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There is increasing evidence suggesting the contribution of non-coding RNAs (ncRNAs)
to the phenotypic and physiological complexity of organisms. A novel ncRNA species
has been identified near the transcription boundaries of protein-coding genes in
eukaryotes, bacteria, and archaea. This review provides a detailed description of these
transcription boundary-associated RNAs (TBARs), including their classification. Based
on their genomic distribution, TBARs are divided into two major groups: promoter-
associated RNAs (PARs) and terminus-associated RNAs (TARs). Depending on the
sequence length, each group is further classified into long RNA species (>200 nt)
and small RNA species (<200 nt). According to these rules of TBAR classification,
divergent ncRNAs with confusing nomenclatures, such as promoter upstream
transcripts (PROMPTs), upstream antisense RNAs (uaRNAs), stable unannotated
transcripts (SUTs), cryptic unstable transcripts (CUTs), upstream non-coding transcripts
(UNTs), transcription start site-associated RNAs (TSSaRNAs), transcription initiation
RNAs (tiRNAs), and transcription termination site-associated RNAs (TTSaRNAs), were
assigned to specific classes. Although the biogenesis pathways of PARs and TARs
have not yet been clearly elucidated, previous studies indicate that some of the
PARs have originated either through divergent transcription or via RNA polymerase
pausing. Intriguing findings regarding the functional implications of the TBARs such as
the long-range “gene looping” model, which explains their role in the transcriptional
regulation of protein-coding genes, are also discussed. Altogether, this review provides
a comprehensive overview of the current research status of TBARs, which will promote
further investigations in this research area.

Keywords: transcription boundary-associated RNAs (TBARs), promoter-associated RNAs (PARs), terminus-
associated RNAs (TARs), divergent transcription, transcription start site (TSS), transcription termination site
(TTS), polymerase (Pol) pausing, gene looping

INTRODUCTION

In the initial phase of genome sequencing, annotated protein-coding genes were thought to be a
major contributor to the development of phenotypic and physiological complexity of organisms.
However, this viewpoint was challenged soon afterwards. The application of high-throughput
sequencing (HTS) in transcriptomics studies uncovered the intriguing phenomenon in which
transcription signals were detected across the entire genomes (Encode Project Consortium
et al., 2007). Notably, most of these signals originated from non-coding loci but not from
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protein-coding genes. Subsequent studies have revealed a positive
correlation between the diversity of non-coding RNAs (ncRNAs)
and the complexity of organisms (Amaral and Mattick, 2008;
Amaral et al., 2008). Considering the emerging biological
importance of ncRNAs, continuous research efforts have led to
the identification and characterization of ncRNAs in multiple
organisms. Although a large proportion of ncRNAs resides within
intergenic regions, some reside within protein-coding genes, such
as antisense ncRNAs (He et al., 2008) and intronic ncRNAs
(Brown et al., 2008; Meng et al., 2011; Meng and Shao, 2012).
Additionally, some of the ncRNAs have been identified near the
promoter regions or the transcription termini of protein-coding
genes (Gingeras, 2007; Kapranov et al., 2007).

In this review, we provide a brief summary of the
discovery of promoter-associated RNAs (PARs) in budding yeast
(Saccharomyces cerevisiae) (Davis and Ares, 2006; Neil et al.,
2009; Xu et al., 2009), fruit fly (Drosophila melanogaster), chicken
(Gallus gallus) (Taft et al., 2009a), mouse (Mus musculus)
(Kapranov et al., 2007; Seila et al., 2008; Affymetrix Encode
Transcriptome Project and Cold Spring Harbor Laboratory
Encode Transcriptome Project, 2009; Flynn et al., 2011), human
(Homo sapiens) (Han et al., 2007; Kapranov et al., 2007;
Preker et al., 2008; Affymetrix Encode Transcriptome Project
and Cold Spring Harbor Laboratory Encode Transcriptome
Project, 2009; Pickrell et al., 2010), Arabidopsis thaliana
(Chekanova et al., 2007; Wang et al., 2011; Ma et al.,
2017), bacteria (Yus et al., 2012), and archaea (Zaramela
et al., 2014). Additionally, the discovery of terminus-associated
RNAs (TARs) in human (Kapranov et al., 2007, 2010; Taft
et al., 2009a; Yue et al., 2010; Valen et al., 2011; Schwalb
et al., 2016), mouse (Kapranov et al., 2007), fission yeast
(Schizosaccharomyces pombe), and Arabidopsis (Ma et al., 2017)
has also been introduced. Since promoters and terminators define
the transcription boundaries of protein-coding genes, PARs and
TARs are referred to as transcription boundary-associated RNAs
(TBARs). Additionally, we summarize the biogenesis pathways
of some of the TBARs and a few mechanistic models of
TBAR biogenesis including divergent transcription and RNA
polymerase (Pol) pausing. We also summarize recent progress
in the functional studies conducted on TBARs, followed by in-
depth discussions. Interestingly, PARs have been functionally
implicated in transcription termination, whereas TARs are
potentially involved in transcription initiation. The interactive
relationship between transcription initiation and termination
has been depicted using long-range regulatory models, such as
“gene looping” (Lykke-Andersen et al., 2011; Andersen et al.,
2013). Finally, we propose a preliminary nomenclature system for
TBARs according to specific classification criteria and emphasize
the importance of a uniform annotation system for TBAR
research.

