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Abstract

Prion proteins cause a variety of fatal neurodegenerative diseases in mammals but are gen-

erally harmless to Baker’s yeast (Saccharomyces cerevisiae). This makes yeast an ideal

model organism for investigating the protein dynamics associated with these diseases. The

rate of disease onset is related to both the replication and transmission kinetics of propa-

gons, the transmissible agents of prion diseases. Determining the kinetic parameters of pro-

pagon replication in yeast is complicated because the number of propagons in an individual

cell depends on the intracellular replication dynamics and the asymmetric division of yeast

cells within a growing yeast cell colony. We present a structured population model describ-

ing the distribution and replication of prion propagons in an actively dividing population of

yeast cells. We then develop a likelihood approach for estimating the propagon replication

rate and their transmission bias during cell division. We first demonstrate our ability to cor-

rectly recover known kinetic parameters from simulated data, then we apply our likelihood

approach to estimate the kinetic parameters for six yeast prion variants using propagon

recovery data. We find that, under our modeling framework, all variants are best described

by a model with an asymmetric transmission bias. This demonstrates the strength of our

framework over previous formulations assuming equal partitioning of intracellular constitu-

ents during cell division.

Author summary

In this work we investigate the transmissible [PSI+] phenotype in yeast. The agents

responsible for this phenotype are propagons, misfolded protein aggregates of a naturally

occurring protein. These propagons increase in number within a cell and are distributed

between cells during division. We use mathematical modeling to infer the replication rate

of propagons within cells and if propagons are transmitted equally or unequally during

cell division. Prior models in this area assumed only symmetric transmission when fitting

replication rates. We couple this model with a novel likelihood framework allowing us to

exclude influential outliers from our datasets when inferring parameters. We find that for
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all six protein variants we study, propagons are transmitted asymmetrically with different

biases. Our results can be reproduced with the code and data available at https://github.

com/FS-CodeBase/propagon_replication_and_transmission/.

Introduction

Today in the United States, millions of individuals suffer from Alzheimer’s disease and other

similar dementias. The cause of these diseases is thought to be the accumulation of misfolded

proteins in the brain [1]. Currently, Alzheimer’s is the sixth-leading cause of death in the

United States and the fifth-leading cause of death for individuals 65 and over [1]. Beyond Alz-

heimer’s, there are many other disorders caused by protein misfolding. Neurodegenerative dis-

eases such as Parkinson’s and Huntington’s disease to less well-known diseases like Kuru and

Creutzfeldt-Jakob Disease [2, 3], have different pathology but are characterized by the accumu-

lation of amyloid aggregates. In addition, protein misfolding disorders have also been observed

in other mammals such as scrapie in sheep, chronic wasting disease in deer and Bovine Spon-

giform Encephalopathy in cattle [4, 5]. Collectively, these diseases are untreatable and invari-

ably fatal. While the details differ, all share two key commonalities: (1) a misfolded form of a

protein appears; (2) the misfolded form of the protein forms aggregates, which then spread

their folded confirmation through contact with other normally folded proteins. Because of the

growing body of literature suggesting potential regulatory effects of prions (see [6] for exam-

ple), in our work below we will refer to prion protein as alternatively folded protein instead of

misfolded protein.

A promising biological system allowing for insight into alternatively folded mammalian

protein and prion disease is the yeast Saccharomyces cerevisiae. A number of harmless, herita-

ble phenotypes in yeast are shown to be transmitted vertically to new daughter cells by herita-

ble prion elements termed propagons [4, 7]. Because these propagons are harmless to the yeast

cells, researchers are able to study the protein dynamics themselves in the absence of harming

the host. Indeed, biologists have many experimental tools that have been developed for yeast

which allow for a detailed interrogation of the protein aggregation system in ways that are not

possible to do in mammalian systems in vivo [6]. However, a unique challenge to working

with yeast as a model system is that during the experimental time course, the yeast cells them-

selves continue to divide [8]. Without cell division, we know that the number of propagons in

a cell will increase until it reaches a steady-state concentration where the propagon number is

in balance with the soluble protein level [8–11]. However, the number of propagons in a cell

will decrease when the cell divides as any propagons (i.e., transmissible aggregates, see [7] for

more details) will be separated between the resulting mother and daughter cells [4, 8]. This

means that for meaningful quantitative comparisons between mathematical models and exper-

imental systems, care must be taken to understand the population averages but also heteroge-

neity amongst cells in the same population.

In this work, we consider not only the protein dynamics within yeast cells, but the cellular

populations themselves. More specifically, in this work we develop a structured population

model of yeast cells where the transmission of prion propagons are tracked as cells divide and

as propagons replicate. We use our model to infer both the amplification rate and transmission

bias of propagons from six prion variants (some are variants of [PSI+] and some are mutants,

see [12] for full details). This work is not the first to use the structured population framework,

nor to infer a quantitative rate for transmission bias. A structured population model was previ-

ously applied to propagon data in [13]. The transmission bias of propagons has been directly
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observed using propagon counting assays (see [14] for example). In 2009, Byrne et al. [15]

used propagon curing data to quantitatively link the propagon transmission bias to the relative

volumes of mother and daughter cells at cytokenesis. In comparison to these prior studies, our

work offers several novel contributions. First, the model we develop here is more general,

allowing for propagon amplification and asymmetric transmission. Second, our inference

framework is more general. In contrast to [13], rather than assuming the variance in the pro-

pagon counts is proportional to the system mean, we employ the full likelihood of the data. In

contrast to [15], we consider both propagon replication and transmission. Finally, we study a

larger set of prion variants.

With this more general framework, we find that all six variants are best described by an

asymmetric transmission of propagons between actively dividing yeast cells. With our model

selection framework we were also able to exclude influential outliers from our prion variant

datasets for computing kinetic parameters of prion variants. Moreover, we find differences

among the variants for both the propagon replication rate and the transmission bias. Encour-

agingly, prion variants with similar phenotypic properties are fit with similar kinetic parame-

ters. As such, our framework offers the ability to infer meaningful properties about prion

variants even with our simplified model of intracellular propagon dynamics.

