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Ammonium tetrathiomolybdate triggers autophagy-dependent
NRF2 activation in vascular endothelial cells
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Ammonium tetrathiomolybdate (TTM) is a copper chelator in clinical trials for treatment of Wilson’s disease, tumors and other
diseases. In the current study, we innovatively discovered that TTM is a novel NRF2 activator and illustrated that autophagy
contributed to TTM-induced NRF2 activation. We showed that TTM treatment promoted NRF2 nuclear translocation and
upregulated transcription level of NRF2 target genes including HMOX1, GCLM, and SLC7A11 in vascular endothelial cells (HUVECs).
Moreover, NRF2 deficiency directly hindered TTM-mediated antioxidative effects. Followingly, we revealed that overexpression of
KEAP1, a negative regulator of NRF2, significantly repressed NRF2 activation induced by TTM. Further mutation analysis revealed
that KEAP1 Cys151 is a major sensor responsible for TTM-initiated NRF2 signaling, suggesting that KEAP1 is involved in TTM-
mediated NRF2 activation. Notably, we found that TTM can trigger autophagy as evidenced by accumulation of autophagosomes,
elevation of LC3BI-II/I, increase of LC3 puncta and activation of AMPK/mTOR/ULK1 pathway. Autophagic flux assay indicated that
TTM significantly enhanced autophagic flux in HUVECs. Inhibition of autophagy with knockout of autophagy key gene ATG5
resulted in suppression of TTM-induced NRF2 activation. TTM also induced phosphorylation of autophagy receptor SQSTM1 at
Ser349, while SQSTM1-deficiency inhibited KEAP1 degradation and blocked NRF2 signaling pathway, suggesting that TTM-induced
NRF2 activation is autophagy dependent. As the novel NRF2 activator, TTM protected against sodium arsenite (NaAsO2)-induced
oxidative stress and cell death, while NRF2 deficiency weakened TTM antioxidative effects. Finally, we showed that autophagy-
dependent NRF2 activation contributed to the protective effects of TTM against NaAsO2-induced oxidative injury, because of ATG5
or SQSTM1 knockout aggravated NaAsO2-induced elevation of HMOX1, cleaved PARP and γH2AX. Taken together, our findings
highlight copper chelator TTM is a novel autophagy-dependent NRF2 activator and shed a new light on the cure for oxidative
damage-related diseases.
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INTRODUCTION
Ammonium tetrathiomolybdate (TTM) is a copper chelator in
clinical trials for treatment of Wilson’s disease, an autosomal
recessive inherited disorder of copper metabolism [1]. Surpris-
ingly, growing evidences have shown that TTM has many other
potential clinical applications. For instance, TTM can inhibit tumor
growth and angiogenesis and is regarded as a potential drug for
tumor clinical therapy [2–5]. It has also been demonstrated that
TTM can be used as an effective therapeutic agent against
Alzheimer’s disease through promoting non-amyloidogenic pro-
cessing of amyloid-β precursor protein [6]. Given its excellent anti-
inflammatory properties, TTM can mitigate cardiovascular risk
factors-induced endothelial dysfunctions and then prevent the
development of cardiovascular disease including atherosclerosis
[7], pulmonary arterial hypertension [8] and abdominal aortic

aneurysm [9]. Nevertheless, the molecular mechanism underlying
the protective effects of TTM has not yet been fully elucidated.
Reactive oxygen species (ROS) are a group of active molecules

including superoxide anions, hydrogen peroxide, hydroxyl radical
and other highly reactive molecules, which derived from
molecular oxygen during reduction-oxidation (redox) reactions.
Intracellular ROS homeostasis is crucial for cell metabolism and
cell fate. Low levels of ROS are essential for triggering cell
protective machineries including antioxidant and anti-
inflammatory activities. However, excessive ROS result in increased
oxidative stress in cell and induce oxidation of cellular macro-
molecules such as nucleic acids, proteins and lipids [10]. Extensive
studies have revealed that oxidative stress and vascular inflam-
mation are two major molecular mechanisms contributing to
vascular injury and increased cardiovascular disease risk [11].
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Nuclear factor erythroid 2-related factor 2 (NFE2L2, also
named as NRF2) is a master antioxidant response regulator that
transcriptionally regulates many antioxidant proteins including
heme oxygenase 1 (HMOX1), glutamate-cysteine ligase modifier
subunit (GCLM), sequestosome 1 (SQSTM1) and solute carrier
family 7 member 11 (SLC7A11). Emerging studies has demon-
strated that NRF2 maintains cellular redox homeostasis in
cardiovascular system and protects against endothelial dysfunc-
tion and vascular disease. Aging-induced NRF2 dysfunctions
disrupted cellular oxidative and inflammatory balance and
consequently caused vascular cognitive impairment and
dementia [12]. In addition, NRF2 deficiency obviously induced
atherosclerotic plaque instability through triggering systemic
inflammation and oxidative stress in hypercholesterolemic mice
[13]. Conversely, Dai et al. demonstrated that biomechanical
forces activated NRF2 signaling via phosphoinositol 3-kinase/
AKT-dependent pathway, which regulated endothelial cells
redox homeostasis and attenuated high fat diet-induced
atherosclerosis [14]. These data indicate that NRF2 is a potential
therapeutic target for treatment of oxidative stress-induced
vascular disease.
Currently, multiple pharmacologic inducers of NRF2 are