PARs IN ANIMALS: DISCOVERY,
BIOGENESIS, AND FUNCTIONS

In eukaryotes, the transcription of protein-coding genes includes
two primary steps: initiation and elongation. Each step is under

strict surveillance. However, each time transcription is initiated
from the transcription start site (TSS) of a protein-coding gene,
the final output is not always a full-length coding sequence. This
is because various kinds of genetic and epigenetic factors, such
as binding sites of RNA Pol II or transcription factors (TFs)
and chromatin modifications, interrupt transcription initiation
and/or elongation (Li et al., 2007; Razin et al., 2011). Premature
termination of transcription is a widespread phenomenon
that results in aberrant transcripts. As a result of frequent
transcription pausing, diverse ncRNAs have been discovered near
the promoter regions. Although such ncRNAs have been referred
to by different names, here they are referred to as PARs.

In a pioneering study, Core et al. (2008) employed global
run-on sequencing (GRO-Seq) to investigate the density of
transcriptionally engaged RNA polymerase enzymes on a
genome-wide scale. This study identified a novel species
of PARs in human lung fibroblasts. However, because this
study used an older generation sequencing platform with
short read-length (maximum 33 nt), data on the length of
PARs was not provided. These PARs are enriched within
−250 bp to +50 bp of the TSSs of certain protein-coding
genes. Because GRO-Seq is capable of evaluating promoter-
proximal pausing on all genes, it has been suggested that
these PARs are derived from RNA Pol II-dependent divergent
transcription and promoter-proximal pausing (Core et al.,
2008). Subsequent studies have uncovered PARs in different
species. Because of recent advances in sequencing platforms,
more information is available on the sequence features of
PARs, especially their length distribution. In this review,
we propose that, according to their sequence length, PARs
should to be divided into two classes: promoter-associated long
RNAs (PALRs; >200 nt) and promoter-associated small RNAs
(PASRs; <200 nt).

Promoter-associated small RNAs have been reported in
human and mouse (Kapranov et al., 2007; Affymetrix Encode
Transcriptome Project and Cold Spring Harbor Laboratory
Encode Transcriptome Project, 2009). TSS-associated RNAs
(TSSaRNAs) reported in mouse (Seila et al., 2008) and
transcription initiation RNAs (tiRNAs) in human, mouse,
chicken and Drosophila (Taft et al., 2009a) have also been
categorized as PASRs. Based on these studies, it can be
concluded that weak expression is a common feature of PASRs.
A number of PARs are exosome-specific substrates with short
half-lives (Wyers et al., 2005; Davis and Ares, 2006; Chekanova
et al., 2007; Preker et al., 2008). The divergent distribution
of many PARs near the TSSs is correlated with bidirectional
transcription activity of RNA Pol II. Functional studies have
connected some of the PARs with transcriptional activation
or repression of their target genes (Li et al., 2006; Janowski
et al., 2007; Morris et al., 2008; Turunen et al., 2009; Huang
et al., 2010; Kassab et al., 2015; Li et al., 2016; Uesaka et al.,
2017), indicating that transcription can be modulated not only
during elongation but also at initiation (Saunders et al., 2006;
Muse et al., 2007; Zeitlinger et al., 2007; Core et al., 2008).
In the following sections, we describe the previously reported
PARs in animals and their biogenesis pathways and biological
functions.
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PALRs in Animals
Different Classes of PALRs
As summarized in Table 1, different classes of PALRs have been
reported in several organisms, including promoter-associated
transcripts in human (Han et al., 2007) and yeast (Davis and Ares,
2006), promoter upstream transcripts (PROMPTs) in human
(Preker et al., 2008, 2011), upstream antisense RNAs (uaRNAs) in
mouse (Flynn et al., 2011), stable unannotated transcripts (SUTs)
and cryptic unstable transcripts (CUTs) in yeast (Wyers et al.,
2005; Neil et al., 2009; Xu et al., 2009), and other unnamed PALRs
in human and mouse (Kapranov et al., 2007; Affymetrix Encode
Transcriptome Project and Cold Spring Harbor Laboratory
Encode Transcriptome Project, 2009). Till date, only a few studies
have been conducted on the biogenesis pathways and modes of
action of PALRs. Thus, it is unclear whether these PALRs, with
distinct nomenclatures, belong to the same or different ncRNA
species. It is well known that divergent transcription of active
promoters is the major mechanism involved in the biogenesis
of PALRs (Sigova et al., 2013). Among the above-mentioned
PALRs, PROMPTs are relatively well studied, especially for
their sequence characteristics, biogenesis and biological roles.
Therefore, we describe the PROMPTs in detail in the sections
below.