In the biological background section we develop the background of prion variants and the

recovery assays we model. The methods section describes our propagon and generation struc-

tured population model and the likelihood approach we use for fitting kinetic parameters to

experimental data. In the results section we first characterize the ability of our model and infer-

ence framework to recover the correct kinetic parameters and then apply our model and infer-

ence framework to recovery data from six distinct prion variants. In the discussion and

conclusion section we discuss the implications of our study as well as factors to be considered

in future studies on prion propagon dynamics.

Biological background

As mentioned in the introduction, yeast prions were not discovered in the context of a disease

but in one of mysterious heritable phenotypes [16, 17]. In addition, there is a considerably

shorter history of knowledge about yeast prions than their mammalian counterparts [6, 9].

The [PSI+] phenotype in yeast that we now know to be linked to a prion form of the protein

Sup35, was discovered in 1965 by biologist Brian Cox. The phenotype corresponded to that of

a white colored colony and the ability to grow a colony on media lacking adenine [16].

Remarkably, this phenotype appeared to be heritable, but the nature of transmission was by

some unknown nonchromosomal cytoplasmic element [18]. For years researchers searched

for a DNA or RNA basis for [PSI+]. In 1994, Wickner, following insights from mammalian dis-

eases [19, 20], hypothesized that [PSI+] and [URE3] (another phenotype whose determinant

was mysterious) were propagated by an alternatively folded (prion) form of their respective

proteins [21]. In 1996, Paushkin et al. [22] and Patino et al. [23], separately demonstrated that

the [PSI+] phenotype was the result of an alternatively folded form of the protein Sup35 that

was self-propagating. Today we know that many proteins in yeast are capable of forming pri-

ons and that a given prion protein may have multiple variants—distinct alternatively folded

confirmations—each of which is capable of propagating through this self-propagation process.

Indeed, it is possible that prions may, at least in yeast, offer beneficial functions including serv-

ing as heritable bet-hedging devices diversifying microbial phenotypes [24]. In this study, as

mentioned in the introduction, we consider propagon amplification data from six variants of

the [PSI+] prion in yeast [12].
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For mammalian prion disease, the disease phenotype is observed at the level of a single

organism (i.e., a cow, human, mouse, etc). However, in yeast prion biology the prion pheno-

types are visible at the single-cell level with a different assay where the phenotype is observed

with a yeast colony consisting of many cells founded by a single cell with the prion phenotype

[25]. As such, it has been challenging to establish a precise link between the infective species,

or propagon (that necessarily) reside in a single cell with the colony level phenotype [4]. While

it is clear that the presence of a single propagon in the founding cell is necessary for the appear-

ance of the prion phenotype at the colony level, it is not clear that it is sufficient [7]. In this

work, following others [8, 13, 26] we will assume that the presence of a single propagon in a

founding cell is both necessary and sufficient for the appearance of the prion phenotype at the

colony level. As such, yeast prion dynamics are inherently a multi-scale process [27, 28].

Prion phenotypes occur when an alternatively folded form of a protein occurs, and rather

than be cleared by cellular quality control machinery, the form persists and associates in aggre-

gates (propagons), ordered structures of prion monomers as shown in Fig 1A. More specifi-

cally, four steps are essential to the maintenance of prion phenotypes (see Fig 1B). First,

normal protein is continually produced by the cell. Second, prion propagons convert the nor-

mally folded protein to its alternatively folded confirmation through a templated conversion

process when an aggregate incorporates the normally folded protein. This conversion process

increases the size of the prion propagon. Third, the total number of propagons increases when

the propagons are fragmented. This increases the total number of templating units and thus

accelerates the conversion process. Fourth, propagons are transmitted between cells during

division. Intriguingly, the cell division process creates an interesting phenomenon from the

perspective of a single cell. Between cell divisions, the number of propagons increases, and it

Fig 1. Multiscale yeast prion aggregate (propagon) dynamics. (A) Within each cell in the colony is a mixture of normal protein and prion

(alternatively folded) protein. Prion proteins are contained in propagons of multiple alternatively folded monomers. (B) Within each cell normal

protein is produced (synthesis) and incorporated into existing propagons which leads to conversion of the normal protein to the prion form and

increases the size of a propagon. Aggregates may increase in number by fragmentation and must be spread from mother to daughter cells during

division (transmission). (C) Under normal growth conditions, the number of propagons increases during the lifetime of a cell and is split during cell

division. (D) When cells are grown under GdnHCl fragmentation is assumed to stop and the number of propagons remains unchanged during the

lifetime of a cell.

https://doi.org/10.1371/journal.pcbi.1010107.g001
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will then decrease when cell division occurs Fig 1C. Due to the low frequency of spontaneous

[PSI+] appearance, * 10−8 − 10−7/generation [29], in this work we assume there is no sponta-

neous appearance of propagons.

Yeast biologists take advantage of the fact that when cells are exposed to Guanadine Hydro-

chloride (GdnHCl) cell division is not impacted, but the propagon fragmentation process is

assumed to halt. As such, the number of propagons within a cell, and indeed in the entire pop-

ulation is kept constant, while the number of cells in the colony continues to increase, see

Fig 1D. This allows for experiments which probe the number of propagons in a single cell by

regrowing colonies and assuming that any cell with at least one propagon will create a colony

with a prion phenotype. A single yeast cell with propagons is introduced to a GdnHCl environ-

ment and the population of cells is allowed to grow normally. Because propagons will be split

between mother and daughter cells during division, the expected number of propagons per

cell will continue to decrease until the point where a cell in the population is extremely unlikely

to have more than one propagon [26, 30, 31]. Then each cell in this population is allowed to

form their own colony under normal growth conditions.

In propagon recovery experiments, yeast biologists use GdnHCl exposure in two phases to

observe the amplification of propagons (see Fig 2). In the first phase, yeast cells are treated

with GdnHCl until the propagons have sufficiently diluted. In this first phase, as propagons

present at the beginning of GdnHCl exposure will exist for all time, the expected number of

propagons per cell will continue to decrease as cell division continues as normal. In time, cells

in the colony will contain a very low number of propagons per cell, ideally one. In the second

phase, the resulting cells from phase one are transferred to a GdnHCl free environment and

are allowed to form individual colonies. The number of white colonies is then assumed to cor-

respond exactly to the number of cells with at least one propagon (see Fig 2). This is because

the resulting colony whose founding cell had at least one propagon will have the [PSI+] prion

phenotype (white) while those founded by a cell with no propagons will have the [psi−] non-

prion phenotype (red).

