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Abstract

Introduction

Using a novel method called near-infrared transillumination backscattering sounding (NIR-

T/BSS) that allows for the non-invasive measurement of pial artery pulsation (cc-TQ) and

subarachnoid width (sas-TQ) in humans, we assessed the influence of sympathetic activa-

tion on the cardiac and respiratory contribution to blood pressure (BP) cc-TQ oscillations in

healthy subjects.

Methods

The pial artery and subarachnoid width response to handgrip (HGT) and cold test (CT) were

studied in 20 healthy subjects. The cc-TQ and sas-TQ were measured using NIR-T/BSS;

cerebral blood flow velocity (CBFV) was measured using Doppler ultrasound of the left inter-

nal carotid artery; heart rate (HR) and beat-to-beat mean BP were recorded using a continu-

ous finger-pulse photoplethysmography; respiratory rate (RR), minute ventilation (MV),

end-tidal CO2 (EtCO2) and end-tidal O2 (EtO2) were measured using a metabolic and spi-

rometry module of the medical monitoring system. Wavelet transform analysis was used to

assess the relationship between BP and cc-TQ oscillations.

Results

HGT evoked an increase in BP (+15.9%; P<0.001), HR (14.7; P<0.001), SaO2 (+0.5;

P<0.001) EtO2 (+2.1; P<0.05) RR (+9.2%; P = 0.05) and MV (+15.5%; P<0.001), while sas-
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TQ was diminished (-8.12%; P<0.001), and a clear trend toward cc-TQ decline was

observed (-11.0%; NS). CBFV (+2.9%; NS) and EtCO2 (-0.7; NS) did not change during

HGT. CT evoked an increase in BP (+7.4%; P<0.001), sas-TQ (+3.5%; P<0.05) and

SaO2(+0.3%; P<0.05). HR (+2.3%; NS), CBFV (+2.0%; NS), EtO2 (-0.7%; NS) and EtCO2

(+0.9%; NS) remained unchanged. A trend toward decreased cc-TQ was observed (-5.1%;

NS). The sas-TQ response was biphasic with elevation during the first 40 seconds (+8.8%

vs. baseline; P<0.001) and subsequent decline (+4.1% vs. baseline; P<0.05). No change

with respect to wavelet coherence and wavelet phase coherence was found between the

BP and cc-TQ oscillations.

Conclusions

Short sympathetic activation does not affect the cardiac and respiratory contribution to the

relationship between BP—cc-TQ oscillations. HGT and CT display divergent effects on the

width of the subarachnoid space, an indirect marker of changes in intracranial pressure.

Introduction
The cardiovascular system consists of the heart and blood vessels. The heart can be described as
a pump that drives the blood through the closed circuit of elastic vessels. The respiratory activity
generates a pressure that assists in the return of blood to the heart. The flow of blood largely
depends on the resistance of the vessels, which is controlled by adjustment of their diameter.
Consequently, the power of cardiac oscillations dominates the aortic flow and is significantly
decreased in blood flow through the capillaries. The cardiac and respiratory oscillations have
frequencies of around 1 Hz and 0.3 Hz, respectively, which originate centrally and are propa-
gated through the system [1]. Within the brain, the pial artery carry a significant amount of the
vascular resistance, making them important regulators of cerebral blood flow (CBF) [2]. Current
thinking about the regulation of CBF is dominated by the dynamic cerebral autoregulation
model where cerebral autoregulation is considered a high-pass filter (for review, see [3]). The
dominant role of cerebral autoregulation is, however, increasingly being challenged by several
authors who have indicated that CBF is also modulated by several other factors, including elastic
vessel mechanical (Windkessel) properties or cardiac compensatory mechanisms [4–9]. Such
mechanisms may also operate at higher frequencies than the typical autoregulatory range.