subjected to clinical trials, which shed a new light on treatment
for cardiovascular diseases and other diseases [15, 16]. For
example, sulforaphane is an electrophilic NRF2 activator that
plays a protective role against COPD, angiotensin II-induced
cardiomyopathy and other diseases [17–19]. Resveratrol, a
polyphenolic NRF2 inducer derived from grapes, improves
vascular functions in hypertensive patients and inhibits athero-
sclerosis by reducing expression of intercellular adhesion
molecule-1 [20, 21]. Recently, Ryo Kurosawa et al. screened
thousands of compounds from original library and identified
celastramycin as a novel NRF2 activator, which could obviously
reduce cellular ROS levels and ameliorate pulmonary arterial
hypertension [22]. Despite this, it is meaningful to find safer and
more effective NRF2 inducer that have entered clinical evaluation
for treatment of cardiovascular disease.
In this work, we demonstrate that clinical copper chelator TTM

is a novel NRF2 activator which increases NRF2 protein level and
transcriptionally activates NRF2 downstream antioxidant mole-
cules. Mechanistically, TTM enhances autophagic flux via AMPK/
mTOR/ULK1 pathway, and then promotes degradation of negative
regulator KEAP1 by autophagy. In addition, we show that TTM
inhibits oxidative stressor NaAsO2-induced oxidative injury and
cell death in HUVECs. These findings highlight copper chelator
TTM is a novel NRF2 activator and shed a new light on oxidative
damage and cardiovascular disease.

MATERIALS AND METHODS
Regents
Ammonium tetrathiomolybdate (TTM, #323446) and chloroquine dipho-
sphate salt (CQ, #C6628) were purchased from Sigma-Aldrich (St. Louis,
MO, USA). MG132 (#S1748) and dihydroethidium (DHE, #S0063) were
obtained from Beyotime (Shanghai, China). Tert-butylhydroquinone
(tBHQ, #HY-100489) was purchased from MedChemExpress (Shanghai,
China). Bafilomycin A1 (BafA1, #sc-201550) was purchased from Santa
Cruz Biotechnology (Santa Cruz, CA, USA). Sodium arsenite (NaAsO2,
#H4525) was obtained from Xiya Reagent (Shandong, China).
7-aminoactinomycin D (7-AAD, #AP104) and Annexin V FITC/ Propidium
iodide (PI) apoptosis kit (#70-APCC101-100) were obtained from
MultiSciences (Hangzhou, China). Dulbecco’s Modified Eagle Medium
(DMEM, #C11995500BT) was purchased from Gibco (Grand Island, NY,
USA). Fetal bovine serum (FBS, #S711-001S) was purchased from
Lonsera (Shanghai, China). Penicillin-streptomycin (#15140122) was
obtained from Thermo Fisher Scientific (Waltham, MA, USA). Puromycin
(#P8230) was purchased from Solarbio (Beijing, China). CellTiter 96®
Aqueous One Solution Cell Proliferation Assay (MTS) kit (#G3581) was
obtained from Promega (Madison, WI, USA).

Cell culture
Human umbilical vein endothelial cell line (HUVECs, CRL-1730), a well-
accepted vascular endothelial cell model, was obtained from American
Type Culture Collection (Manassas, VA, USA). Human embryonic kidney
293T/17 (HEK293T/17) cells and human cervical cancer cell line Hela were
purchased from National Collection of Authenticated Cell Cultures
(Shanghai, China). All cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% (vol/vol) FBS and 100 U/mL
penicillin-streptomycin in 5% CO2 incubator at 37 °C. All cell lines are
negative for mycoplasma contamination and confirmed by Short Tandem
Repeat (STR) DNA profiling.

Stable cell line construction
The HUVECs RFP-GFP-LC3 reporter cell line was established as described in
our previous study [23]. Gene knockout cell lines are constructed using
CRISPR/Cas9 system. The CRISPR/Cas9 lentivirus plasmid lentiCRISPRv2
(Plasmid #52961) was purchased from Addgene (Watertown, MA, USA).
The small guide RNAs (sgRNAs) targeting NRF2, ATG5 and SQSTM1 were
synthesized and inserted into BsmBI-digested lentiCRISPRv2. The lentivirus
plasmids were co-transfected with lentivirus packaging plasmids psPAX2
(Plasmid #12260, Addgene) and pMD2.G (Plasmid #12259, Addgene) with
4:3:2 ratio using Neofect™ DNA transfection reagent (Neofect, Beijing,
China). Then, HUVECs were infected with filtered lentivirus supernatant
and selected with puromycin (10 μg/ml). The knockout efficiency was
validated by Sanger sequencing and western blotting.