Discovery of PROMPTs
Promoter-associated RNAs have short half-lives, as they undergo
rapid exosome-mediated degradation, which interferes with their
detection. To overcome this limitation, Preker et al. (2008,
2011) used human HeLa cells without exosome activity for
the identification of short-lived PARs using oligodT primers.
Results of tiling microarray analysis revealed 5′ capped and 3′

adenylated transcripts upstream of the TSSs of transcriptionally
active genes (Preker et al., 2008, 2011). These transcripts were
several hundred nucleotides in length and were named as
PROMPTs.

Unlike PARs discovered by Core et al. (2008), PROMPTs
originate from the region within−2,500 bp to−500 bp upstream
of the TSS. Moreover, the transcription of PROMPTs can proceed
in both directions (Preker et al., 2008). It is widely accepted
that divergent transcription is an inherent feature of most of the
active promoters (Beck and Warren, 1988; Neil et al., 2009; Xu
et al., 2009). Moreover, the production of PROMPTs is highly
dependent on activity of promoters of neighboring genes (Preker
et al., 2008). Thus, the bidirectional transcription of PROMPTs
reflects the universality of divergent transcription of highly active
genes, which links bidirectional transcription to gene activity
(Core et al., 2008; Nechaev and Adelman, 2011).

Functions of PROMPTs
Functional studies suggest that bidirectional transcription plays
an important role in improving the accessibility of chromatin
regions for the binding of TFs (Gilchrist et al., 2008; Seila
et al., 2008). Notably, some of the divergently transcribed
PARs are involved in Argonaute (AGO)-dependent (Han et al.,
2007) or -independent (Wang et al., 2008) gene silencing
pathways, indicating a potential regulatory role of PROMPTs
in gene transcription. The SR proteins facilitate the function of
promoter-proximal nascent RNA in transcription pause release
(Ji et al., 2013). Additionally, some of the PROMPTs are enriched
within the promoter regions with a high CpG content, and
these PROMPTs affect the DNA methylation density of the
promoters (Preker et al., 2008). Sequence motif analysis has

TABLE 1 | List of the currently identified TBARs (transcription boundary-associated RNAs).

TBAR species Discovery Length Reference

PARs PALRs PaRNAs H. sapiens and S. cerevisiae 200–500 nt Davis and Ares, 2006; Han et al., 2007

PROMPTs H. sapiens Hundreds of nt Preker et al., 2008; Preker et al., 2011

UaRNAs M. musculus 40–1,100 nt Flynn et al., 2011

SUTs and CUTs S. cerevisiae 200–500 nt Wyers et al., 2005; Neil et al., 2009; Xu et al., 2009

UNTs A. thaliana – Chekanova et al., 2007

PALRs H. sapiens and M. musculus – Kapranov et al., 2007; Affymetrix Encode Transcriptome Project
and Cold Spring Harbor Laboratory Encode Transcriptome
Project, 2009

PASRs PASRs H. sapiens, M. musculus and
A. thaliana

19–200 nt Kapranov et al., 2007; Affymetrix Encode Transcriptome Project
and Cold Spring Harbor Laboratory Encode Transcriptome
Project, 2009; Wang et al., 2011; Ma et al., 2017

TSSaRNAs Eukaryotes, bacteria, and
archaea

16–146 nt Seila et al., 2008; Yus et al., 2012; Park et al., 2014; Zaramela
et al., 2014

