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In the past decade, there have been remarkable advances in our understanding of the calcium
messenger system that mediates the effects of various agonists. The purpose of the present
article is to describe two areas of current interest in the calcium signaling field-quantal
calcium release and calcium entry into the cell-using the pancreatic acinar cell as a model.
Proposed mechanisms describing these phenomena and the role they play in the kinetics of
calcium movements in the cell are discussed.

OVERVIEW

The major function of the pancreatic acinar cell is to synthesize, store, and release
digestive enzymes [1]. The regulated secretion of digestive enzymes occurs in
response to a number of hormones and neurotransmitters [2,3]. The intracellular
messenger systems mediating secretion are of two separate types. Agents such as
vasoactive intestinal polypeptide and secretin cause secretion by activating adenylate
cyclase and increasing cyclic AMP. In contrast, cholinergic agents, cholecystokinin,
bombesin peptides, and substance P peptides activate phosphoinositide breakdown
and calcium transports. These processes, in turn, mediate enzyme secretion.

Historically, the pancreatic acinar cell has furnished an important model in
providing the initial observations about the phosphoinositide/calcium pathway. The
initial observation of phosphatidyinositol turnover was made, using pigeon pancre-
atic slices, by the Hokins in 1953 [4]. Inositol 1,4,5-trisphosphate was first demon-
strated to mobilize intracellular calcium stores by Streb et al. in 1983, using
permeabilized pancreatic acinar cells [5]. It is now generally accepted that agonists
such as cholecystokinin, cholinergic agents, bombesin peptides, and substance P
peptides cause a phospholipase C-mediated hydrolysis of the phosphorylated phos-
phatidylinositol derivative, phosphatidylinositol 4,5-bisphosphate, to inositol 1,4,5-
trisphosphate (IP3) and 1,2-diacylglycerol [3,6-8]. IP3, in turn, mobilizes calcium
from an internal store [5,9], while 1,2-diacylglycerol activates protein kinase C [6-8].
The release of calcium from the internal stores by the agonist is both rapid and

transient. Calcium release occurs within one to a few seconds, depending on the
concentration of agonist [10-14]. The release results in a rapid rise in free intracellu-
lar [Ca2+] ([Ca2+]i) [10-14]. The increase in [Ca2+]i causes activation of a plasma
membrane Ca2+ ATPase, resulting in Ca2+ efflux from the cell and a return of [Ca2+]i
toward resting levels [15]. Return of [Ca2+]i toward resting level takes place over an
interval of three to five minutes [10-14].
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After release of the intracellular pool of Ca2 , there is activation of Ca2+ entry
across the plasma membrane [3,16]. This calcium entry results in a sustained level of
[Ca2+]i during stimulation after the initial internal release. The level of [Ca2+]i
during sustained stimulation depends on the concentration of extracellular CaCl2
[17]. Both the internal Ca2+ release and Ca2+ entry have essential roles in mediating
enzyme secretion. The release of intracellular Ca2+ by agonists or Ca2+ ionophores
causes a burst in enzyme secretion, lasting about as long as the transient increase in
[Ca2+]i [6,10,17]. These results indicate that intracellular Ca2+ release alone causes
secretion. During sustained agonist stimulation, a continued increase in enzyme
secretion is dependent on extracellular CaCl2. That is, in the absence of extracellular
Ca2+, enzyme secretory rates return to resting levels after the transient increase in
[Ca2+]i [3,17].

Small concentrations of cholecystokinin-octapeptide, acetylcholine analogs, and
maximally effective concentrations of the cholecystokinin analog, JMV-180, cause
sustained oscillations of [Ca2+]i in the acinar cell [18-20]. Although the mechanism
of the [Ca2+]i oscillations is controversial, one would expect that each oscillatory
increase in [Ca2+]i would stimulate a burst in enzyme secretion.