MTS cell viability assay
Cells were seeded in wells of a 96-well tissue culture plate for overnight
and then treated with thiol-reactive oxidative stressor NaAsO2 with or
without copper chelator TTM for 24 h. Cell viability was detected using
CellTiter96® Aqueous One Solution Cell Proliferation Assay Kit (#G3582,
Promega) in a microplate reader (Molecular Devices Corp, Sunnyvale, CA,
USA) according to the manufacture’s protocol.

Animal treatment and immunohistochemistry
Female C57BL/6J mice (age 6–8 weeks, weight 18–20 g) were obtained
from Experimental Animal Center of Chongqing Medical University. Animal
experiments were approved by the Institutional Animal Care and Use
Committee of Chongqing Medical University. The mice were randomly
divided into two groups (8 mice per group): Control group and TTM group.
After a week adaption, the TTM treatment group of mice were gavaged
with 30mg/kg of TTM twice a day for 7 consecutive days. The mice were
killed and the liver were obtained for further immunohistochemistry assay
as described in our previous study [24].

Western blotting
Cells were washed with phosphate-buffered saline (PBS) and lysed with
2×sodium dodecyl sulfate (SDS) loading buffer (0.5% sucrose, 0.2%
bromophenol blue, 5% β-mercaptoethanol and 2% SDS) for 15 min at
4 °C. The liver tissues were homogenized by a tissue homogenizer in
cold RIPA lysis buffer (Cat# P0013B, Beyotime) and centrifuged at
14,000×g for 15 min at 4 °C. The supernatants were collected for
western blotting. All lysates were heated in a metal bath for 5 min at
100 °C and subjected to western blotting. The following primary
antibodies were used: NRF2 (#16396-1-AP, 1:1,000, Proteintech), KEAP1
(#8047S, 1:3,000, Cell Signaling Technology), HMOX1 (#66743-1-Ig,
1:3,000, Proteintech), GCLM (#A5939, 1:3,000, Bimake), SLC7A11
(#ab175186, 1:1,000, Abcam) LC3B (#L7543, 1:3,000, Sigma), SQSTM1
(#18420-1-AP, 1:3,000, Proteintech), p-SQSTM1 (Ser349) (#16177, 1:1000,
Cell Signaling Technology), ATG5 (#9980S, 1:3,000, Cell Signaling
Technology), p-mTOR (Ser2448) (#5536S, 1:1000, Cell Signaling Tech-
nology), p-AMPKα (Thr172) (#2535T, 1:1,000, Cell Signaling Technology),
p-ULK1 (Ser757) (#14202T, 1:1,000, Cell Signaling Technology), Cleaved
PARP (#5625, 1:1,000, Cell Signaling Technology), γH2AX (#9718, 1:3,000,
Cell Signaling Technology), GAPDH (#60004-1-Ig, 1:6,000, Proteintech)
and β-Actin (#HC201-01, 1:10,000, TransGen). The following secondary
antibodies were used: HRP-conjugated goat anti-rabbit IgG (#7074S,
1:10,000, Cell Signaling Technology) and HRP-conjugated goat anti-
mouse IgG (#7076S, 1:10,000, Cell Signaling Technology). The Image J
software (NIH, Bethesda, MD, USA) was used for quantification of band
intensity of western blotting. All full and uncropped western blotting
bands are uploaded as “Supplementary Material-Original Western
Blotting Bands”.
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Quantitative PCR Assay
Total RNA was extracted using Eastep®Super Total RNA Extraction Kit
(#LS1040, Promega) and then reversely transcribed into cDNA using
Hiscirpt® II Q RT SuperMix for quantitative PCR (qPCR; +gDNA wiper) Kit
(#R233-01, Vazyme, Nanjing, China) according to the manufacturer’s
instructions. qPCR was performed using ChamQ Universal SYBR qPCR
Master Mix (#Q711-02/03, Vazyme) under a CFX96 Touch Real-Time PCR
Detection System (Bio-Rad, Hercules, CA, USA). The results were
calculated using the 2-ΔΔCt method.

Immunofluorescence assay
Cells were seeded on glass coverslips in 24-well plates for overnight and
then treated with 100 μM TTM for 12 h. Followingly, cells were fixed with
cold 4% paraformaldehyde for 15 min and permeabilized with 0.2%
Triton X-100 for 15 min at room temperature. After washing with PBS,
cells were blocked with 2% bovine serum albumin for 1 h at room
temperature and then incubated with primary antibody against NRF2
(#16396-1-AP, 1:100, Proteintech) at 4 °C for overnight. After washing
three times with PBS, the cells were incubated with Alexa Fluor 594-
conjugated donkey anti-rabbit IgG secondary antibodies (#A-21207,
1:500, Thermo Fisher Scientific) and 4′,6-Diamidino-2-Phenylindole,
Dilactate (DAPI, #D3571, Invitrogen) for 1 h at room temperature.
Finally, coverslips were rinsed with PBS and sealed with nail polish. The
coverslips were observed under a Nikon A1R confocal microscope
(Nikon, Tokyo, Japan).