Non-invasive assessment of pial artery pulsation became possible due to a recently devel-
oped method based on infrared radiation (IR) called near-infrared transillumination/backscat-
tering sounding (NIR-T/BSS). In contrast to near-infrared spectroscopy (NIRS), which relies
on the absorption of IR by haemoglobin [10], NIR-T/BSS uses the subarachnoid space (SAS),
which is filled with translucent cerebrospinal fluid, as a propagation duct for IR [11]. Thus,
NIR-T/BSS enables the assessment of instantaneous changes in the SAS width in humans (sas-
TQ). Fast oscillations in the width of the SAS—referred to as the cardiac component of sub-
arachnoid width pulsation (cc-TQ)–result from heart-generated pial artery pulsation. The
NIR-T/BSS high sampling frequency (70 Hz) allows for the signal analysis up to 5 Hz. The
power spectrum density of cc-TQ shows clear peaks at the fundamental frequency (f0) and its
harmonics (f1, f2, f3) [12]. As shown previously, changes in the SAS width correlate with intra-
cranial pressure to a considerable extent, providing sufficient evidence of changes in intracra-
nial pressure by measurements of sas-TQ [13,14].
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Dynamic cardiovascular responses arise from different autonomic pathways, depending
upon the stimuli. A voluntary muscle contraction during the handgrip test (HGT) elicits heart
rate (HR) increases through the integration of autonomic regulatory networks with sensory
and motor components of the cortex, cerebellum and basal ganglia [15]. Exposure to cold
induces autonomic responses through the medullary, hypothalamic and insular cortex areas
[15]. A pain stimulus associated with the cold test (CT) may additionally trigger sympathetic
action through the integration of sensory input within the medullary, mid-brain, thalamic and
insular cortex regions [16,17].

It has previously been shown that breath-hold apnoea diminishes the cardiac contribution
to BP cc-TQ oscillations [18]. However, apnoea is associated with hypoxia, hypercapnia and
co-activation of both branches of the autonomic nervous system (for review, see [19,20]), and
for these reasons cannot be used as a strict model of the sympathetic nervous system (SNS)
activation. Furthermore, during apnoea, respiratory activity is clearly absent. Therefore, using
two relatively easy-to-perform physiological tests, HGT and CT, we assessed the influence of
SNS on the cardiac and respiratory contribution to the relationship between BP cc-TQ oscilla-
tions. We hypothesised that both HGT and CT would not affect the cardiac and respiratory
contribution to the relationship between BP cc-TQ oscillations, regardless of the fact that the
stimuli evoked by the tests are likely transmitted by different central SNS circuits.

Materials and Methods

Subjects
Experiments were performed on a group of 20 healthy volunteers (6 females; age 28.5±7.5
years; BMI = 24.2±3.6 kg/m2); none of them were smokers. All subjects received detailed infor-
mation about the study objectives and any potential adverse reactions, and they provided writ-
ten informed consent to participate in the study. The experimental protocol and the study were
approved by the Ethics Committee of the Medical University of Gdansk. Although none of the
participants suffered from known disorders or were taking any medication, a general and neu-
rological examination was performed before the experiment. Nicotine, coffee, tea, cocoa and
methylxanthine-containing food and beverages were not permitted for 8 hours before the tests.
Additionally, prior to each test, the volunteers were asked to rest comfortably for 30 minutes in
the supine position.

Experimental design
All tests were conducted in a comfortable quiet room with a comfortable temperature. The
sequence of challenges was HGT followed by CT. For the HGT challenge, subjects were
instructed to squeeze an electronic HGT dynamometer held in the right hand at maximum
force. They were initially directed to briefly squeeze at maximum effort as a reference. The
challenge consisted of a 2-minute strain (indicated by oral communication from the investiga-
tor) at 30% of maximum. After practice, subjects were allowed to return to a baseline state. The
CT consisted of 10 minutes at baseline, 2 minutes' hand immersion to approximately wrist
height in cold water (4°C, verified by digital thermometer) and 10 minutes' recovery. One
investigator lifted the hand into and out of the water at the appropriate times.