TiRNAs H. sapiens, M. musculus,
G. gallus, and D. melanogaster

13–28 nt Taft et al., 2009a

TARs TALRs TALRs H. sapiens ∼3,100 nt Yue et al., 2010

TASRs TASRs H. sapiens, M. musculus,
S. pombe, and A. thaliana

19–200 nt Kapranov et al., 2007, 2010; Taft et al., 2009a; Leng et al.,
2014; Schwalb et al., 2016; Ma et al., 2017

TTSaRNAs H. sapiens 22–24 nt Valen et al., 2011

TBARs, transcription boundary-associated RNAs; PARs, promoter-associated RNAs; TARs, terminus-associated RNAs; PALRs, promoter-associated long RNAs; PASRs,
promoter-associated small RNAs; TALRs, terminus-associated long RNAs; TASRs, terminus-associated small RNAs; paRNAs, promoter-associated RNAs; PROMPTs,
promoter upstream transcripts; uaRNAs, upstream antisense RNAs; SUTs, stable unannotated transcripts; CUTs, cryptic unstable transcripts; UNTs, upstream non-coding
transcripts; TSSaRNAs, transcription start site-associated RNAs; tiRNAs, transcription initiation RNAs; TTSaRNAs, transcription termination site-associated RNAs.
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shown that 3′ poly(A) signals are more abundant in regions
upstream of the promoter than in those downstream of the
promoter. These functional poly(A) signals are involved in the
rapid degradation of PROMPTs transcribed in the antisense
direction upstream of the associated genes. Thus, the rapid
decay of upstream PROMPTs enables efficient elongation of
downstream transcripts, which enforces the promoter orientation
of protein-coding genes (Ntini et al., 2013). Moreover, if
the synthesis of PROMPTs is stalled very early within the
TSS-proximal regions, small TSSaRNAs are produced. Small
TSSaRNAs are included in the category of PASRs and are
discussed below.

PASRs in Animals
Discovery of PASRs
Promoter-associated small RNAs (sRNAs) identified in human
and mouse have been previously named as PASRs (Calabrese
et al., 2007; Kapranov et al., 2007). These sRNAs are 20–200
nt in length and originate from the region within −400 bp to
+400 bp of the TSS. TSSaRNAs are a type of PASRs that have been
identified in a broad spectrum of organisms, including eukaryotes
(Seila et al., 2008; Park et al., 2014), bacteria (Yus et al., 2012), and
archaea (Zaramela et al., 2014). The length of TSSaRNAs differs
between species. For example, in the archaea Halobacterium
salinarum, the length of TSSaRNAs ranges from 16 to 146 nt,
with a median size of 27 nt (Zaramela et al., 2014). In bacteria, the
length of TSSaRNAs varies within a narrow range; in Escherichia
coli and Mycoplasma pneumonia, the length of TSSaRNAs varies
from 33 to 40 nt and 35 to 55 nt, respectively (Yus et al., 2012).
In murine embryonic stem cells, TSSaRNAs vary in size from
20 to 90 nt. These TSSaRNAs are highly enriched in the region
spanning from −250 bp to +50 bp of the TSS (Seila et al., 2008).
Thus, sequence features of mouse TSSaRNAs are similar to those
described above. Indeed, TSSaRNAs were occasionally confused
with the PASRs (Affymetrix Encode Transcriptome Project and
Cold Spring Harbor Laboratory Encode Transcriptome Project,
2009). Another class of PASRs comprises tiRNAs; these are highly
conserved in higher metazoans, such as human, chicken, and fruit
fly. Similar to the above two PASR classes, tiRNAs are enriched
within the region spanning from −60 bp to +120 bp relative to
the TSS. However, additional features specific to the tiRNAs have
been reported, including their size distribution and GC content
(Taft et al., 2009a). The size of tiRNAs varies from 13 to 28 nt, and
a significant proportion of these are 18nt in length. Additionally,
tiRNAs are GC-rich and show a strong strand bias toward the
neighboring TSSs for their biogenesis.