Transmission electron microscope
After treatment with TTM, cells were detached by trypsin/EDTA and
centrifuged for 5 min at 100×g. Next, the cell pellets were incubated with
4% glutaraldehyde followed by 1% osmium tetroxide. After dehydration in
a graded series of alcohol and acetone, cells were embedded in Epon 812
(Electron Microscopy Sciences, Hatfield, PA, USA). Ultrathin sections were
cut on a Leica EM UC7 Ultramicrotome (Leica, Wetzlar, Germany), and then
poststained with uranyl acetate and lead citrate. Transmission electron
microscope (TEM) images were taken under a JEM-1400 Plus transmission
electron microscope (JEOL Ltd. Tokyo, Japan).

Small interfering RNA transfection
HUVECs were seeded in a 12-well plate for overnight and then transfected
negative control siRNA (siGFP, GCAGCACGACUUCUUCAAGUU) or siRNA
targeting NRF2 (siNRF2, GGUUGAGACUACCAUGGUU) for 48 h using RNAi-
Mate (#G04001, Gene Pharma, Shanghai) according to the manufacturer’s
instruction. RNAi efficiency was detected with western blotting analysis.

Fluorescence activated cell sorting
After treatment, cells were digested by trypsin/EDTA and collected by
centrifugation for 5 min at 100 × g. Then, cells were stained with DHE,
7-AAD and Annexin V-FITC/PI fluorescent probes for 15min at 4 °C in the
dark, respectively. The stained cells were detected under a CytoFLEX flow
cytometry (Beckman Coulter, Miami, FL, USA). All Fluorescence activated
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Fig. 1 Copper chelator TTM activates NRF2 antioxidative signaling in HUVECs. A Immunofluorescence analysis of NRF2 in HUVECs after
treatment with 100 μM TTM for 12 h. MG132 was used as a positive control. The nucleus was stained with DAPI. Scale bar, 20 μm. B Western
blot analysis and quantification of NRF2, HMOX1 and GCLM in HUVECs treated with different dose of TTM for 12 h. β-Actin was used as loading
control. C Western blot analysis and quantification of NRF2, HMOX1, GCLM and GAPDH in HUVECs treated with 100 μM TTM for indicated
time. D Western blot analysis and quantification of NRF2, HMOX1, GCLM and β-Actin (loading control). HUVECs were transfected with siNRF2
or siGFP (control) for 48 h and then treated with 100 μM TTM for 12 h. E Western blot analysis and quantification of NRF2, HMOX1, GCLM and
β-Actin in TTM-treated normal (WT) or NRF2 knockout (NRF2 KO) cells. F Quantification of mRNA levels of HMOX1, GCLM and SLC7A11 in siNRF2-
transfected cells. One-way ANOVA followed by a Tukey multiple comparison test was used for statistical analysis. *p < 0.05. G Western blot
analysis and quantification NRF2 downstream proteins including HMOX1, GCLM and SLC7A11 in TTM-treated HUVECs with or without 10 µM
tBHQ for 12 h.
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cell sorting (FACS) data were analyzed by FlowJo™ v10 Software BD
Biosciences (San Jose, CA, USA).

Statistical analysis
Each experiment was repeated for at least three times with similar results
obtained. Data are presented as mean ± standard deviation (S.D.).
Unpaired Student’s t test and one-way ANOVA followed by Tukey multiple
comparison test were used for statistical analysis in this study. *p < 0.05
was considered statistical significance. All statistical tests were performed
using GraphPad Prism 9.3 (GraphPad Software, San Diego, CA, USA).

RESULTS
Copper chelator TTM activates NRF2 antioxidative signaling in
vascular endothelial cells
Previous studies have revealed that tetrathiomolybdate (TTM), a
specific copper chelator, is able to alleviate vascular injury and
inhibit atherosclerotic lesion development in apolipoprotein
E-deficient mice [7, 25]. In this study, we firstly found that TTM
activated NRF2 antioxidative signaling as evidenced by an
increase of nuclear localization of NRF2 in TTM-treated HUVECs
(a human endothelial cell line; Fig. 1A). We also showed that TTM
increased NRF2 levels and upregulated its downstream antiox-
idant proteins including HMOX1 and GCLM in HUVECs (Fig. 1B, C).
Moreover, we investigated the effects of TTM on NRF2 activation

in mice model and showed that TTM treatment obviously
increased protein levels and nuclear translocation of NRF2 in liver
blood vessels (Fig. S1B, C). To further verify TTM regulates
NRF2 signaling, NRF2 mRNA levels were knocked down using
small interfering RNA (siRNA). Results showed that the upregula-
tion of HMOX1 and GCLM induced by TTM was obviously inhibited
in siNRF2-transfected cells (Fig. 1D). Moreover, we showed that
NRF2 knockdown suppressed transcription of NRF2 target genes
including HMOX1, GCLM, and SLC7A11, suggesting TTM treatment
indeed triggers NRF2 signaling pathway in HUVECs (Fig. 1F). In
addition, we constructed a NRF2 knockout cell line (NRF2-KO)
using CRISPR/Cas9 and confirmed that NRF2 knockout remarkably
decreased protein levels of HMOX1 and GCLM induced by TTM
(Fig. 1E). Finally, we further revealed that protein levels of NRF2
downstream molecules were intensely upregulated in tBHQ (an
activator of NRF2)-treated HUVECs (Fig. 1G). These data suggest
copper chelator TTM is a novel NRF2 activator and has potential in
treatment for oxidative stress-induced cardiovascular diseases.

