respectively. Without biological function information, the AUC and AUPR were
0.0015 and 0.0019 lower than BioChemDDI, respectively. The experimental results show
that the network structural information performs the most significant contribution. One of
the possible reasons for this is that the representation pattern between known correlations
can be viewed as direct features. Additionally, on the system constituted by abundant
direct features, these features are more important than the other correlation features. Due
to the important role of the graph structural feature in the proposed model, we discuss the
related impact factors in Sections 3.4 and 3.5.

Table 3. Results of the ablation on DS1.

Experimental
Number

Chemical
Sequence

Network
Structure

Biological
Function AUC AUPR

Without the
attention

mechanism

(a) F T T 0.9842 0.9824
(b) T F T 0.9735 0.9698
(c) T T F 0.9855 0.9836
(d) T T T 0.9870 0.9855

With the
attention

mechanism

(A) F T T 0.9915 0.9911
(B) T F T 0.9812 0.9793
(C) T T F 0.9879 0.9867
(D) T T T 0.9927 0.9921

F means False; T means True and with attention. The bold values indicate the highest values of AUC and AUPR.

Apart from this, we performed ablation studies to investigate the contributions of
attentional integration at different features. As Table 3 illustrates, respectively comparing
(a) with (A), (b) with (B), (c) with (C) and (d) with (D), the performance of the prediction
dropped by 0.0073 and 0.0087, 0.0077 and 0.0095, 0.0024 and 0.0031, 0.0057 and 0.0066,
respectively, in terms of AUC and ACPR, without attention redistribution. The ablation
experiments show that the model can reach optimum performance only when all the
information and attentional integration are used.

3.4. Influence of Graph Embedding Methods

The graph embedding method of HARP-LINE based on graph collapse was used
in our experiment to extract information on the network structure. In order to test the
impact of the graph embedding method on the performance of the model, we tested four
embedding methods containing LINE [40], Deepwalk [46], HARP-Deepwalk and Laplace
Eigenmaps [47] on the four datasets. All the parameters of each embedding method were
default, and the embedding dimension was set to 64, the same as in the case of HARP-
LINE. To reduce the influence of biochemical features on the comparison experiment, the
attention module is not available. From Figure 7, we can see that, although there are a
few fluctuations in the evaluation criteria, from the overall trend, HARP-LINE obtained a
better performance. That is attributed to HARP-LINE being able to obtain deep network
structural information by focusing on long-distance embedding configurations.
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3.5. Influence of the Embedding Dimension of the Graph Structural Feature

Embedding dimension has a crucial influence on the learning ability of graph structural
information, in which a large value could cause inefficiency for training, while a small
value could limit the learning ability. When generating the feature vectors of the network
structure, we set the embedding dimension to 64 to obtain the rich topology information.
To test the influence of the graph embedding dimension on the model performance, a
comparative experiment was implemented. In this section, we analyzed the performance
in different embedding dimensions containing 16, 32, 64 and 128. As Figure 8 shows, when
the dimension is set to 64, there is a significant promotion of all the evaluation indicators
on DS1 and D-DS3. Additionally, the competitive results were also obtained on the other
datasets. Thus, we set the dimension of graph embedding as 64.

3.6. Comparison with Various Classifier Models

In the BioChemDDI model, we identified the potential DDIs through the feedforward
neural network with all feature information. To verify the influence of the attentional
neural network on the model performance, we compared the effects of various classifiers.
Specifically, we kept the feature descriptors unchanged andused Gaussian NB (GNB),
Decision Tree (DT) and Logistic Regression (LR) to implement the prediction task. For
intuitive comparison, we displayed the experimental results in the form of a histogram
in Figure 9. It can be easily seen that BioChemDDI shows a clear predominance on all
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evaluation criteria. These results demonstrate that the performance of our method can be
enhanced with an attentional neural network.
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3.7. Comparison with Other Methods

In order to comprehensively evaluate the performance of our proposed model, seven
computational methods were chosen as baseline to make the comparison. As mentioned
above, we utilized DS2, usually used to test model performance, as the comparison dataset.
We compared models containing NDD [18], ISCMF [48], DPDDI [37], GCN-BMP [49],
AttentionDDI [50], BioDKG-DDI [31] and an ensemble model [33]. These methods use the
dataset of DS2 and five-fold cross-validation. We selected all of the reported evaluation
criteria of each comparison method in this paper. The comparison results of the evaluation
measure are shown in Table 4, which shows that BioChemDDI reaches the best performance
with the outstanding improvement of 0.0043~0.2521, 0.0083~0.1856, 0.0174, 0.0043~0.0721,
0.0299~0.1631 regarding Sen, F1, MCC, AUC and AUPR. The possible reason is that the
BioChemDDI model can fully learn the network structural information and extract more
effective information through the attention mechanism integrating biochemical information.
Nevertheless, in terms of Acc and Prec, our model was lower than the Ensemble Model and
ISCMF. On the one hand, the Ensemble Model has an ensemble classifier, which obtains
accurate classification results by classifier voting. On the other hand, ISCMF obtained a
higher value of Prec, but a lower value of F1, because it only ensures the ability of predicting
positive samples. On the whole, although BioChemDDI is a powerful method, there is still
room for further improvement.