Biogenesis of PASRs
The biogenesis of the three types of PASRs described above is
Dicer-independent (Calabrese et al., 2007; Seila et al., 2008; Taft
et al., 2009a), indicating that the non-canonical sRNA processing
pathway(s) might be responsible for their production. Two
models have been proposed for the biogenesis of PASRs (Lenhard
et al., 2012). The first model is called “backtracking and excision”
(Shaevitz et al., 2003; Seila et al., 2009; Taft et al., 2009a,b, 2010;
Nechaev et al., 2010). In this model, the elongating RNA Pol II
is stalled, inducing it to backtrack toward the upstream TSS after

encountering the downstream nucleosome, resulting in a nascent
transcript with a short 3′ exposed region. Subsequently, the
exposed region is cleaved by the transcription elongation factor
SII, resulting in PASR biogenesis. However, in vitro experiments
have shown that the pausing and backtracking of Pol II is used
to generate 6–14 nt fragments (Lenhard et al., 2012); however,
this length is much shorter than that of PASRs. Therefore, further
investigation is needed to identify a plausible model. The second
model proposed for PASR biogenesis is the “Pol II pausing”
model, which is also described as “unsuccessful Pol II elongation
followed by RNA degradation” (Buckley et al., 2014; Jonkers et al.,
2014). In this model, the RNA elongation complex is stalled at
the initiation stage. Pol II pausing results in a nascent transcript
without the 5′ cap, thus rendering it susceptible to rapid decay
starting from its 5′ end. Only a short RNA sequence physically
covered by Pol II is protected from degradation (Valen et al.,
2011). The size of this short RNA sequence varies from17 to 22
nt, which fits well within the median size of PASRs. Notably,
the above two models are probably mutually non-exclusive,
since different PASR classes may use distinct pathways for their
biogenesis.

Functions of PASRs
Recent studies have revealed valuable functional implications
of PASRs. Depending on the association with certain long
non-coding RNAs (lncRNAs) and protein factors, some of the
PASRs target specific promoter regions of genes for epigenetic
modifications that affect gene transcription (Hamazaki et al.,
2017). However, altered transcriptional activity of target genes,
in turn, causes fluctuations in PASR biogenesis. Thus, a feedback
regulatory loop is established between PASRs and their target
genes (Yan and Ma, 2012).

TSSaRNAs have been shown to play an important role in the
tissue-specific epigenetic regulation of transcription initiation of
target genes (Seila et al., 2008; Taft et al., 2009a, 2011; Henriques
et al., 2013). In bacteria, TSSaRNAs are involved in the assembly
of functional complexes that enable full-length transcription
of their target genes, thus avoiding immature transcription
initiation (Yus et al., 2012). The tiRNAs are produced from
the promoter regions of highly expressed genes. These sRNAs
are associated with chromatin marks representative of active
transcription (Taft et al., 2009a, 2011). Specifically, approximately
96% of tiRNAs discovered in human embryonic stem cells
overlap with histone H3K4 methylation marks (Taft et al., 2009a).
Notably, some of these chromatin marks are generated via
the tiRNA-dependent pathway and play important biological
roles. For example, in both human and mouse, some of the
tiRNAs induce local epigenetic modifications that modulate the
localization of TFs that bind to CCCTC motifs (Taft et al., 2011).

TARs IN ANIMALS: DISCOVERY,
BIOGENESIS, AND FUNCTIONS

In addition to the PARs, transcription signals have also been
detected at the 3′ ends of protein-coding genes (Wei et al.,
2011) (Table 1). In contrast to PARs, reports on TARs, especially
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terminus-associated long RNAs (TALRs), are limited. In one case
of TALRs, Yue et al. (2010) discovered several sense ncRNAs of
∼3,100 nt at the 3′ end of a progesterone receptor gene. In another
study using human K562 cells, Schwalb et al. (2016) detected
transient RNAs downstream of the poly(A) sites using transient
transcriptome sequencing (TT-Seq), although the length of these
transient RNAs was not described in detail.

The terminus-associated small RNAs (TASRs) ranging from
22 to 200 nt in length are highly conserved in human and
mouse (Kapranov et al., 2007, 2010). Traces of sRNAs at the
3′ ends of many animal genes have been reported (Taft et al.,
2009a). In fission yeast, the sense TASR snR49 has been detected
in the 3′ region of the ribosomal protein-coding gene RPL26
(Leng et al., 2014). Another type of TASRs has been referred to
as transcription termination site-associated RNAs (TTSaRNAs)
(Valen et al., 2011). The enrichment of AGO-associated sRNAs
within the 3′ untranslated regions (UTRs) of protein-coding
genes has been observed in human (Valen et al., 2011); these
TTSaRNAs typically vary in size from 22 to 24 nt.