KEAP1 is implicated in NRF2 activation in TTM-treated
vascular endothelial cells
It is well documented that KEAP1 acts as a negative regulator of
NRF2 signaling. To confirm whether KEAP1 is implicated in TTM-
regulated NRF2 activation, we firstly detected protein levels of
KEAP1 in TTM-treated HUVECs. Our results showed that TTM
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30, 100, or 300 μM TTM-treated HUVECs. β-Actin was used as loading control. B Western blot analysis and quantification of KEAP1 and GAPDH
in HUVECs treated with TTM (100 μM) for 0, 3, 6, 9, and 12 h, respectively. C qPCR analysis mRNA levels of HMOX1, GCLM, SLC7A11 in KEAP1-OE
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treatment did not affect protein levels of KEAP1 in HUVECs (Fig.
2A, B). Despite this, we found that KEAP1 overexpression (KEAP1
OE) considerably prevented transcriptional upregulation of NRF2
target gene including HMOX1, GCLM and SLC7A11 induced by TTM
(Fig. 2C). Meanwhile, KEAP1 OE prevented the activation of
NRF2 signaling and decreased protein levels of HMOX1 and GCLM
in TTM-treated cells (Fig. 2D). Keap1 cysteine 151 (C151) is crucial
for KEAP1-NRF2 interaction [26]. The substitution of C151 to serine
(C151S) reduces KEAP1 sensitivity to oxidative or electrophilic
stimuli, consequently stabilizing KEAP1-NRF2 complex and leading
to degradation of NRF2 in ubiquitin-proteasome system. On the
contrary, the substitution of C151 to alanine (C151A) facilitates
NRF2 release from KEAP1-NRF2 complex and promotes
NRF2 signaling activation [27]. Our results showed that TTM
promoted stabilization of exogenous NRF2-Myc, whereas KEAP1-

Flag overexpression accelerated degradation of NRF2-Myc in TTM-
treated cells. More importantly, Keap1 C151S mutant further
promoted NRF2-Myc degradation, while KEAP1 C151A mutant
remarkably induced the accumulation of NRF2-Myc in TTM-treated
cells (Fig. 2E). These results indicate that KEAP1 is implicated in
NRF2 activation induced by TTM and KEAP1 cysteine 151 is a
major sensor for TTM-mediated activation of NRF2 antioxidant
signaling.

TTM enhances autophagy flux in vascular endothelial cells
Autophagy is a highly conserved process that regulates degrada-
tion of misfolded protein and damaged organelles in a lysosome-
dependent manner [28]. Taguchi et al. previously reported that
autophagy regulates NRF2 signaling via promoting KEAP1
autophagic degradation [29]. Therefore, we explored whether
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autophagy modulates NRF2 activation induced by TTM. TEM
images showed that TTM treatment significantly induced accu-
mulation of autophagosomes (double membrane vesicles) in
HUVECs (Fig. 3A). We further showed that TTM treatment
increased LC3B (a reliable marker to labeling autophagosomes)
fluorescence signal in HUVECs (Fig. 3B). In addition, we showed
that TTM treatment obviously upregulated protein levels of LC3B-II
in HUVECs and in mice liver tissues (Figs. 3C and S1B). Since the
accumulation of LC3B-II and autophagosomes results mainly from
either autophagy activation or impaired autophagy flux, we
determined the autophagic flux in TTM-treated cells using
lysosome inhibitors including chloroquine (CQ) and bafilomycin
A1 (BafA1). Our results revealed that TTM increased protein levels
of LC3B-II and SQSTM1, and these two proteins were further
increased in cells co-treated with lysosome inhibitor and TTM,
suggesting that TTM does enhance autophagic flux in HUVECs
(Fig. 3D). Furthermore, we used a tandem RFP-GFP-LC3 construct
to monitor autophagic flux. The GFP fluorescence is quenched at
lysosome acidic conditions (pH < 5.5), whereas RFP fluorescence is
not affected in acidic lysosomes. Accordingly, RFP-GFP-LC3 puncta
shows both GFP and RFP fluorescence (merged as yellow LC3
dots) in autophagosomes, but exhibits only RFP fluorescence (RFP
LC3 dots) in autolysosomes. Our results showed that TTM
treatment remarkably increased RFP LC3 dots in HUVECs. More-
over, combined treatment with BafA1 and TTM increased more
yellow LC3 dots than BafA1 separate treatment group, indicating
that TTM stimulates autophagy but does not impairs autophagic
flux in HUVECs (Fig. 3E). To conclude, these data demonstrate that
TTM enhances autophagic flux in vascular endothelial cells.