Measurements
ECG was recorded using a standard electrocardiograph. Mean BP was measured using continu-
ous finger-pulse photoplethysmography (CNAP, CNSystems Medizintechnik AG, Graz, Aus-
tria). Finger blood pressure was calibrated against brachial arterial pressure. Oxyhaemoglobin
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saturation (SaO2) was measured continuously (Massimo Oximeter, Massimo, Milan, Italy)
with a finger-clip sensor. Expired air was analysed with a spirometry module of the medical
monitoring system (Datex-Ohmeda, GE Healthcare, Wauwatosa, WI, US) for respiratory rate
(RR) and minute ventilation (MV). Gas samples from the mouthpiece were constantly analysed
using the side-stream technique for end-tidal CO2 (EtCO2) and end-tidal O2 (EtO2) with the
metabolic module of the same medical monitoring system (Datex-Ohmeda, GE Healthcare,
Wauwatosa, WI, US). Doppler ultrasound of the internal carotid artery was performed (Vivid
7, GE Healthcare; Little Chalfont, UK) to assess the mean cerebral blood flow velocity (CBFV).
Changes in the amplitude of pial artery pulsation and in the width of the SAS with NIR-T/BSS
were recorded with a head-mounted SAS 100 Monitor (NIRT sp. z o.o., Wierzbice, Poland).
The theoretical and practical foundations of the NIR-T/BSS method have been published pre-
viously [11,12]. All variables were recorded continuously or videotaped, and the signals were
digitally saved on the computer for further analyses.

Wavelet analysis
The wavelet transform is a method that transforms a time signal from the time domain to the
time-frequency domain. The definition of the wavelet transform is:

Wðs; tÞ ¼ 1ffiffi
s

p
Z þ1

�1
φ

u� t
s

� �
gðuÞdu; ð1Þ

whereW(s,t) is the wavelet coefficient, g(u) is the time series, and φ is the Morlet mother wave-
let, scaled by factor s and translated in time by t. The Morlet mother wavelet is defined by the
equation:

φðuÞ ¼ 1ffiffiffi
p4

p e�i2pue�0:5u2 ; ð2Þ

where¼ ffiffiffiffiffiffiffi�1
p

. The reason for using the Morlet wavelet is its good localisation of events in
time and frequency due to its Gaussian shape [18,21]. The frequency is inversely proportional
to its corresponding scaling factor s (see Fig 1 in log-log scale). The wavelet transform was cal-
culated in the frequency interval from 0.097 to 56.7 Hz.

Wavelet coherence (WCO) and wavelet phase coherence (WPCO) were estimated using the
Matlab function ‘wcoher.m’ with ‘morl’ (Morelet function) as a mother wavelet, and a scale from
1 to 500, which corresponds to the frequency interval from 0.097 to 56.7 Hz. A detailed descrip-
tion with clear examples can be found at: http://www.mathworks.com/help/wavelet/examples/
wavelet-coherence.html. In all calculations, we estimated the normalised value of WCO:

w12 ¼
w1ðs; tÞ�w2ðs; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1ðs; tÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2ðs; tÞ2

q ð3Þ

where w1(s,t) (w2(s,t)) is the wavelet coefficient for the first (the second) signal and � indicates
the complex conjugate. We observed stronger coherence when the WCO value increased. The
value of WPCO is between 0 and 1. When two oscillations are unrelated, their phase difference
continuously changes with time, thus their WPCO approaches zero. If the WPCO is around 1,
the two oscillations are related and significant coherence is observed.

Statistical analysis
Wilcoxon signed-rank test was used to compare the changes in WCO, WPCO, cc-TQ, BP, HR,
CBFV, SaO2, EtCO2, EtO

2, respiratory rate and MV in response to HGT and CT.
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Results
HGT evoked an increase in BP, HR, SiO2, EtO2, respiratory rate and MV, while sas-TQ dimin-
ished, and a clear trend toward cc-TQ decline was observed, although the cc-TQ change was
not statistically significant. CBFV and EtCO2 did not change during HGT (Table 1).