Like PASRs, the genomic distribution of TASRs does not
indicate a strand-specific bias. Some of the TASRs with
non-genomically encoded 5′ poly(U) tails have been reported
in human cells (Kapranov et al., 2010). Because these TASRs
are antisense to poly(A)-tailed transcripts and are close to
the transcription termination sites, these are suggested to be
synthesized via an as-yet-unidentified RNA-dependent RNA
polymerase (RDR)-dependent pathway. Another mechanism
of TASR biogenesis has been reported for the 3′ sense
terminus-associated ncRNA snR49 (Leng et al., 2014). Results
of scanning deletion analysis within the promoter region reveal
that the transcription of snR49 is dependent on the promoter
activity of the upstream gene RPL26. Similarly, the transcription
of another 3′ sense terminus-associated ncRNA, snR93, relies on
the promoter activity of the upstream RPL29 gene. These data
suggest that this kind of transcriptional regulation is a conserved
mechanism underlying TASR biogenesis (Leng et al., 2014).

To investigate the regulatory roles of TARs overlapping the 3′
termini of protein-coding genes in the human genome, Younger
and Corey (2011) designed small duplex RNAs called “microRNA
(miRNA) mimics,” which were perfectly complementary to
the TARs. The targeting of TARs by “miRNA mimics” affects
upstream gene transcription in a dose-dependent manner,
highlighting a previously unappreciated role of gene termini
and their associated TARs in transcriptional regulation (Younger
and Corey, 2011). On the other hand, artificial constructs
expressing 3′ UTRs containing miRNA-binding sites act as
miRNA sponges (Thomson and Dinger, 2016), indicating that
some of the TALRs might function as endogenous miRNA
sponges. Another widely accepted model called “gene looping”
elucidates TAR-mediated interaction between the 5′ promoters
and 3′ terminators. This model provides an unconventional view
of transcriptional regulation on a long-range scale (O’Sullivan
et al., 2004; Tan-Wong et al., 2008; Tiwari et al., 2008; Yue et al.,
2010). The long-range “gene looping” brings the two ends of a
gene in close proximity. The sRNAs complementary to the 3′
sense TALRs recruit AGO2 and other protein factors to the 5′–3′
interaction region of the gene, thus modulating its transcription

initiation (Yue et al., 2010). This “gene looping” also provides
a long-range scaffold, thus enabling communication between
endogenous TASRs and promoters of upstream genes (Younger
and Corey, 2011).

TBARS: THE EMERGING RNA SPECIES
IN PLANTS

Discovery of Plant TBARs
Transcription boundary-associated RNAs have also been
discovered in plants, although most of the reports are related
to PARs. In Arabidopsis, a striking association of UNTs with
promoters of many protein-coding genes has been observed
(Chekanova et al., 2007). In yeast, characteristics of UNTs
are similar to those of CUTs (Wyers et al., 2005; Neil et al.,
2009; Xu et al., 2009). For example, both UNTs and CUTs
are weakly expressed, 3′ poly(A)-tailed, and degraded via the
exosome-mediated pathway. Notably, the 5′ ends of UNTs are
coincident with those of full-length mRNAs transcribed from the
identical promoters.

A survey of PASRs in metazoa and Arabidopsis has shown that,
unlike metazoans, PASR-like peak is not detectable within the
promoter regions of Arabidopsis genes (Taft et al., 2009b). Data
of this survey also suggest that 18-nt tiRNAs are absent in plants.
There are two possible explanations for these observations. First,
it is possible that the tiRNA biogenesis pathway either has been
lost or never existed inArabidopsis. Second, it is possible that once
tiRNAs are produced, they are subjected to rapid degradation
(Taft et al., 2009b). The presence of PARs and TARs inArabidopsis
has been revisited using many more HTS data sets (Wang et al.,
2011). Unlike the previous study (Taft et al., 2009b), Wang et al.
(2011) detected PASR peaks in regions surrounding the TSSs of
non-transposable element (TE) genes. However, in these data
sets, a total of 17,000 non-TE genes were treated as a whole group
for PASR signal detection, and an in-depth investigation was not
performed. Therefore, a detailed list of genes producing PASRs is
not available. Recently, we identified hundreds of protein-coding
genes in Arabidopsis with detectable PASR signals (Ma et al.,
2017). Similar to the result of Taft et al. (2009a), the 18-nt
tiRNA-like PASRs were also rarely detected in our study. Some of
the PASRs accumulated in a tissue-specific manner. Additionally,
we observed TASR peaks surrounding the transcription termini
of many protein-coding genes (Ma et al., 2017). Both PASRs and
TASRs vary in length from 23 to 24 nt and preferentially start with
either an adenine (A) or a uracil (U) residue at their 5′ ends.