Autophagy modulates NRF2 activation induced by TTM
To verify whether autophagy participates in TTM-induced NRF2
activation in HUVECs, we constructed a stable ATG5 knockout
(ATG5-KO) cell line using CRISPR/Cas9. We firstly verified the ATG5
knockout efficiency and autophagic flux blockage in HUVECs (Fig.
4A). Then, the results revealed that the upregulation of NRF2 and

its downstream molecules induced by TTM was significantly
compromised in ATG5-KO cells (Fig. 4A). Subsequently, qRT-PCR
results showed that ATG5 knockout considerably repressed
transcription of NRF2 target genes HMOX1, GCLM, and SLC7A11
(Fig. 4B). Accumulating evidences have revealed that autophagy
adapter SQSTM1/p62 is implicated in autophagy-medicated NRF2
activation. The phosphorylated SQSTM1 (at serine 349) shows high
affinity to KEAP1, resulting in the release of NRF2 from KEAP1-
NRF2 complex and activation of NRF2 antioxidant signaling
pathway [30, 31]. In this study, we showed that TTM induced
the phosphorylation of serine 349 of SQSTM1 in HUVECs (Fig. 4C).
Furthermore, SQSTM1 knockout resulted in significant accumula-
tion of KEAP1 and prevented the activation of TTM-mediated
NRF2 signaling pathway, suggesting that TTM activates NRF2
antioxidant pathway via SQSTM1-dependent manner (Fig. 4D). We
further investigated the upstream signaling pathway that
participates in TTM-regulated autophagy pathway. Immunoblot-
ting results revealed that TTM increased phosphorylation level of
p-AMPKα (T172), while decreased protein levels of p-mTOR
(S2448) and p-ULK1 (S757) in HUVECs, indicating TTM induces
autophagy through activating AMPK/mTOR/ULK1 pathway (Fig.
4E).

TTM protects against NaAsO2-induced oxidative stress in an
NRF2-dependent manner
Furthermore, we demonstrated the functional roles of TTM-
regulated NRF2 signaling under oxidative injury induced by
NaAsO2, a well characterized oxidative stress inducer. Cell
morphology analysis and cell viability assay showed that
NaAsO2 exposure obviously induced cell death in HUVECs
characterized by cell shrinking, rounding up and falling off
(Figs. 5A and S1D). Moreover, we showed that TTM protected
HUVECs from NaAsO2-induced cellular damage (Fig. 5A). Our
results further revealed that TTM considerably alleviated
NaAsO2-induced apoptotic cell death in a dose-dependent
manner (Figs. 5B and S1E). The results also showed that TTM
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treatment decreased protein levels of cleaved PARP (an
apoptotic marker) and γH2AX (a sensor of DNA damage)
induced by NaAsO2 exposure (Fig. 5C). FACS data showed that
TTM decreased ROS levels and significantly repressed 7-AAD
fluorescence (an apoptotic probe) in NaAsO2-treated HUVECs
(Fig. 5D–G). More importantly, we demonstrated that NRF2

knockout undermined protective effects of TTM against
NaAsO2-induced cell death (Figs. 5H and S1F). Immunoblotting
results revealed that NRF2 knockout significantly elevated
protein levels of cleaved PARP and γH2AX in cells co-treated
with NaAsO2 and TTM (Fig. 5I). Consistently, FACS data
demonstrated that NRF2 knockout enhanced cellular oxidative
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stress and exacerbated cell death in cells co-treated with
NaAsO2 and TTM (Fig. 5J–M). These data indicate that TTM
alleviates NaAsO2-induced oxidative stress and cellular damage
in an NRF2-dependent manner.

Autophagy-dependent NRF2 activation contributes to the
protective role of TTM against NaAsO2-induced oxidative
injury
To investigate whether autophagy contributes to TTM antiox-
idant effects, we investigated the protective effects of TTM on
NaAsO2-induced oxidative stress in ATG5 knockout and SQSTM1
knockout cells. Results showed that autophagy impairment by
knocking out ATG5 or SQSTM1 weakened the protective effects
of TTM and exacerbated NaAsO2-induced cell death in TTM-
treated HUVECs (Fig. 6A). FACS data confirmed that ATG5
knockout or SQSTM1 knockout increased oxidative stress, while
TTM can significantly mitigate NaAsO2-induced oxidative injury
in wild type cells but not in ATG5-KO or SQSTM1-KO cells (Fig.
6B–E). Our results also showed that the blockade of autophagy
exacerbated NaAsO2-induced apoptotic cell death (Fig. 6F).
Immunoblotting results further verified that ATG5 or SQSTM1
knockout undermined the protective role of TTM against
NaAsO2-induced DNA damage and apoptotic cell death in
HUVECs (Fig. 6G, H). Taken together, our data demonstrate that
autophagy-dependent NRF2 activation contributes to the
protective role of TTM against NaAsO2-induced oxidative injury.