CT evoked an increase in BP, sas-TQ and SaO2. HR, CBFV, MV, EtO2 and EtCO2 remained
unchanged. A trend toward a decrease in cc-TQ was observed. The sas-TQ response was
biphasic with elevation during the first 40 seconds (+8.83% versus baseline; P<0.001) and sub-
sequent decline to +4.1% versus baseline (Table 2).

The wavelet transform analysis of the 120-s BP and cc-TQ signals is shown in Figs 2 (HGT)
and 3 (CT). BP and cc-TQ peaks were observed at the human cardiac and respiratory

Fig 1. Transition from scales used in wavelet transform analysis to frequency values.

doi:10.1371/journal.pone.0135751.g001

Table 1. Effects of 120 s HGT on cc-TQ, sas-TQ, BP, HR, CBFV, EtO2, EtCO2, SaO2, respiratory rate andMV. Data presented as mean values and stan-
dard deviations (SD). All % changes are calculated with reference to baseline values.

Variable Baseline Handgrip test % Change P value

sas-TQ left (AU) 6795±1790 6299±1738 - 7.30 0.000

sas-TQ right (AU) 7287±4746 6635±4572 - 8.94 0.000

cc-TQ left (AU) 30.74±14.03 28.23±13.92 - 8.15 NS

cc-TQ right (AU) 30.52±14.76 26.29±15.41 -13.86 NS

CBFV left (cm*sec-1) 41.1±7.5 42.3±8.3 + 2.92 NS

Mean BP (mmHg) 90.65±10.33 105.06±14.52 + 15.90 0,000

HR (beats*sec-1) 63.79±7.48 73.19±9.10 + 14.74 0.000

SaO2 97.37±1.09 97.86±1.02 + 0.50 0.000

End tidal CO2 5.0 ± 0.51 4,96 ± 0.54 - 0.70 NS

End tidal O2 14.95 ± 0.78 15.25 ± 0.63 + 2.07 0.021

Respiratory rate 14.72 ± 4.30 16.08 ± 3,85 + 9.20 0.054

MV 7.76 ± 1.52 8.97 ± 1.67 + 15.53 0.000

NS not significant; sas-TQ—the subarachnoid component of the transillumination quotient (the subarachnoid width); cc-TQ—cardiac component of

transillumination quotient (pial artery pulsation); BP—blood pressure; HR—heart rate; CBFV—cerebral blood flow velocity; SaO2—oxyhemoglobin

saturation; MV—minute ventilation; AU—arbitrary units; mm Hg—millimeters of mercury; s—seconds

doi:10.1371/journal.pone.0135751.t001
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frequencies (~1 Hz and ~0.3 Hz, respectively). No change with respect to WCO andWPCO
was found between the BP and cc-TQ oscillations during HGT and CT (Table 3, Figs 4 and 5).

The time-courses of WCO andWPCO during HGT and CT are shown in Figs 6 and 7,
respectively. No significant differences were noted between the left and right hemispheres with
respect to the analysed variables. We did not observe any differences due to sex.

Table 2. Effects of 120 s CT on cc-TQ, sas-TQ, BP, HR, CBFV, EtO2, EtCO2, SaO2, respiratory rate and MV. Data presented as mean values and stan-
dard deviations (SD). All % changes are calculated with reference to baseline values.

Variable Baseline Cold test % Change P value

sas-TQ left (AU) 6023±1667 6269±1642 + 4.10 0.021

sas-TQ right (AU) 5805±1791 5977±1828 + 2.97 0.053

cc-TQ left (AU) 26.27±12.88 25.07±13.09 - 4.57 NS

cc-TQ right (AU) 26.56±8,64 25.09±16.02 - 5.55 NS

CBFV left (cm*sec-1) 40.8±8.1 41.6±7.1 + 1.96 NS

Mean BP (mmHg) 88.26 ± 11.89 94.81±15.51 + 7.43 0.000

HR (beats*sec-1) 62.85±7.06 64.30±7.17 + 2.31 NS

SaO2 97.79±1.09 98.10±1.02 + 0.32 0.022

End tidal CO2 4.95±0.52 5.00±0.55 + 0.94 NS

End tidal O2 15.16±0.71 15.05±0.72 - 0.72 NS

Respiratory rate 15.75±3.59 16.23±4.09 + 3.01 NS

MV 8.11±1.46 8.02±1.42 - 1.07 NS

NS not significant; sas-TQ—the subarachnoid component of the transillumination quotient (the subarachnoid width); cc-TQ—cardiac component of