Results

In this section we demonstrate that we can recover known parameters from simulated data

using the adaptive Metropolis (AM) algorithm with our likelihood formulation, and study the

effects of hourly sampling rate on these estimates. We then apply these parameter estimation

methods to experimental data for six prion variants and perform model selection between

symmetric division against asymmetric transmission of propagons during cell division.

Parameter inference on simulated data

We first verify the capability of our likelihood formulation, Eq (16), and the AM algorithm 1,

detailed in the methods to estimate known kinetic parameter values from simulated data

before applying our methods to the experimental data. The simulated datasets are created

using rejection sampling methods [32] on the asymmetric transmission of propagons (ATP)

model presented in the methods. We take the cell division rates αi(t), to be constant during

each period of cell division, with a rate of αi(t) = 0.46 hr−1, and that death is negligible through-

out the duration of the experiment by setting βi(t) = 0. Furthermore, we assume the initial dis-

tribution of propagons to be a truncated normal distribution defined on the interval R = (0,

1) with μ = 10 and σ = 1, that isUðaÞ ¼ N þ
ða;m ¼ 10;s ¼ 1Þ, to simulate a colony with low

number of propagons at the beginning of the experiment.
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Algorithm 1 Adaptive Metropolis Algorithm
1: D  load data
2: L  load likelihood formulation
3: M  load maximum number of iterations
4: k  load non- adaptive period length
5: θ(0)  initial value(s) for θ
6: V(0:k)  initial covariance matrix values for non-adaptive period V0
7: sp  set covariance scaling design parameter sp
8: ep  set identity scaling ε for positive definite V
9: for i = 1 to k do . Non-adaptive period
10: θnew  N(θ(i−1), V(i−1))
11: u * U(0, 1)
12: α  min {1, L(θnew|D)/L(θ

(i−1)|D)}

Fig 2. Propagon amplification assay. A two-step process is used to count the number of transmissible prion aggregates (propagons) in a single cell.

Left: A single target cell is isolated, and propagon fragmentation is stopped through exposure to GdnHCl. Since propagons (pinwheels) cannot increase

in number, they are diluted through cell division (green arrows). Right: After sufficient dilution, i.e. each yeast cell is likely to contain at most one

propagon, the colony is replated onto solid media. In the absence of GdnHCl, each single cell serves as a founder of a distinct yeast colony. The number

of propagons in the target cell corresponds to the number of white colonies in the plate.

https://doi.org/10.1371/journal.pcbi.1010107.g002
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13: if u < α then
14: θ(i)  θnew
15: else
16: θ(i)  θ(i−1)

17: for i = k + 1 to M do . Adaptive period
18: θnew  N(θ(i−1)), V(i−1))
19: u * U(0, 1)
20: α  min {1, L(θnew|D)/L(θ

(i−1)|D)}
21: if u < α then
22: θ(i)  θnew
23: else
24: θ(i)  θ(i−1)

25: V(i) = sp � cov (θ(0), θ(1), . . ., θ(i)) + ep � Ip
26: return θ, V

In our investigation we considered the effects of replication rates, transmission biases, and

sampling rates on our ability of recover known kinetic parameter values. Fig 3 shows four

examples of simulated data produced by rejection sampling in the cases of four intracellular

constituents biases ρ = 0.20, 0.30, 0.40, 0.50, a replication rate of λ = 0.70 hr−1, and a sampling

rate of 16 samples per hour. The noise in the simulated data presented in Fig 3 is a conse-

quence of simulating data with rejection sampling from the distribution of propagons over

time in the ATP model.

Parameter estimations are made using the likelihood formulation and the AM algorithm 1

outlined in the methods section. We generate simulated data with three sampling rates: 8, 16,

and 32 samples per hour, with replication rates λ = 0.5, 0.7, 0.9 (hr−1) and transmission bias ρ
= 0.2, 0.3, 0.4, 0.5, for 36 total possible combinations. The sampling rates were chosen to reflect

the experimental data which contain approximately 16 samples per hour per dataset. To

robustly assess the effects of the sampling rates on our ability to recover known parameter

choices, we tested our methods on 500 generated datasets for each of the 36 sampling rate and

parameter combinations. The AM algorithm 1 was applied to each of the 500 simulated data-

sets and each resulting AM chain iteration is used to compute a mean parameter estimate.

This results in 500 singleton parameter estimates for each of the two parameters. We use these

Fig 3. Simulated data. The simulated data was generated using a replication rate of λ = 0.70 hr−1 and four different

transmission biases (ρ). Samples were generated per experimental hour at a rate of 16 samples per hour. Data points

outlined in red were determined to be outliers by the IQR method.

https://doi.org/10.1371/journal.pcbi.1010107.g003
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500 singleton parameter estimates to form a 95% credible interval for each of the 36 parameter

and sampling rate combinations. We opted not to store each of the 500 AM chain iterations

and combine them to form the credible intervals due to the burden on storage capacity. We

present these results in Table 1.

In all cases we found that we can successfully detect differences in replication rates and

asymmetric transmission biases. As expected, we observed that increasing the sampling rate

led to more precise parameter estimates. In the cases where we estimate a symmetric transmis-

sion bias (ρ = 0.5), the credible intervals never capture this value. That is due to the fact that we

estimate ρ in the interval [0, 0.5] because of the symmetry in our model about the point ρ = 0.5

in the interval [0, 1]. However, in Table 1 we see that as we increase the sampling rate, the esti-

mates get closer to the true value of ρ = 0.5. In the experimental data we are interested in

removing outliers using the interquartile range (IQR) method [33], so we studied the effects of

removing possible “outliers” or extreme values using this method from our simulated data to

study the effects on our ability to recover the true parameter values. We found that removing

such outliers from our simulated data led to a slight improvement in our ability to recover the

true parameter values (see Table F in S1 Text).