DISCUSSION
Ammonium tetrathiomolybdate (TTM) is a clinical copper chelator
and an inhibitor of copper trafficking proteins that has potential in
treating copper storage diseases [32]. In the current study, we
identified an unknown characteristic of TTM that served as a novel
NRF2 activator, which was distinctive from previous studies that
recognizing TTM only as a copper chelator. We demonstrated that
TTM promoted NRF2 nuclear translocation in vascular endothelial
cells and obviously upregulated the transcriptional level of NRF2
downstream antioxidative genes, including HMOX1, GCLM, and
SLC7A11. (Fig. 1). Importantly, we firstly demonstrated that TTM
exhibited protective effects on sodium arsenite (NaAsO2)-induced
oxidative stress (Fig. 5A–G). Furthermore, we confirmed that TTM-
mediated NRF2 signaling activation contributed to the protective
effects of TTM in that NRF2 knockout exacerbated NaAsO2-
induced oxidative damage and apoptotic cell death in HUVECs
(Fig. 5H–M). TTM is a sulfur-containing compound and shares
similar chemistry properties to other NRF2 activator such as
sulforaphane and oltipraz [33]. Previous studies have demon-
strated that sulforaphane and oltipraz are hydrogen sulfide (H2S)
donors, which exhibits promising protective effects through
release of H2S [34]. Intriguingly, Alex Dyson et al. have also
revealed that TTM is a new class of hydrogen sulfide donor
[35, 36]. Hydrogen sulfide increases the nuclear localization of
NRF2 and functions as a cardioprotective signaling molecule
[37, 38]. In parallel, other studies have demonstrated that H2S
induces the S-sulfhydration of KEAP1 at Cys151, contributes

causally to NRF activation and alleviates multiple diseases, such as
diabetic atherosclerosis, liver injury and cellular senescence
[39–41]. Taken together, we speculate that TTM induces NRF2
activation probably through releasing H2S in HUVECs.
Autophagy is known as a conserved catabolic process involved in

removing unnecessary or macromolecules and organelles [42].
Herein, we demonstrated that copper chelator TTM activated
autophagy pathway in HUVECs (Fig. 3). It has been reported that
triethylenetetramine (trientine), another FDA-approved copper-che-
lating agent, enhances autophagic flux in hepatocytes via stabilizing
spermidine acetyltransferase 1 and reducing cellular protein acetyla-
tion [43]. These findings are consistent with a study which
demonstrates that TTM treatment or the knockdown of copper
transporter SLC31A1 (also called Ctr1) significantly increases the ratio
of LC3B-II/I and promoted autophagy in pancreatic cancer cells [44].
In addition, TTM-derived H2S was also reported as an autophagy
activator, which initiated autophagy via S-sulfhydration modification
of autophagy master regulator TFEB or autophagy regulator GAPDH
[45, 46]. Subsequently, we investigated the signal pathways that
regulated autophagy in TTM-treated HUVECs. We showed that TTM
induced the phosphorylation level of p-AMPKα (T172), but
significantly decreased the protein levels of p-mTOR (S2448) and
p-ULK1 (S757) in HUVECs (Fig. 4E). Consistently, a research group
revealed that TTM-mediated copper deficiency triggered AMPK while
suppressed mTORC1 signaling in breast cancer cell line MDA231-LM2
[47]. Similar results were also observed on activating AMPK signaling
with TTM in neuroblastoma cell line SH-SY5Y [48]. These results
suggest that TTM activates autophagy through AMPK/mTOR/ULK1-
dependent pathway.
Followingly, we revealed the implications of autophagy in

TTM-mediated NRF2 signaling activation. Previous studies have
revealed that the autophagy adapter SQSTM1 links autophagy
and NRF2 signaling [30]. Phosphorylated SQSTM1 at serine 349
(serine 351 in mouse) has higher affinity for KEAP1 and can
competitively bind with KEAP1, resulting in NRF2 signaling
activation as the release of NRF2 from KEAP1-NRF2 protein
complex [31]. Moreover, autophagy deficiency activates the
NRF2 pathway since the excessive accumulation of SQSTM1 due
to autophagy inhibition competes with NRF2 for binding to
KEAP1, thus resulting in activation of NRF2 signaling pathway
[49]. Unexpectedly, in this study, our results revealed that
autophagy deficiency induced by knockout of ATG5 remarkably
decreased NRF2 level and tremendously inhibited the tran-
scription level of NRF2 target genes in TTM-treated HUVECs,
including HMOX1, GCLM, and SLC7A11. This finding indicates
autophagy does not block but promote NRF2 signaling activa-
tion in TTM-treated HUVECs. In agreement with our results,
several previous studies have also demonstrated that autop-
hagy positively correlates with activation of NRF2 signaling and
transcription upregulation of downstream antioxidant genes
[50–52]. Mechanistically, we revealed that TTM treatment
induced the phosphorylation of serine 349 of SQSTM1 (Fig.
4C) and promoted autophagic degradation of KEAP1 in HUVECs
(Fig. 4D). Moreover, we and others have demonstrated that
autophagy deficiency reciprocally activates ubiquitin-