Table 4. Comparison of our proposed method with seven computational methods.

Method Acc Prec Sen F1 MCC AUC AUPR

NDD [18] (-) 0.8330 0.8360 0.8350 (-) 0.9540 0.9220
ISCMF [48] 0.8510 0.9880 0.8510 0.8850 (-) 0.8990 0.8640
DPDDI [37] 0.9400 0.7540 0.8100 0.8400 (-) 0.9560 0.9070

GCN-BMP [49] (-) (-) (-) 0.8500 (-) 0.9666 0.9402
AttentionDDI [50] (-) (-) (-) (-) (-) 0.9540 0.9240
BioDKG-DDI [31] 0.8984 0.8835 0.9178 0.9003 0.7974 0.9668 (-)

Ensemble Model [33] 0.9550 0.7850 0.6700 0.7230 (-) 0.9570 0.8070
Proposed Method 0.9072 0.8954 0.9221 0.9086 0.8148 0.9711 0.9701

The values in bold indicate the highest values in each column. The symbol (-) indicates the evaluation criteria are
not reported in the original articles.

3.8. Case Studies: Cyclophosphamide, Regorafenib and Allopurinol

To further estimate the ability of BioChemDDI to predict novel DDIs, we conducted
case studies on the drugs cyclophosphamide, regorafenib and allopurinol, which are
associated with three cancers: breast cancer, hepatocellular carcinoma and malignancies.
In the experiment, all 219,247 known drug–drug pairs, among the 1940 drugs, were used
to train the prediction model, and all the remaining pairs related to these three test drugs
were used as the test set to predict the existence of DDIs; in other words, the test pairs were
not included in the train set. The positive samples in the test set were unvisualizable to
our model and we predicted the unvisualizable DDIs, which can be seen as unknown DDI,
through learning visualizable samples. Finally, the prediction of DDIs can be validated
by these positive samples not known beforehand. In particular, we used BioChemDDI to
identify all unknown interactions among the three drugs and ranked them according to the
prediction score and then searched the DrugBank to verify our results. The top 30 ranked
prediction results for each pair of cancer-related drugs are shown in Tables 5–7.
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Table 5. The top 30 interactions of Cyclophosphamide.

Rank Drug Name DrugBank ID Evidence Rank Drug Name DrugBank ID Evidence

1 Altretamine DB00488 Confirmed 16 Fludarabine DB01073 Confirmed
2 Amoxicillin DB01060 N.A. 17 Naproxen DB00788 Confirmed
3 Ifosfamide DB01181 Confirmed 18 Mercaptopurine DB01033 Confirmed
4 Ixazomib DB09570 Confirmed 19 Propylthiouracil DB00550 Confirmed
5 Indomethacin DB00328 Confirmed 20 Sulindac DB00605 N.A.
6 Aminolevulinic

acid DB00855 N.A. 21 Doxorubicin DB00997 Confirmed

7 Magnesium
salicylate DB01397 N.A. 22 Foscarnet DB00529 N.A.

8 Cytarabine DB00987 Confirmed 23 Suramin DB04786 N.A.
9 Pirfenidone DB04951 Confirmed 24 Antipyrine DB01435 Confirmed
10 Melphalan DB01042 Confirmed 25 Methotrexate DB00563 Confirmed
11 Estriol DB04573 Confirmed 26 Etoricoxib DB01628 Confirmed
12 Pentostatin DB00552 Confirmed 27 Letrozole DB01006 Confirmed
13 Daunorubicin DB00694 Confirmed 28 Flutamide DB00499 Confirmed
14 Raltitrexed DB00293 Confirmed 29 Procarbazine DB01168 Confirmed
15 Carmustine DB00262 Confirmed 30 Trabectedin DB05109 Confirmed

Table 6. The top 30 interactions of Regorafenib.