Parameter inference on experimental data

After verifying that our methods allows us to recover known replication rate and transmission

bias parameters from simulated datasets, we apply our methods to experimental data from six

prion variants. We consider the propagon replication experiments for six Sup35 variants that

have alternative folds, aggregate to form propagons, and transmit the [PSI+] phenotype: Weak,

Sc37, Strong [34], RWTΔRPR, R15, and R2E1 [12]. The experimental results from propagon

recovery assays for the six prion variants are presented in Fig 4. Note that all variants exhibit

heteroscedasticity in the number of propagons in time.

We consider two variations of our model for the division of propagons among dividing

yeast cells. First we consider the model ZS≔ ZS(t, a; λ, ρ = 0.5), symmetric division of propa-

gons between dividing cells where our model collapses to the model first proposed by [35] and

we estimate the replication rate λ and fix the transmission bias at ρ = 0.5. Secondly we consider

Table 1. Credible intervals (95%) for parameter estimates on simulated data. The table summarizes the parameter inference results for twelve (λ, ρ) parameter pairs and

three sampling rates using data simulated from the ATP model.

θ 8 Samples/Hour 16 Samples/Hour 32 Samples/Hour

λ ρ λ ρ λ ρ λ ρ
0.5 0.2 (0.49,0.52) (0.19,0.21) (0.50,0.52) (0.19,0.20) (0.50,0.51) (0.20,0.20)

0.3 (0.49,0.53) (0.28,0.32) (0.49,0.51) (0.29,0.31) (0.50,0.51) (0.30,0.31)

0.4 (0.49,0.51) (0.38,0.42) (0.50,0.51) (0.39,0.41) (0.50,0.51) (0.39,0.41)

0.5 (0.49,0.50) (0.48,0.49) (0.50,0.50) (0.49,0.50) (0.50,0.50) (0.49,0.50)

0.7 0.2 (0.69,0.72) (0.19,0.21) (0.70,0.72) (0.19,0.21) (0.70,0.71) (0.20,0.20)

0.3 (0.69,0.73) (0.28,0.32) (0.69,0.71) (0.29,0.31) (0.69,0.71) (0.30,0.31)

0.4 (0.69,0.72) (0.38,0.42) (0.70,0.71) (0.39,0.41) (0.70,0.71) (0.39,0.41)

0.5 (0.69,0.70) (0.48,0.49) (0.70,0.70) (0.48,0.50) (0.70,0.70) (0.49,0.50)

0.9 0.2 (0.89,0.92) (0.19,0.21) (0.90,0.92) (0.19,0.21) (0.90,0.91) (0.20,0.20)

0.3 (0.89,0.93) (0.29,0.32) (0.89,0.91) (0.29,0.31) (0.90,0.91) (0.30,0.31)

0.4 (0.89,0.92) (0.39,0.42) (0.90,0.91) (0.39,0.41) (0.90,0.91) (0.39,0.41)

0.5 (0.89,0.91) (0.48,0.49) (0.90,0.90) (0.48,0.50) (0.90,0.90) (0.49,0.50)

https://doi.org/10.1371/journal.pcbi.1010107.t001
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the model ZA≔ ZA(t, a; λ, ρ), asymmetric transmission of propagons where we estimate both

the propagon replication rate λ and the propagon transmission bias ρ.

The general formulation of our likelihood also allows us to consider the possibility that the

start of the exponential phase of prion amplification begins at a time after the start of the

experiment (Fig 4). For this, application of the AM algorithm on the experimental data

faðtiÞg
m
i¼1

is performed by using the data where ti� TΔ for TΔ hours into the experiment (see

Tables A-E in S1 Text). Then we apply model selection to determine TΔ, the point of time into

Fig 4. Experimental propagon counts for six prion variants. This experimental data was obtained through propagon

recovery experiments (see the biological background section for more details). Data points outlined in red were

determined to be outliers by the IQR method.

https://doi.org/10.1371/journal.pcbi.1010107.g004
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the experiment that best describes the beginning of the exponential phase of propagon

replication.

In Table 2, we present the replication rate, transmission bias, the start of exponential growth

phase, and the percent model weight for the model, ZA or ZS, that best explains each dataset.

Through our analysis we found that a model which includes the cell replication rate and asym-

metric transmission of propagons during cell division (ZA), best explains the experimental

propagon recovery data for all prion variants (model weights > 99%, Table 2). In the case of

the Weak prion variant, we found that the dataset where outliers were kept and an asymmetric

division model, ZA, best explained the propagon dynamics for the Weak variant with a model

weight of 99.34%. For each variant we detected differences in the replication rates and trans-

mission bias. Across the six prion variants we detected propagon transmission biases, the pro-

portion of propagons transmitted to daughter cells, to be between 22% and 38%, ρ 2 (0.22,

0.38). For the three prion variants RWTΔRPR, Strong, and R15, we found a delay in the start

of the exponential growth phase of propagon replication. RWTΔRPR was found to have the

largest delay (TΔ = 2 hrs) before the beginning of the exponential growth phase, which was

identified from experimental data without the outliers identified through the IQR method.

Without the work to detect TΔ, we underestimate the replication rate for this variant (see

Tables C, G, and H in S1 Text).

The parameter estimates, corrected AIC, percent model weights, and the postprocessing of

the Metropolis chain iterations for all the cases considered are summarized in the methods

section.

Discussion and conclusion

In this work we presented a structured population model that generalizes the work presented

in [13, 35], to study propagon replication dynamics and the bias in their transmission among

proliferating yeast cells. We developed an inverse problem formulation that consists of an

interpretable likelihood formulation descriptive of the propagon recovery experiment. We first

verified that we could recover known propagon replication parameters from simulated data,

then used our inverse problem formulation to study propagon replication in six prion variants.

Additionally, the likelihood formulation allowed us to consider the presence of influential out-

liers and if there was a delay in observing the exponential phase of propagon replication in the

experimental data.