transillumination quotient (pial artery pulsation); BP—blood pressure; HR—heart rate; CBFV—cerebral blood flow velocity; SaO2—oxyhemoglobin

saturation; MV—minute ventilation; AU—arbitrary units; mm Hg—millimeters of mercury; s—seconds

doi:10.1371/journal.pone.0135751.t002

Fig 2. Representative tracings from 120 s baseline (left upper panel) and HGT (right upper panel)
signals. The cc-TQ signal (upper panels, in blue) is less regular than the BP signal (upper panels, in red).
Wavelet transform analysis reveals BP and cc-TQ peaks at ~ 1 Hz and ~ 0.3 Hz (baseline—left lower panel,
HGT—right lower panel, cc-TQ analysis in blue, BP in red).

doi:10.1371/journal.pone.0135751.g002
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Discussion
There were two main findings of the study in healthy subjects: 1) short sympathetic activation
does not affect the cardiac and respiratory contribution to the relationship between BP—pial
artery pulsation oscillations, 2) HGT and CT display divergent effects on the width of the sub-
arachnoid space, an indirect marker of changes in intracranial pressure.

The role of SNS in CBF regulation remains a matter of controversy [22–24]. Nevertheless,
evidence has accumulated that sympathetic neural control of the CBF may exert a protective
effect, particularly during increases in cerebral perfusion pressure due to sudden BP elevations
[25–28]. In this study, we assessed the indirect SNS effect on CBF. The cardiac role in CBF
maintenance is increasingly recognised [4,10,18,29–31]. Furthermore, the contribution of the
lung to brain homeostasis in health and disease has recently been highlighted [32–34]. This
study clearly suggests that short SNS activation does not affect the cardiac and respiratory

Fig 3. Representative tracings from 120 s baseline (left upper panel) and CT (right upper panel)
signals. The cc-TQ signal (upper panels, in blue) is less regular than the BP signal (upper panels, in red).
Wavelet transform analysis reveals BP and cc-TQ peaks at ~ 1 Hz and ~ 0.3 Hz (baseline—left lower panel,
CT—right lower panel, cc-TQ analysis in blue, BP in red).

doi:10.1371/journal.pone.0135751.g003

Table 3. Wavelet coherence and phase coherence between BP and cc-TQ during baseline and HGT and CT (normalized values) in left and right
hemisphere.

Cardiac frequency Respiratory frequency

WCO P WPCO P WCO P WPCO P

Baseline left 0.18±0.03 0.66±0.14 0.56±0.11 0.72±0.27

HG left 0.19±0.04 0.9 0.72±0.11 0.16 0.57±0.07 0.71 0.69±0.22 0.35

Baseline right 0.21±0.11 0.66±0.18 0.53±0.09 0.74±0.24

HG right 0.18±0.03 0.1 0.72±0.12 0.28 0.54±0.08 0.83 0.73±0.23 0.98

Baseline left 0.19±0.03 0.73±0.12 0.56±0.11 0.76±0.26

CT left 0.19±0.02 0.94 0.71±0.13 0.47 0.53±0.05 0.32 0.77±0.22 0.92

Baseline right 0.21±0.03 0.67±0.12 0.54±0.12 0.69±0.25

CT left 0.19±0.02 0.28 0.72±0.15 0.18 0.52±0.06 0.9 0.76±0.22 0.46

WCO—wavelet coherence; WPCO—wavelet phase coherence; left—left hemisphere; right—right hemisphere