Biogenesis of Plant TBARs
In Arabidopsis, PASRs are located either in upstream or
downstream regions of the TSSs (Wang et al., 2011; Ma et al.,
2017). In animals, divergent transcription (Beck and Warren,
1988; Core et al., 2008; He et al., 2008; Seila et al., 2008, 2009;
Flynn et al., 2011) and bidirectional promoters (Morris et al.,
2008; Xu et al., 2009; Wei et al., 2011; Uesaka et al., 2014) have
been proposed as the mechanisms of PASR biogenesis. Whether
these models explain the biogenesis of PASRs in plants needs
further investigation. There is no clear model for the biogenesis of
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FIGURE 1 | Schematic representation of a uniform annotation system for transcription boundary-associated RNAs (TBARs). In this system, based on their genomic
positions, TBARs are first divided into promoter-associated RNA (PARs) and terminus-associated RNA (TARs). Then, according to their sequence length, PARs and
TARs are subdivided into long (PALRs and TALRs) and short (PASRs and TASRs) species. For further classification, other important features, such as their biogenesis
pathways, modes of action, and biological functions, may be taken into consideration. TBARs, transcription boundary-associated RNAs; PARs, promoter-associated
RNAs; TARs, terminus-associated RNAs; PALRs, promoter-associated long RNAs; PASRs, promoter-associated small RNAs; TALRs, terminus-associated long
RNAs; TASRs, terminus-associated small RNAs; paRNAs, promoter-associated RNAs; PROMPTs, promoter upstream transcripts; uaRNAs, upstream antisense
RNAs; SUTs, stable unannotated transcripts; CUTs, cryptic unstable transcripts; UNTs, upstream non-coding transcripts; TSSaRNAs, transcription start
site-associated RNAs; tiRNAs, transcription initiation RNAs; TTSaRNAs, transcription termination site-associated RNAs.

TASRs in animals. It has been suggested that some of the TASRs,
especially those that areantisense, are generated through a specific
RDR-dependent pathway. Our study in Arabidopsis shows that
the accumulation of some TBARs, including PASRs and TASRs,
is highly dependent on the activities of RNA Pol IV, RDR2/6, and
DCL2/3/4 (Ma et al., 2017).

According to the distribution patterns of TSSs in vertebrates,
gene promoters are classified into two categories: sharp and
broad. A sharp promoter always has a single predominant
TSS, whereas a broad promoter usually has an array of almost
equivalent TSSs (Valen et al., 2011; Danino et al., 2015).
Interestingly, sharp promoters generate fairly narrow PASR
peaks, whereas broad promoters generate PASRs with a much
wider distribution range. Notably, in Arabidopsis, both sharp and
broad PASR peaks are observed on different gene promoters (Ma
et al., 2017). Thus, investigating the relationship between the
promoter type and PASR peak shape in plants will be useful.

Functions of Plant TBARs
Few studies have been conducted on the regulatory roles of
TBARs in plants. However, studies in animals provide valuable
hints on the functions of TBARs in plants. Using the human
PR gene as a model, Core et al. (2008) have shown that small
duplex RNAs complementary to the ncRNAs originating from the
promoter or terminus of the PR gene can efficiently regulate gene
transcription. Theoretically, manually designed sRNAs recruit

the AGO2 protein to the complementary target ncRNAs (i.e.,
PALRs or TALRs), which alters the transcription status of the PR
gene via the “gene looping” mechanism (Janowski et al., 2005,
2006, 2007; Schwartz et al., 2008; Younger and Corey, 2009;
Yue et al., 2010). This regulatory mechanism is conserved in
animals (Janowski et al., 2006; Kim et al., 2006; Han et al., 2007;
Schwartz et al., 2008; Napoli et al., 2009; Chu et al., 2010). Two
research areas need further investigation: first, whether the plant
endogenous PASRs and TASRs function in a similar manner as
the manually designed sRNAs reported in animals; and second,
whether PALRs and TALRs are recognized as targets of PASRs
and TASRs, respectively, in plants. The involvement of TBARs in
site-specific DNA methylation has been observed in both plants
and animals (Mette et al., 2000; Hawkins et al., 2009; Swiezewski
et al., 2009; Zheng et al., 2013; Ma et al., 2017), indicating that it
is an important pathway for TBAR-mediated regulation of gene
transcription.