We were able to detect differences in propagon replication rates and bias in their transmis-

sion during cell division among the six prion variants that we studied. We found that the

Weak prion variant had a lower replication rate and transmission bias, λ = 0.88 hr−1 and ρ =

0.27 respectively, when compared to the Strong prion variant which had a higher replication

Table 2. Parameter estimates and credible intervals (95%) for six prion variants. The column labeled TΔ indicates the point of time into the experiment that best

describes the beginning of the exponential phase of propagon replication. The column labeled %W presents the percent model weight for ZA, the model for asymmetric

division of propagons. The asterisk (�) indicates the dataset not filtered for outliers (raw data) was selected using AICc.

Prion Variant Replication Rate (λ, hr−1) Transmission Bias (ρ, proportion) TΔ (hrs) %W Model

Weak 0.88(0.87,0.88) 0.27(0.26,0.27) 0� 99.34 ZA�

Sc37 0.81(0.79,0.82) 0.23(0.22,0.23) 0 100.0 ZA
RWTΔRPR 0.77(0.72,0.80) 0.31(0.29,0.33) 2 100.0 ZA
Strong 1.13(1.11,1.16) 0.36(0.34,0.38) 0.75 100.0 ZA
R15 1.14(1.10,1.18) 0.32(0.29,0.35) 0.75 100.0 ZA
R2E1 1.25(1.22,1.29) 0.29(0.26,0.33) 0 100.0 ZA

https://doi.org/10.1371/journal.pcbi.1010107.t002
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rate and transmission bias, λ = 1.13 hr−1 and ρ = 0.36 respectively. These findings are consis-

tent with previous studies of propagon size [7, 36], and fragmentation rates [8, 25] of Weak

and Strong propagons, where Weak propagons are larger and replicate at a lower rate than

Strong propagons, thus it would be reasonable to observe a higher rate of propagon replication

and a more significant transmission bias in Strong than in Weak.

In this work we detected differences in transmission biases for each of the six prion variants,

however the reason for these differences cannot be found with our current model formulation.

We would expect the transmission bias to be proportional to the volume of the daughter cell to

that of the mother and daughter volumes or ρ1� VD/(VM + VD)� 40%, and ρ2� VM/(VM +

VD)� 60%, as has been found in [15] for different prion variants not considered in this work.

From Table 3 adapted from [37], these ratios are generation dependent. However, our esti-

mates for the transmission biases remain close to these generational dependent values. There-

fore, it is possible that the differences in transmission biases we are capturing come from these

generation based volume differences. In future models, we will need to incorporate generation

based volume differences to discern differences in transmission biases from generation based

daughter cell volume.

To our knowledge our work is the first to use propagon amplification assays and a struc-

tured population model (ATP model) to recover both the propagon replication rate and the

transmission bias during cell division. The work in [13] uses propagon amplification assays

and a structured population model that assumes symmetric transmission of propagons

between dividing cells to determine propagon replication rates for two yeast variants but did

not directly address the asymmetric bias in propagon transmission during cell division. Sepa-

rate work presented in [15] has used curing experiments, where the application of GdnHCl

causes inhibition of propagon replication and leads to elimination of the [PSI+] phenotype

through dilution by cell division and a model that captures asymmetric cell division

through unequal transmission of propagons through cell division [38], to recover the propa-

gon transmission bias. They considered the propagon transmission bias as the probability of

propagon transmission to a budding daughter cell in their work. The curing experiment elimi-

nates [PSI+] phenotype and as such, a propagon replication rate cannot be computed. We note

that our model can also be used to calculate the asymmetric transmission bias using data from

curing experiments by setting the replication rate equal to zero (λ = 0 hr−1). The number of

propagons will decrease through asymmetric transmission of propagons between dividing

cells.

In this work we detail the importance of the propagon replication rate λ, the asymmetric

propagon transmission bias ρ and detection of a delay TΔ, before observing the exponential

growth phase of prion replication, to explain prion replication in a proliferating yeast cell col-

ony. In future work we intend to build on this framework by incorporating cell maturation, a

state during which cells can grow but cannot divide until they are fully mature. We have made

an effort to be clear about the difference between asymmetric cell division and asymmetric
transmission of intracellular constituents, but in future models we plan to incorporate cell vol-

ume into our models, so that we can distinguish between effects due to volume and those due

Table 3. Relative volume of daughter cells by generation. WhereVM is the mother cell volume and VD is the daughter

volume. This table was adapted from Table 2 in [37].

Generation 1 2 3 4

VD/(VD + VM) 0.40 0.32 0.29 0.25

https://doi.org/10.1371/journal.pcbi.1010107.t003
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to transmission bias. Also, in this work our intracellular propagon replication model assumed

exponential growth because a clear steady state, or carrying capacity, was not observed in the

experimental data, but perhaps by running the propagon amplification assays over a longer

period of time we would begin to observe such a steady state. This would require the applica-

tion of a more complex intracellular model to capture such a carrying capacity and would

require methods such as those presented in [39] to numerically solve such a propagon replica-

tion model. As previously mentioned, another possible application with our modeling frame-

work that we have not yet considered is the possibility of its application to study curing

experiments.

Methods

In this section we begin by presenting our model, a system of partial differential equations

(PDEs) for the intracellular process of propagon replication and their transmission through

the cellular process of division. We present intermediate quantities that allow the decoupling

of the PDE system and present the explicit solutions to the model that we consider in this

work. Then we show that the intermediate quantities used to derive explicit solutions facilitate

a likelihood formulation for parameter estimation and model selection. We describe how to

generate simulated data with the model solutions and that we can recover the true kinetic

parameters with our likelihood formulation and our implementation of the adaptive Metropo-

lis (AM) algorithm. We conclude this section by detailing how we overcome numerical issues

with the implementation of our likelihood formulation.