doi:10.1371/journal.pone.0135751.t003
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contribution to the relationship between BP—pial artery pulsation oscillations in healthy sub-
jects. Our finding is further strengthened by the fact that long apnoea’s performed by elite
breath-hold divers also do not affect the cardiac contribution to the relationship between BP
and pial artery pulsation oscillations, at least when using wavelet transform analysis [35]. The
prolonged apnoea in elite breath-hold divers is associated with an enormous increase in SNS
activity [36]. Both HGT and CT evoked increases in HR and BP. In addition, during HGT, an
increase in respiratory rate and MV was observed. In spite of these changes, WCO andWPCO
between BP and pial artery pulsation remained constant. We can speculate that stabilisation of
the cardiac contribution to the BP/cc-TQ relationship may represent another mechanism by
which the integrity of brain vessels is protected during sudden BP increases.

Fig 4. Representative tracings of signals for 120 s of baseline (in red) and HGT (in blue). BP oscillations
(left upper panel), cc-TQ oscillations (right upper panel), WCO (left lower panel) andWPCO are shown (right
lower panel).

doi:10.1371/journal.pone.0135751.g004

Fig 5. Representative tracings of signals for 120 s of baseline (in red) and CT (in blue). BP oscillations
(left upper panel), cc-TQ oscillations (right upper panel), WCO (left lower panel) andWPCO are shown (right
lower panel).

doi:10.1371/journal.pone.0135751.g005
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Alternatively, we are tempted to consider that SNS mediated CBF control mechanism is
biphasic. Pial artery time to response to BP fluctuations is limited to seconds [14,28,31] and
central CBF control seems to be quicker than peripheral autonomic mechanisms aiming at sta-
bilisation of CBF [19, 37]. Relatively short apnoea in normal subjects lead to decrease in cardiac
contribution to the relationship between BP and pial artery pulsation oscillations [18]. At the
same time much longer apnoea performed by elite apnoea divers and associated with extreme
elevation of SNS activity [36] do not affect wavelet coherence between BP and cc-TQ signals at
the cardiac frequency [35]. Therefore, we can assume that as long as CBF is controlled over by

Fig 6. RepresentativeWCO (middle panel) andWPCO (lower panel) tracings. BP (red) and cc-TQ (blue)
signals are provided in the upper panel. WCO andWPCO remains relatively stable throughout baseline and
HGT. Peak values at ~1 Hz and ~0.3 Hz are visible. The black marker indicates the start of HGT.

doi:10.1371/journal.pone.0135751.g006

Fig 7. RepresentativeWCO (middle panel) andWPCO (lower panel) tracings. BP (red) and cc-TQ (blue)
signals are provided in the upper panel. WCO andWPCO remains relatively stable throughout baseline and
CT. Peak values at ~1 Hz and ~0.3 Hz are visible. The black marker indicates the start of CT.

doi:10.1371/journal.pone.0135751.g007
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central regulatory mechanisms cardiac contribution to the relationship between BP—pial
artery pulsation oscillations is not affected (like in this study) or driven by parasympathetic sys-
tem to maintain oxygen supply/demand balance in the heart (for example, during short
apnoea) [18]. However, in case of extreme hypoxia cardiac contribution to the BP—pial artery
pulsation oscillations relationship is stabilised by the SNS to maintain cerebral oxygenation
even at the expense of potential oxygen supply/demand mismatch in the heart [35].

We decided to examine the whole duration of HGT and CT (120 s). These periods were
compared to the 120 s at baseline (Figs 2, 3, 4, 5, 6 and 7). We used wavelet transform analysis
as it provides windows of adjustable lengths, thereby providing the benefit of showing high res-
olution at cardiac and respiratory frequencies. Compared with autoregressive estimation,
wavelet transform is calculated directly from data, and the limitations of linear modelling and
the choice of model order are thus avoided [38]. The method has already been used by us and
others [10,18,21,38–40]. In finite-length signals, less variation occurs in the phase difference if
fewer periods are analysed, and this may result in artificially increased phase coherence. Usu-
ally, to identify a point that demarcates truly significant coherence in fewer periods, surrogate
analysis amplitude-adjusted Fourier transform is used. Surrogate signals are generated by shuf-
fling the phases of the original time series to create new time series with the same means, vari-
ances and autocorrelation functions (and therefore, the same power spectra) as the original
sequences, but without their phase relations [41]. In this study, however, we analysed only
high-frequency parts of the signal (~1 Hz and ~0.3 Hz) from a relatively long data series (120
s), and therefore we believe that use of surrogate analysis amplitude-adjusted Fourier transform
was not needed. Our methodology to analyse WCO andWPCO at human cardiac frequency
was described previously [18].