Fig. 5 TTM-mediated NRF2 activation protects HUVECs from NaAsO2-induced oxidative damage. A Representative morphological changes
of TTM-treated HUVECs with or without NaAsO2 (As, 30 μM) for 24 h. Scale bar, 100 μm. TTM and NaAsO2 were dissolved in culture media and
simultaneously added to the cell culture plates. B Cell viability assay of HUVECs treated with NaAsO2 (30 μM) with or without different dose of
TTM for 24 h. C Western blot analysis and quantification of HMOX1, cleaved PARP, γH2AX, and β-Actin in HUVECs treated with NaAsO2 (30 μM)
and different dose of TTM for 24 h. D, E FACS analysis and quantification of DHE intensity in HUVECs treated with 30 μM NaAsO2 and different
dose of TTM for 24 h. F, G FACS analysis and quantification of 7-AAD intensity in HUVECs treated with 30 μM NaAsO2 and different dose of
TTM for 24 h. H Representative morphological changes of NaAsO2-treated WT or NRF2-KO with or without 100 μM TTM for 24 h. Scale bar,
100 μm. I Western blot analysis and quantification of HMOX1, cleaved PARP, γH2AX and β-Actin in WT and NRF2-KO cells treated with NaAsO2
and TTM plus NaAsO2. J, K FACS analysis and quantification of DHE intensity in WT and NRF2-KO cells treated with NaAsO2 and TTM plus
NaAsO2. L, M FACS analysis and quantification of 7-AAD intensity in WT and NRF2-KO cells treated with NaAsO2 and TTM plus NaAsO2. MFI
mean fluorescence intensity. One-way ANOVA followed by a Tukey multiple comparison test was used for statistical analysis. *p < 0.05.
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proteasome pathway and accelerates proteasomal degradation
of NRF2 [24, 53]. Therefore, we speculate that autophagy and
SQSTM1 contribute to TTM-mediated NRF2 activation via
simultaneously inducing the release of NRF2 from the KEAP1-
NRF2 complex and preventing NRF2 degradation in proteasome
in HUVECs.

Inorganic arsenic (NaAsO2) is a class of environmental pollutants
mainly derived from coal burning, non-ferrous metals production, and
polluted water [54]. It has been demonstrated that arsenic exposure is
significantly associated with an increased risk of cardiovascular
disease and coronary heart disease [55]. Arsenic is also used as
oxidative stress inducer to induce excessive ROS production and
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cellular oxidative DNA damage [56]. In this work, we demonstrated a
new use for the old drug TTM in alleviating NaAsO2 exposure-induced
vascular toxicity. Our results showed that TTM considerably alleviated
NaAsO2-induced oxidative stress and cellular damage in HUVECs (Fig.
5A–G). Importantly, we revealed that NRF2 knockout partially
weakened TTM protective effects against NaAsO2-induced cytotoxicity
in HUVECs, indicating that TTM-initiated NRF2 signaling pathway
participated in mitigating arsenic-induced cardiovascular toxicity.
However, it should also be noted that TTM still partially alleviate
NaAsO2-induced oxidative stress and cell death in the NRF2, ATG5, or
SQSTM1-deficiency cells, suggesting that there are other molecular
mechanisms that have contributed to the protective effects of TTM
against NaAsO2 induced toxicity (Figs. 5–6). In clinical, metal chelators,
such as sodium 2,3-dimercapto-1-propanesulfonate (Unithiol),
D-penicillamine and dimercaptosuccinic acid (Succimer), are applied
as effective strategy against arsenic toxicity, suggesting that TTM may
also play protective role in vascular endothelial cells via chelating
excessive toxic arsenic [57, 58]. In addition, we and others have
uncovered that arsenic exposure causes mitochondrial oxidative
damage and ferroptosis characterized by iron overload-induced lipid
peroxidation [59, 60]. As hydrogen sulfide can attenuate ferroptotic
cell death [61, 62], we speculate that the hydrogen sulfide donor TTM
can also inhibit NaAsO2-induced ferroptosis. Recently, Tsvetkov et al.
founded a novel copper-dependent death named cuproptosis and
showed that copper chelator TTM rescued cells from copper
overload-induced cell death [63]. It is still an open question whether
TTM protects against arsenic-induced vascular injury via reducing
cuproptosis in vascular endothelial cells. We expect to elucidate this
issue in our ongoing work.

CONCLUSION
In this work, we demonstrated that copper chelator TTM is a novel
antioxidant regent, which induced NRF2 nuclear translocation and
activated downstream antioxidative genes transcription. Mechanisti-
cally, TTM activated NRF2 signaling via AMPK/mTOR/ULK1-dependent
autophagy pathway. Moreover, TTM-mediates NRF2 signaling protects
against arsenic-induced cytotoxicity, indicating that TTM is a promising
therapeutic agent against oxidative stress-induced vascular diseases.

DATA AVAILABILITY
The supporting data are available from the corresponding authors on request.
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