Rank Drug Name DrugBank ID Evidence Rank Drug Name DrugBank ID Evidence

1 Indomethacin DB00328 Confirmed 16 Doxorubicin DB00997 Confirmed
2 Pitavastatin DB08860 Confirmed 17 Grazoprevir DB11575 Confirmed
3 Lamivudine DB00709 Confirmed 18 Romidepsin DB06176 Confirmed
4 Daunorubicin DB00694 Confirmed 19 Amodiaquine DB00613 N.A.
5 Prucalopride DB06480 Confirmed 20 Cilostazol DB01166 Confirmed
6 Docetaxel DB01248 Confirmed 21 Debrisoquine DB04840 N.A.
7 Estriol DB04573 Confirmed 22 Thiotepa DB04572 N.A.
8 Taurocholic

acid DB04348 N.A. 23 Cisplatin DB00515 N.A.
9 Ulipristal DB08867 N.A. 24 Ibuprofen DB01050 Confirmed
10 Ombitasvir DB09296 Confirmed 25 Theophylline DB00277 N.A.
11 Ezetimibe DB00973 Confirmed 26 Warfarin DB00682 Confirmed
12 Zidovudine DB00495 Confirmed 27 Indacaterol DB05039 Confirmed
13 Sparfloxacin DB01208 N.A. 28 Paclitaxel DB01229 N.A.
14 Alitretinoin DB00523 N.A. 29 Aminophylline DB01223 N.A.
15 Vismodegib DB08828 Confirmed 30 Dyphylline DB00651 N.A.

Table 7. The top 30 interactions of Allopurinol.

Rank Drug Name DrugBank ID Evidence Rank Drug Name DrugBank ID Evidence

1 Propylthiouracil DB00550 Confirmed 16 Flucloxacillin DB00301 N.A.
2 Amoxicillin DB01060 Confirmed 17 Antipyrine DB01435 Confirmed
3 Ibrutinib DB09053 Confirmed 18 Dicloxacillin DB00485 N.A.
4 Carboplatin DB00958 Confirmed 19 Trabectedin DB05109 Confirmed
5 Tretinoin DB00755 Confirmed 20 Podofilox DB01179 N.A.
6 Amodiaquine DB00613 N.A. 21 Tioguanine DB00352 Confirmed
7 Cilostazol DB01166 Confirmed 22 Lomefloxacin DB00978 N.A.
8 Azathioprine DB00993 Confirmed 23 Aluminum

hydroxide DB06723 Confirmed
9 Mevastatin DB06693 N.A. 24 Theophylline DB00277 Confirmed
10 Methimazole DB00763 Confirmed 25 Magnesium

hydroxide DB09104 Confirmed
11 Idarubicin DB01177 Confirmed 26 Oxaliplatin DB00526 Confirmed
12 Stavudine DB00649 N.A. 27 Dyphylline DB00651 Confirmed
13 Mercaptopurine DB01033 Confirmed 28 Verteporfin DB00460 N.A.
14 Aminophylline DB01223 Confirmed 29 Magnesium

oxide DB01377 Confirmed
15 Temafloxacin DB01405 N.A. 30 Carbimazole DB00389 N.A.

The results of the experiment show that 24, 18 and 20 interactions were confirmed
by DrugBank with the top five predictions confirmed, except cyclophosphamide-amoxicillin.
Unconfirmed DDIs should be further verified through the wet lab. Especially, the drug
amoxicillin may potentially interact with Cyclophosphamide with high confidence. To further
illustrate the potential interaction mechanism between cyclophosphamide and amoxi-
cillin, we consulted their relevant pharmacokinetic information in DrugBank. We found



Biology 2022, 11, 758 18 of 21

that cyclophosphamide is the substrate and the inducer of the Cytochrome P450 2C8 en-
zyme, and meanwhile, amoxicillin is the inhibitor of the Cytochrome P450 2C8 enzyme,
which means amoxicillin may impact the metabolism process of cyclophosphamide. To
clearly observe the results of the identification of potential DDIs for these three cancer-
related drugs, we visualized the newly discovered and known interactions of the top 30
in Figure 10. In addition, the full prediction scores in each case study are reported in
Supplementary Materials Table S1.
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4. Conclusions

During the development of drugs and their clinical application, combining drugs
to treat complex diseases may induce adverse reactions, which makes the identification
of potential DDIs before clinical medications are administered more and more urgent.
In this paper, we studied how to exploit network topology structure and biochemical
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information to predict potential DDIs. Additionally, we proposed a novel model, named
BioChemDDI, to adaptively learn drug features from the chemical sequence information,
network structural information and biological function information, and fused them to
enhance features through the attention module. After sufficient supervised learning, the
model accurately predicted potential DDIs. On the one hand, the case studies of three
cancer-related drugs indicate the good prediction ability of our model. On the other
hand, our model could be seen as a pre-screening tool for potential DDIs. In this way, the
workload of exploring the unknown complex interactions of drugs can be reduced. In
the future, to improve our framework, choosing negative samples with a more reasonable
way to reduce the noise brought by unbalancing the original dataset and transferring our
framework to predict interactions between unknown drugs will be considered.

5. Patents

The computational platform web server was built and is accessible at: http://120.77.1
1.78/BioChemDDI/ (accessed on 11 April 2022).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology11050758/s1: Table S1: The full prediction scores in each
case study.
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