It has been shown by our team and others that HGT increases cerebral blood volume and
decreases the subarachnoid width, suggesting an increase in intracranial pressure [28,42]. In
contrast, Wilson and colleagues [43] suggested that the CT may selectively decrease cerebral
blood volume in grey matter. In Wilson’s study, the CT was performed in a supine position for
approximately 2 minutes, and the contrast-enhanced computed tomography scans occurred
between the 60th and 90th seconds [43]. Therefore, the experimental conditions in Wilson’s
study were very similar to our design. Our results are in accordance with Wilson’s results, as a
slight increase in the sas-TQ indicates a decline in the cerebral blood volume and intracranial
pressure during CT. Wilson proposed that regulation of cerebral blood volume is maintained
through a direct influence of the SNS on cerebral veins, with SNS activation leading to veno-
constriction [43]. In this study, we have shown for the first time in the same group of healthy
subjects that HGT and CT display divergent effects on the width of the subarachnoid space, an
indirect marker of intracranial pressure. HGT and CT are transmitted by different central SNS
circuits [15–17]. Taken together, it seems that—regardless of the mechanism—the influence of
SNS activation on cerebral blood volume and intracranial pressure depends on which central
SNS pathways are involved.

The high within- and between-subject reproducibility and repeatability of NIR-T/BSS mea-
surements were demonstrated previously [11]. NIR-T/BSS, like NIRS, allows for direct within-
subject comparisons [11,44]. As long as changes from baseline values are analysed, high
between-subject reproducibility is observed. However, measurements with the use of IR light
(NIRS and NIR-T/BSS) do not allow for direct comparisons between subjects due to differences
in skull bone parameters [11,44]. We did not observe any sex related differences. Nevertheless,
it should be noticed that the study was not aimed at, and not powered to detect such
differences.

NIR-T/BSS offers unique possibility to measure non-invasively direction of changes in ICP
in diseases like stroke, traumatic brain injury or obstructive sleep apnoea. The “standard of
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care”monitoring of ICP is highly invasive and therefore restricted to critically ill patients or
post neurosurgery procedures. Non-invasive, even if indirect, monitoring of ICP opens
completely new fields in cardiovascular and neurological research. Exposure to pulsatile pres-
sure and augmented flow, which exists in the carotid artery may lead to vascular damage [45]
and/or produce hypertrophy of cerebral arterioles, even in the absence of increases in mean BP
[46]. Therefore, better understanding of the relationship between BP and pial artery pulsation
may create new ways in management of diseases of high societal impact like stroke or vascular
dementia. We believe that combination of NIR-T/BSS with advanced signal analysis tools most
likely represents a promising approach in describing the interrelations and pathways involved
in stroke, vascular dementia and other cerebrovascular diseases. The presented results establish
therefore reference for future clinical studies which are warranted.

To conclude, we have shown that SNS activation does not affect the cardiac and respiratory
contribution to the relationship between the BP and pial artery pulsation oscillations in healthy
subjects. In fact, it seems that a high sympathetic drive tends to stabilise the relationship
between the analysed signals. The current study establishes the reference for future research in
subjects with autonomic imbalances, for instance, in subjects suffering from obstructive sleep
apnoea. Furthermore, we have demonstrated that HGT and CT exert opposite effects on the
subarachnoid width, an indirect marker of intracranial pressure. We postulate that the SNS
influence on cerebral blood volume and regulation of intracranial pressure may vary depending
on the involvement of particular central SNS circuits.
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