QUANTAL CALCIUM RELEASE

Compared to a maximally effective dose, one would expect that release of calcium
from intracellular stores by submaximally effective doses of agonist or inositol
1,4,5-trisphosphate would occur at a slower rate but result in a complete release.
Observations from several laboratories indicate that this process is not the case
[21-26]. Both submaximally effective and maximally effective concentrations cause
rapid and transient release of calcium from the intracellular stores. The release by a
submaximally effective concentration is partial despite continued presence of agonist
or inositol 1,4,5-trisphosphate. This phenomenon has been called "quantal Ca2+
release."
There have been several models proposed to account for the cellular mechanism

of quantal calcium release. To date, none have been generally accepted. In one
model [21,23,27], it was proposed that the Ca2+ stores have varying sensitivities to
inositol 1,4,5-trisphosphate-induced Ca2+ release; that is, some compartments have a
high sensitivity to IP3 and release all of their Ca2+ with a low concentration of IP3.
Other stores have lower sensitivities to IP3 and require greater concentrations of IP3
to release Ca2+. A continuous gradient of sensitivities of the stores to IP3, then,
would account for the observed effects of both IP3 and the agonist.

In a variant of the above model [28-31], Irvine has proposed that the Ca2+ content
of the internal store regulates its sensitivity to IP3-induced Ca2+ release. In this
model, the entire pool is responsive to a submaximal concentration of IP3. The
resulting Ca2+ release decreases the pool Ca2+ content, which, in turn, decreases the
responsiveness of the pool to IP3-induced Ca2+ release. Thus, a greater concentra-
tion of IP3 would be necessary to release the remainder of the Ca2+ from the store. In
a third model [25,32], it has been proposed that, with a continuous IP3 stimulation,
there is a conversion of the Ca2+-releasing channel on the pool from an active to an
inactive state, independent of the Ca2+ content of the pool.
Although published reports describe the phenomenon of quantal Ca2+ release in a

variety of tissues, there has been no general agreement on the mechanism. The
experimental strategy commonly used to determine whether Ca2+ depletion of the
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pool results in a decrease in the sensitivity of the pool to IP3 has been first to partially
deplete the pool of Ca2+ with Ca2+ ionophores or IP3, followed by a measurement of
the potency of IP3 to release the remaining Ca2+ [26,27,29-31]. In some [26,30,31]
but not all [27] of these studies, results have been presented suggesting that luminal
Ca2+ regulates the sensitivity of Ca2+ release to IP3.

Using dispersed pancreatic acini, we found that the potency of cholecystokinin-
octapeptide (CCK-OP) to release Ca2+ from intracellular stores was unaltered by
partial Ca2+ depletion of the stores by a pre-stimulation with carbachol [33]. Because
carbachol and CCK-OP released Ca2+ from the same pool [10], these results
suggested that quantal release in the pancreatic acinar cell was not due to either
changing sensitivities of the pool to IP3 as a function of Ca2+ content or various
compartments with different sensitivities to IP3.
Of particular interest to this field was a recent experiment demonstrating that

quantal release occurred in lipid vesicles containing only purified IP3 receptors [25].
The quantal release phenomenon was independent of vesicular Ca2+ content.
Because the IP3 receptor contains the Ca2+ channel mediating IP3 effects on Ca2+
release [34], these results indicated that quantal release is an intrinsic characteristic
of the receptor.
As illustrated above, the biochemical mechanism of quantal Ca2+ release has not

been completely determined; however, the phenomenon of quantal release may
provide an important physiologic control. For example, as discussed earlier, the
pancreatic acinar cell contains several receptor classes that mediate Ca2+ release.
Successive applications of submaximally effective (physiologic) concentrations of
agonists interacting with a different class of receptors on the cell would result in
transient increases in [Ca2+]i, and each rise in [Ca2+]i could cause a cellular
response. A demonstration of such an effect has not yet been provided in the
literature.

CALCIUM ENTRY

For cells containing non-voltage-regulated Ca2+ entry mechanisms, it is now
generally accepted that the plasma membrane Ca2+ transport is regulated by the
intracellular Ca2+ store [35,36]. Specifically, depletion of the intracellular store by
IP3-induced Ca2+ release causes activation of the plasma membrane influx mecha-
nism. This mechanism has been referred to as the "capacitative model" by Putney
[35,36].

This model was proposed to account for the generally observed coupling between
intracellular Ca2+ release and cell Ca2+ entry in a variety of tissues [37-39]. Soon
after the discovery that the initial action of the agonist was to cause formation of IP3
which, in turn, released intracellular Ca2+ stores [40,41], Putney attempted to explain
the coupling in his first variation of the "capacitance" model [35]. In this model, he
proposed that depletion of the pool activated the pathway for Ca2+ entry because the
pool signaled the entry mechanism, using a close anatomic relationship between the
pool and the plasma membrane Ca2+ influx mechanism. The Ca2+ entered the pool
directly after crossing the plasma membrane. The depletion-activated Ca2+ influx,
would, in turn, provide Ca2+ for refilling the intracellular store. During continued
stimulation, Ca2+ release from the store would provide a source of Ca2+ to be
released into the cytoplasm.