Asymmetric transmission of propagons model

We seek to model the number of propagons or a single prion variant in a population of actively

dividing cells. Let a(t) be the number of propagons a cell has t hours after dividing, then

da
dt
¼ Zða; θÞ ð1Þ

where η is the intracellular propagon amplification model that depends on the current number

of propagons a and θ, the kinetic parameter(s) that govern the propagon replication and trans-

mission dynamics (i.e. replication rate and transmission bias). We model the propagon distri-

bution dynamics in the yeast cell population Y(t, a), as evolving in time according to the

transport equation:

@

@t
Yðt; aÞ þ

@

@a
ðZða; θÞYðt; aÞÞ ¼ 0: ð2Þ

However, we are interested in tracking Yi(t, a), the distribution of propagons in cells that have

undergone i divisions, t hours since the start of the experiment (see Fig 5). These propagon

dynamics in the population of dividing cells are captured by the following system ofM + 1
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coupled PDEs, which we refer to as the Asymmetric Transmission of Propagons (ATP) model:

@

@t
Y0ðt; aÞ þ

@

@a
ðZða; θÞY0ðt; aÞÞ ¼ � ða0ðtÞ þ b0ðtÞÞY0ðt; aÞ;

@

@t
Y1ðt; aÞ þ

@

@a
ðZða; θÞY1ðt; aÞÞ ¼ � ða1ðtÞ þ b1ðtÞÞY1ðt; aÞ þ D1ðt; aÞ;

..

.

@

@t
Yiðt; aÞ þ

@

@a
ðZða; θÞYiðt; aÞÞ ¼ � ðaiðtÞ þ biðtÞÞYiðt; aÞ þ Diðt; aÞ;

..

.

@

@t
YMðt; aÞ þ

@

@a
ðZða; θÞYMðt; aÞÞ ¼ � ðaMðtÞ þ bMðtÞÞYMðt; aÞ þ DMðt; aÞ:

ð3Þ

The right hand side of each PDE captures the rate of cells lost in that generation from cell divi-

sion and cell death, and accounts for new cells from cell division in the previous generation.

Here αi(t) is the rate of cell division, and βi(t) the rate of cell death in the ith generation. The

rate of increase in the number of cells in the ith generation is represented by the term

Diðt; aÞ ¼ r� 1
1
ai� 1ðtÞYi� 1ðt; r� 1

1
aÞ þ r� 1

2
ai� 1ðtÞYi� 1ðt; r� 1

2
aÞ; ð4Þ

Fig 5. Asymmetric transmission of propagons model schematic. The model dynamics of intracellular propagon replication and cell division from

generation i to generation i + 1. The black arrow (!) illustrates the intracellular increase in the number of propagons over time. The remaining

parameters are detailed in the methods.

https://doi.org/10.1371/journal.pcbi.1010107.g005

PLOS COMPUTATIONAL BIOLOGY Estimating propagon replication rates and asymmetric transmission

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010107 July 1, 2022 13 / 21

https://doi.org/10.1371/journal.pcbi.1010107.g005
https://doi.org/10.1371/journal.pcbi.1010107


where ρ1 and ρ2 control the transmission of propagons between dividing cells. To maintain the

conservation of propagons during division we require ρ1 + ρ2 = 1, showing only one degree of

freedom or that if ρ1 = ρ 2 (0, 1), then ρ2 = 1 − ρ. Note that letting ρ1 = ρ2 = 1/γ reduces our

model to that proposed by [35]. Also, note that this formulation implies that for conservation

and symmetric transmission of propagons during cell division ρ = 1/γ = 1/2. The work by [40]

first generalized the work by [35] to study T cells traced with carboxyfluorescein diacetate suc-

cinimidyl ester to include their resting and cycling phases (delay in division) while considering

an asymmetric division with a system of delay hyperbolic PDEs. However, in our modeling

framework because of the duration of the experiment (8 hrs), we expect most cell divisions to

be the product of mature cells actively producing daughter cells so we do not consider syn-

chronous delays in division.

In this work, we are interested in determining the effect of ρ, the propagon transmission

biased between dividing cells. To this end, we can bound the number of cell divisions (M)

because the duration of the experiment of interest is finite. We bound the maximum number

of cell divisions up toM = 6 generations because yeast cells divide every 1.5 hours and the lon-

gest duration of the propagon recovery experiments considered in this work is eight hours.

Then to solve the ATP model, Eq (3), we must specify initial distributions for each generation

Y0ð0; aÞ ¼ UðaÞ and Yið0; aÞ ¼ 0 for all i > 0: ð5Þ

Where U(a), is the initial intracellular distribution of propagons at the start of the experiment.

Analytic solutions and model decomposition

The formulation of the ATP model, Eqs (3)–(5) presented in the methods, allows for computa-

tion of intermediate quantities that allow for the decoupling of population and intracellular

propagon dynamics in Eq (3). First, the total number of cells resulting from the ith division,

since the beginning of the experiment, at time t is given by

niðtÞ ¼
Z

R
Yiðt; aÞda; ð6Þ

where R depends on the intracellular propagon amplification dynamics model in Eq (1), and is

taken to be R = (0,1) in our work (see Corollary 1). The normalized density of propagons can

then be defined by

yiðt; aÞ ¼
Yiðt; aÞ
niðtÞ

; for niðtÞ > 0; ð7Þ

and yi(t, a) = 0 otherwise. This quantity represents the intracellular dynamics of the dividing

cells in our population of interest. We define the initial number of cells at the start of the exper-

iment by

N0 ¼

Z

R
Y0ð0; aÞda; ð8Þ

and the initial normalized propagon density

y0ð0; aÞ ¼
Y0ð0; aÞ
N0

: ð9Þ

Using the quantities defined above and Eq (3), the following theorem holds for Eq (1)

defined by an exponential growth model η(a; θ) = λa, where a 2 R = (0,1).
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Theorem 1. The solution of the system defined by Eqs (3) and (4), with initial conditions
given by Eq (5) is given by:

Yiðt; aÞ ¼ niðtÞyiðt; aÞ; for 0 � i � M; ð10Þ

in which:

1. ni(t) is the solution of the system of ODEs:

i ¼ 0 :
dn0

dt
¼ � ða0ðtÞ þ b0ðtÞÞn0;

for 1 � i � M :
dni
dt
¼ � ðaiðtÞ þ biðtÞÞni þ 2ai� 1ðtÞni� 1;

ð11Þ

where n0(0) = N0, and ni(0) = 0 for i� 1.