CONCLUDING REMARKS AND
PERSPECTIVES

Need for a Uniform Annotation System
for TBAR Research
Owing to the heterogeneity of the TBAR population,
many aspects of TBARs including sequence characteristics,
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biogenesis pathways and biological functions are poorly
understood. One of the most basic and pressing issues derives
from their classification. Some of the TBARs such as PASRs,
TSSa-RNAs, and tiRNAs exhibit similar genomic locations and
sizes in animals. It is unclear whether these sRNAs belong to
distinct classes or to the same class (Jacquier, 2009). It is also
unclear whether their biogenesis pathways and action modes
overlap. Although some of the TBARs are likely to represent
“transcription noise,” increasing cases are being reported that
emphasize the non-negligible roles of certain TBARs in gene
expression regulation. Hence, a uniform annotation system is
required to facilitate in-depth research on TBARs. Some criteria
have been proposed previously to determine the classification
of PARs, including size ranges and positions relative to the
TSSs (Kaikkonen et al., 2011; Lenhard et al., 2012). Here, we
propose a preliminary system for TBAR annotation (Figure 1).
In this system, we first classified TBARs, based on their genomic
position, as PARs and TARs. Then, based on their sequence
length, both PARs and TARs were divided into long (>200 nt)
and short (<200 nt) species. Using this annotation system, most
of the recently reported TBARs could be assigned to one of the
categories. For further classification, we suggest that additional
important features of TBARs, such as biogenesis pathways,
modes of action, and biological functions, should be taken into
consideration.

Future Challenges in TBAR Research
To advance our understanding of TBARs, further research is
needed in a few areas described below. First, it has been
suggested that sRNAs mapped to the transcription boundaries
of protein-coding genes are degraded remnants of mRNAs
(Schwalb et al., 2016). However, considering the non-random
enrichment of TBARs with specific sequence length, such as
the animal tiRNAs (18 nt) (Taft et al., 2009a) and plant PASRs
and TASRs (23–24 nt) (Ma et al., 2017), at least some of the
TBARs are unlikely to be generated through random mRNA
decay. Nonetheless, a large proportion of TBARs are subjected to
rapid degradation after their maturation. According to previous
studies (Davis and Ares, 2006; Chekanova et al., 2007; Preker
et al., 2008), mutants of RNA decay pathways (e.g., exosome-
depleted cell lines) represent promising options for efficient
TBAR cloning.

Second, recent evidence shows that a genetic mutation within
a protein-coding locus may affect not only the gene of interest
but also the associated ncRNAs. Notably, some of these affected
ncRNAs, in turn, alter the chromatin state through long-range
interactions (Tufarelli et al., 2003; Wei et al., 2011). Thus, when
investigating the biological consequences of a mutation within a
specific genomic locus, it is necessary to consider the effects on
the associated ncRNAs.

Third, as mentioned above, the high frequency of poly(A)
signals on PROMPTs is related to their rapid degradation,
which has been proposed as one of the mechanisms to ensure
unidirectional transcription elongation (Ntini et al., 2013).
Since most of the mammalian promoters are bidirectional
(Core et al., 2008; Seila et al., 2008; Sigova et al., 2013),
functional studies on the involvement of PARs in transcription
determination are necessary. Till date, three key factors
have been proposed as important players in transcription
determination (Wei et al., 2011), including the nucleotide
composition, chromatin modifications of promoters, and the
“gene looping” mechanism. The nucleotide composition within
the promoter region affects the directionality of the promoter
(Engstrom et al., 2006). In yeast, the TATA element imposes
a constraint on the direction of transcription initiation (Park
et al., 2014). Additionally, chromatin modifications induced
by the promoter-associated transcription of the ncRNAs
may serve as codes for the orientation of transcription
elongation. Moreover, the “gene looping” model suggests
that long-range interactions link the promoter to its favored
3′ end, thus determining the orientation of transcription
elongation (Miele and Dekker, 2008; Laine et al., 2009;
Tan-Wong et al., 2009). However, detailed mechanisms
of unidirectional transcription elongation require further
investigation.

Fourth, in addition to the TBARs associated with protein-
coding genes, whether TBARs exist on lncRNAs needs to be
revisited. Conserved secondary structures are detected at the ends
of certain lncRNAs (Ponting et al., 2009; Yu et al., 2017); however,
whether these local structures serve as precursors of PASRs or
TASRs remains elusive.

Overall, investigations into all of the above-mentioned
challenging but intriguing research areas are needed. Results of
these investigations are expected to increase our knowledge of
TBARs.
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