Observations since Putney's first proposal suggested that Ca2+ does not enter the
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pool directly after influx across the plasma membrane. Experiments in both pancre-
atic acinar cells and parietal cells demonstrated that there was a mechanism for store
uptake of Ca2+ from the cytoplasm [41-44]. In these experiments, agonist action was
terminated just after release of Ca2+ from the store and before the Ca2+ was effiluxed
from the cell. The termination of agonist action resulted in complete reloading of the
stores from the cytoplasmic Ca2+. Muallem et al. [43] demonstrated that intracellular
Ca2+ buffers decreased the rate of refilling of the intracellular Ca2+ pools in
pancreatic acini, also suggesting that the route of refilling was cytoplasmic.

Experiments using the tumor promoter, thapsigargin, also suggested that the
depleted pool stimulated Ca2+ entry directly into the cytoplasm. Thapsigargin is a
pharmacologic tool that depletes intracellular stores by inhibiting the Ca2+-ATPase
responsible for loading the stores [45] without raising the levels of intracellular
inositol phosphates [46]. When thapsigargin was used to deplete intracellular stores,
[Ca2+]i increased when extracellular Ca2+ was present [47]. In addition to indicating
that Ca2+ entry was into the cytoplasm, these results suggested that inositol phos-
phates are not necessary for Ca2+ entry.
The most challenging issue at present is the elucidation of the mechanism by which

depletion of the internal stores signals the plasma membrane Ca2+ influx mechanism.
We have presented evidence that cyclic GMP may act to mediate activation of the
Ca2+ entry mechanism in the pancreatic acinar cell [48]. In brief, in pancreatic acinar
cells, as well as in other tissues, agonists that mobilize intracellular Ca2+ also cause
an increase in cyclic GMP [49,50]. We found that a pharmacologic agent, LY83583,
could inhibit the ability of the agonist, carbachol, to increase cyclic GMP without
altering Ca2+ mobilization by carbachol [48]; however, LY83583 inhibited Ca2+ entry
during carbachol stimulation and refilling of the intracellular pools at the termina-
tion of carbachol stimulation. The inhibition of refilling was due to a blockade of the
plasma membrane Ca2+ entry mechanism. Recent experiments suggest that deple-
tion of the intracellular Ca2+ stores by thapsigargin results in increased cellular cyclic
GMP [51]. The studies to date do not indicate how intracellular stores regulate cyclic
GMP formation or how cyclic GMP activates the Ca2+ entry mechanism. The
findings suggest, however, that the increase in cyclic GMP during agonist stimulation
is both necessary and sufficient to activate the Ca2+ entry mechanism.

Irvine has proposed that the phosphorylated metabolite of IP3, inositol 1,3,4,5-
tetrakisphosphate (IP4), has a role in mediating Ca2+ entry [52-54]. This proposal
came initially from observations in sea urchin eggs, where it was found that the full
fertilization response could be elicited with a combination of IP3 and IP4 in the
presence of external Ca2+ [52]. IP3 alone was insufficient. Subsequently, electrophys-
iologic studies of Ca2+-activated K+ channels in lacrimal cells demonstrated that IP3
alone caused only a transient activation [53,54]. The addition of IP4 and external
Ca2+ were necessary for sustained activation [53,54]. Although these results suggest a
possible role for IP4 in mediating Ca2+ influx, they contradict the interpretation of
findings with thapsigargin discussed earlier. That is, thapsigargin depletes internal
stores and activates Ca2+ influx without changing cellular inositol phosphates. Thus,
it is probable that IP4 is not necessary for regulation of the influx mechanism.

In conclusion, the weight of the evidence suggests that Ca2+ influx in non-excitable
cells is activated by IP3-induced depletion of intracellular Ca2+ stores. The Ca2+
enters across the plasma membrane into the cytoplasm, where it maintains [Ca2+]i
and provides a source of Ca2+ for reloading the internal stores. The nature of the
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mechanism mediating the communication between the stores and the plasma mem-
brane has not been established. We have proposed a role for cyclic GMP in this
process. Further work is necessary to complete this story.
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