2. yi(t, a) is the solution to the PDE

@yiðt; aÞ
@t

þ
@ðZða; θÞyiðt; aÞÞ

@a
¼ 0 ð12Þ

with initial conditions yið0; aÞ≔ 1

2
Þ
iPi

k¼0
i
k

� �
rk� i

1
r� k

2
U rk� i

1
r� k

2
a

� ��
, and

3. the solution yi(t, a) satisfies the recursive property

yiðt; aÞ ¼
1

2
r� 1

1
yi� 1ðt; r

� 1

1
aÞ þ r� 1

2
yi� 1ðt; r

� 1

2
aÞ

� �
; ð13Þ

for all 0� i�M.

Unlike the theorems presented in [35] and [40], in Theorem 1 we highlight the fact that yi(t,
a) must satisfy Eqs (12) and (13), in order for Eq (10) to be a solution to the system defined by

Eq (3). This is to highlight that for non-linear intracellular dynamics models (Eq (1)), the prop-

erty given by Eq (13) may no longer be satisfied [39]. The proof of Theorem 1 follows the

structure of the proof in [35], therefore we simply outline the proof of Theorem 1 here.

Proof. First, we substitute the Yi(t, a) terms in Eq (3) with the decomposition given by Eq

(10). Then we simplifying the terms of Eq (3), and using Eqs (11) and (12) leads to the recur-

sive expression in Eq (13) completing the proof.

In this work we are modeling propagon replication where at the beginning of the experi-

ment the initial condition is that of a distribution of low propagon counts in the yeast cell pop-

ulation as observed in the propagon recovery data (see Fig 4). This initial low number of

propagons is followed by a period of exponential growth where a steady state in the number of

propagons is not yet observed. Corollary 1 captures this phase of growth, where we assume

that the rate of propagon replication is proportional to the current number of propagons pres-

ent within a yeast cell. This type of propagon proliferation assumes that there is an unlimited

amount of normally folded (soluble) protein that can be alternatively folded and lead to the

continued formation of prion propagons.

Corollary 1. The solution of the system defined by Eqs (3) and (4) with an intracellular pro-
pagon replication model η(t, a) = λa, is

Yiðt; aÞ ¼ niðtÞ
Xi

k¼0

i
k

� �

r1
k� ir2

� k expð� ltÞU r1
k� ir2

� ka expð� ltÞ
� �

for 0 � i � M: ð14Þ

Where ni(t) is the solution to Eq (11).
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Proof. Following [40], we solve Eq (12) via the method of characteristics. This yields

yiðt; aÞ ¼
�

1

2

�iXi

k¼0

i
k

� �

r1
k� ir2

� k expð� ltÞU r1
k� ir2

� ka expð� ltÞ
� �

for 0 � i � M:

To show that yi(t, a) satisfies the recursive property in Eq 13 we prove the equivalent expres-

sion yiþ1ðt; aÞ ¼ 1

2
r� 1

1
yiðt; r� 1

1
aÞ þ r� 1

2
yiðt; r� 1

2
aÞ

� �
holds, see S1 Text. Then, replacing yi(t, a)

in Eq (10), and inserting this result in Eq (3) proves Corollary 1.

The following corollary presented in [35] involves the solution of Eq (11) under a special

case of constant cell division rate αi(t) = α and constant cell death βi(t) = β. In [35] the authors

consider βi(t) = β> 0, but the solution also holds for β = 0, which is the assumption in this

work.

Corollary 2. Let αi(t) = α� 0 and βi(t) = β� 0, for all 0� i�M, the solution to Eq (11) is

niðtÞ ¼
ð2atÞi

i!
expð� ðaþ bÞtÞN0; for 0 � i � M: ð15Þ

Proof. Straightforward by plugging Eq (15) into Eq (11).

Likelihood problem formulation and model selection

In this work we are interested in estimating the kinetic parameters of our model, Eqs (3)–(5)

with the propagon amplification models presented in the methods, using experimental data.

We are interested in the probability of the observed data for a given value of the kinetic param-

eters θ of the parameter space Θ, denoted L(θ|Data). Let NðtÞ ¼
PM

i¼0
niðtÞ, the total number

of cells at time t, Zðt; a; θÞ ¼
PM

i¼0
Yiðt; aÞ represent the total yeast cell population propagon

density afterM cell divisions, and θ represent the kinetic parameters. Further, let the experi-

mental observations ak observed at time tk consisting of propagon counts be fðak; tkÞg
m
k¼1

(see

the Results section). Then, the likelihood of the kinetic parameters θ, given the propagon data

is defined as follows

LðθjDataÞ ¼
Ym

k¼1

Pðftk; akg; θÞ;

¼
Ym

k¼1

XM

i¼0

niðtkÞ
NðtkÞ

� �

yiðtk; ak; θÞ
� �( )

;

¼
Ym

k¼1

XM

i¼0

Yiðtk; ak; θÞ
NðtkÞ

;

¼
Ym

k¼1

Zðtk; ak; θÞ
NðtkÞ

:

ð16Þ

where P({tk, ak}; θ) is the probability of observing ak propagons at time tk given model parame-

ters θ. This probability is the product of
niðtkÞ
NðtkÞ

, the probability that the observation ak came from

a cell in the ith cell division and yi(tk, ak; θ), the probability that the cell in the ith cell division at

time tk contains ak propagons. The product of both terms is summed over the number of divi-

sions that can be observed during the experiment. This is because a cell at any point in the

experiment results from a finite number of cell divisions since the beginning of the

experiment.
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In this work we are interested in considering two mathematical modeling scenarios. The

first ZS(t, a; λ, ρ = 0.5), symmetric cell division where we estimate the posterior distribution of

the replication rate (λ) and fix the transmission bias at ρ = 0.5, and the second ZA(t, a; λ, ρ),

asymmetric cell division where we estimate the posterior distributions of the replication rate λ
and the posterior distribution of the propagon transmission bias ρ. With the likelihood formu-

lation we compute the Akaike Information Criterion (AIC)

AIC ¼ � 2 � logðLðθ̂jDataÞÞ þ 2K;

where θ̂ are the mean parameter estimates that best explain the data and K is the number of

free parameters [41]. To account for bias due to different number of parameters and data sizes,

we use the AIC bias correction

AICc ¼ AICþ
2KðK þ 1Þ

m � K � 1
;

wherem is the sample size [42]. These AICc values are used to compute the AICc difference

Di ¼ AICc
i � minðAICcÞ;

for the ith model and prion variant data. Finally, we can compute the relative model weights

Wi ¼
exp � 1

2
Di

� �

PM
m¼1

exp � 1

2
Dm

� � ;

of each model [43] with each prion variant dataset. We interpret this quantity as the probabil-

ity that a model is the best approximation to the replication and division of propagons during

cellular proliferation given the experimental data.

Adaptive metropolis algorithm

In this work we follow the procedure described in [44], a Metropolis algorithm with an adap-

tive Metropolis (AM) step to estimate the target distribution π(θ), with p kinetic parameter

variables Θ. Using an initial value for each kinetic parameter θ0, as the starting condition, a

random candidate θnew is drawn from a proposal distribution J of the parameters θ. Thus θnew
* J(θnew|θi−1), is drawn in every iteration.

The target distribution π(θ) is given using previously defined likelihood function L(θ|

Data),

pðθÞ ¼
LðθjDataÞp0ðθÞ

pðDataÞ
; ð17Þ

where the random parameter variables Θ have a known and possibly uninformative prior den-

sity π0(θ), pðDataÞ ¼
R

RpLðθjDataÞp0ðθÞdθ, and p is the dimension of the parameter set. In

this work we choose the noninformative prior π0(θ) = U(0, 1)p and J(θnew|θi−1) = N(θi−1; V) to

be normally distributed with covariance matrix V. The acceptance probability then follows

aðθnewjθi� 1Þ ¼ min 1;
pðθnewÞJðθi� 1jθnewÞ
pðθi� 1ÞJðθnewjθi� 1Þ

� �

¼ min 1;
LðθnewjDataÞ
Lðθi� 1jDataÞ

� �

: ð18Þ

In Eq (18), the terms involving J cancel because by design J is a symmetric proposal distribu-

tion. Now, with probability α(θnew|θi−1), we accept θnew, and set θi≔ θnew. Otherwise, with

probability 1 − α(θnew|θi−1), we set θi≔ θi−1.
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Following [45], the adaptive step is preceded by a non-adaptive period of length k where θ1,

θ2, � � �, θk are computed using an initial covariant matrix V0 = V. Following the non-adaptive

step, the covariance matrix is computed using the previous chain values

Vi ¼ spcovðθ0; θ1; . . . ; θiÞ þ εIp; for i � k: ð19Þ

Here sp is a design parameter that depends on p. The term εIp consists of the p-dimensional

identity matrix and ε� 0 to ensure that Vi remains positive definite. This formulation can

quickly incur large computational cost, but this cost can be drastically reduced by use of the

recursive update of the covariance [45]

Vi ¼
i � 2

i � 1
Vi� 1 þ

sp
i � 1

ði � 1Þθ̂ i� 2θ̂
T
i� 2
� iθ̂ði� 1Þθ̂

T
ði� 1Þ
þ θði� 1Þθ

T
ði� 1Þ

� �
: ð20Þ

In the application of the adaptive Metropolis algorithm to the simulated data and experi-

mental data, we take sp = 1.0, ε = 1 × 10−6, and

V0 ¼
s2
ll

s2
lr

s2
rl

s2
rr

" #

;

where s2
ll
¼ 0:1406, s2

lr
¼ s2

rl
¼ 0, and s2

rr
¼ 0:0156. A non-adaptive period length of

k = 1500 for the simulated data and experimental data were established using Geweke’s con-

vergence diagnostic as presented in [46], and performed a total of 2 × 106 iterations. We avoid

numerical issues in the direct evaluation of the likelihood formulation presented in Eq (16) by

working with natural-logarithm version of the acceptance probability in Eq (18) using the

numerically stable procedure outlined in the methods section.

To reduce the correlation among the AM estimates (θ), estimates after the burn-in period

and after thinning at regular intervals of 50 iterations are used in our work. We use the inte-

grated autocorrelation time (iac) as a measure of autocorrelation across the autocorrelation

function (ACF) [47]. The chain iteration and final iacs are included in Figs A and B in S1 Text.

Numerical implementation of the likelihood formulation

In our initial implementation of the likelihood formulation, we encountered significant

numerical underflow, so we opted to work with the natural-logarithm form of the likelihood

or log-likelihood. Recalling that NðtÞ ¼
PM

i¼0
niðtÞ and that ZðtÞ ¼

PM
i¼0
Yiðt; aÞ, taking the

natural logarithm of Eq (16), we have

ln LðθjDataÞ ¼
Xm

k¼1

ln ðZðt; a; θÞÞ � ln ðNðtÞÞ;

¼
Xm

k¼1

ln

 
XM

i¼0

Yiðtk; ak; θÞ

!

� ln

 
XM

i¼0

niðtkÞ

!

:

ð21Þ

Numerical evaluation of this log-likelihood is performed by generalizing the algebraic and

numerically stable property ln(a0 + a1) = ln(a0) + ln(1 + exp(ln(a1) − ln(a0))) where ln(a0)> ln

(a1). That is we evaluate ln ð
PM

i¼0
Yiðtk; ak; θÞÞ by applying the natural log directly to each ith

analytic model solution Yi(t, a; θ), then evaluating the resulting expression. The evaluation of

ln ð
PM

i¼0
Yiðtk; ak; θÞÞ is then found recursively using the ln (Yi(tk, ak; θ)) terms as follows: let

ln qi ¼ ln Yiðt; a; θÞjt¼tk;a¼ak , and q ¼ fln qjg
M
j¼0

be the sorted values ln qi in descending order,
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then ln ð
PM

i¼0
qiÞ is given by the numerically stable recursive function ξ as follows

x qð Þ ¼
qð1Þ jqj ¼ 1

qð1Þ þ lnð1þ expðxðqð� 1ÞÞ � qð1ÞÞÞ jqj > 1

(

ð22Þ

where |�| is the cardinality or the number of elements in q and the notation “* 1” indicates all

elements in q except the first. Implementing this formulation removed numerical underflow

when evaluating the likelihood formulation (Eq (16)).

Supporting information

S1 Text. Recursive property to corollary 1, additional notes on parameter estimation,

model selection, and experimental data.
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