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� Abstract
Assessing the pattern of nuclear chromatin is essential for pathological investigations.
However, the interpretation of nuclear pattern is subjective. In this study, we per-
formed the texture analysis of nuclear chromatin in breast cancer samples to determine
the nuclear pleomorphism score thereof. We used three different algorithms for
extracting high-level texture features: the gray-level co-occurrence matrix (GLCM),
gray-level run length matrix (GLRLM), and gray-level size zone matrix (GLSZM).
Using these algorithms, 12 GLCM, 11 GLRLM, and 16 GLSZM features were extracted
from three scores of breast carcinoma (Scores 1–3). Classification accuracy was
assessed using the support vector machine (SVM) and k-nearest neighbor (KNN) clas-
sification models. Three features of GLCM, 11 of GLRLM, and 12 of GLSZM were
consistent across the three nuclear pleomorphism scores of breast cancer. Comparing
Scores 1 and 3, the GLSZM feature large zone high gray-level emphasis showed the
largest difference among breast cancer nuclear scores among all features of the three
algorithms. The SVM and KNN classifiers showed favorable results for all three algo-
rithms. A multiclass classification was performed to compare and distinguish between
the scores of breast cancer. Texture features of nuclear chromatin can provide useful
information for nuclear scoring. However, further validation of the correlations of his-
topathologic features, and standardization of the texture analysis process, are required
to achieve better classification results. © 2021 The Authors. Cytometry Part A published by

Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
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EVALUATION of the nuclear chromatin pattern is essential for pathological investi-
gations (1). Nuclear chromatin provides important genetic and biological informa-
tion; the chromatin pattern serves as a visual symbol of hidden biological processes
(2). The chromatin pattern can be described as hyperchromatic, hypochromatic,
coarse granular, fine granular, vesicular, or “salt and pepper,” and so on. Each chro-
matin pattern can be sufficiently unique that it can serve as a useful marker for
tumor diagnosis. However, the chromatin structure is ambiguously defined, which
has motivated efforts toward developing objective tools, such as image analysis
methods. Texture image analysis constitutes an objective, quantitative assessment
based on their gray levels and their spatial relationship in an image (3,4). The most
widely used texture analysis methods are the co-occurrence and run-length matrices
(5). A gray-level co-occurrence matrix (GLCM) shows how often various combina-
tions of pixel brightness values occur in an image. Each element of p(i, j) specifies
the number of times a pixel with a gray-level value, i, occurs, shifted by a given
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distance to a pixel with a value j. In a gray-level run length
matrix (GLRLM), the pixel p(i, j) is defined as the number of
runs with pixels of gray level, i, and run-length, j (6-8). In a
coarse texture, relatively long gray-level runs occur, while a
fine texture will show short runs. The recently introduced
gray-level size zone matrix (GLSZM) represents two-
dimensional data based on GLRLM. GLSZM detects pixels
that are identical to a reference pixel in the periphery, stores
the number of connected pixels in the matrix, and calculates
feature values based on these stored values (9,10). In the field
of histopathology, several studies have been conducted using
GLCM and GLRLM, but studies using GLSZM are rare.
Breast cancer is one of the most common cancer in women
and the nuclear grade has major clinical implications and
Nottingham histologic score is widely used for determining
the nuclear grade of breast cancer based on three factors:
tubule formation, nuclear pleomorphism, and the mitotic cell
count (11). Among three factors, nuclear pleomorphism is
the most subjective element of the histological grade (12).
Given that nuclear pleomorphism is mainly determined by
chromatin texture, we performed a texture analysis of nuclear
chromatin in breast carcinoma samples using GLCM,
GLRLM, and GLSZM, and the results were compared with
the score of nuclear polymorphism. Thus, we can assess the
potential for a paradigm shift from qualitative intuitive per-
ception to quantitative texture analysis of nuclear chromatin
interpretation.

MATERIALS AND METHODS

Tissue Samples

We analyzed three surgically resected invasive ductal carcino-
mas with nuclear pleomorphism score of 1 (SC-1), 2 (SC-2),
and 3 (SC-3), which were diagnosed by independent two
pathologists who were blinded to the original diagnosis. This
study was performed according to the Helsinki Declaration
and was approved by the Ethics Committee of Eulji Univer-
sity Hospital (IRB No: 2019-10-016). All formalin-fixed
paraffin-embedded tissues were sectioned with a thickness of
4 μm and stained with hematoxylin and eosin compounds
according to the standard method using an autostainer. Our
image analysis technique consisted of five phases, as shown in
Figure 1: image acquisition using a digital camera; breast can-
cer cell nuclei segmentation; extraction of texture features
using GLCM, GLRLM, and GLSZM; statistical analysis; and
breast cancer grading using the support vector machine
(SVM) and k-nearest neighbor (KNN) algorithms.

Image Acquisition

Breast cancer tissue images of each nuclear pleomorphism
score were acquired by a pathologist using a digital camera at
600× magnification (DP73; Olympus, Tokyo, Japan) attached
to a microscope (BX-51; Olympus) under the same condition.
Neoplastic cells were acquired in 14 bits/pixel color bitmap
format (2.01 megapixels per image). The image resolution
was 4,800 × 3,800 pixels. The image sensor size was 1/1.8 in.
and the pixel size was 4.40 × 4.40 μm. We collected a total of

31 images (eight images of SC-1, 12 of SC-2, and 11 of SC-3)
from three breast cancer patients. Examples of histopathologi-
cal images of each nuclear pleomorphism score of breast car-
cinoma are shown in the Supporting Information,
Appendix SI, and Figure S1a–c. Each of the following scores
is assigned according to the Nottingham histologic scoring
system as follows:

SC-1: Small, regular, uniform nuclei.
SC-2: Moderate increase in size and variability.
SC-3: Marked variation.

Nuclear Segmentation of Cancer Cells

The SC-1 and SC-2 nuclear images were converted from red,
green, blue (RGB) color space to L*a*b* color space. Color
segmentation was performed based on various threshold
values, shown in Figure 2a–c. For SC-3 images, manual seg-
mentation was performed due to poor results after automatic
color segmentation. After segmentation, a pathologist (H.K.
L.) reviewed thoroughly the segmented images and compared
them with the original ones obtained from HE stain. Non-
neoplastic cells such as vascular endothelia or stromal cells
were discarded by the pathologist. Also, the objects smaller
than 150 pixels were removed automatically, shown in
Figure 2d,e, and then we labeled the nuclei for overlapping
segmentation and sent it to the pathologist for nucleus selec-
tion. The nuclei in Figure 3b were selected by a pathologist
and the overlapping nuclei were stored in a separate image
for watershed segmentation. After cropping the connected cell

Figure 1. Overview of the proposed pipeline for texture analysis

and nuclear scoring of breast carcinoma. GLCM: gray-level co-

occurrence matrix, GLRLM: gray-level run length matrix, GLSZM:

gray-level size zone matrix.
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nucleus, the color image was converted to binary format, and
the distance transform algorithm was applied to calculate the
distance map (13). Finally, markers were placed on each
nucleus based on the distance map, and a watershed algo-
rithm was performed to separate the overlapping nuclei for
texture analysis, shown in Figure 3d.

Figure 4 shows the morphological transformations of
segmented nuclei. Three morphological operations (erosion,
opening, and closing) were applied to remove peripheral
brightness and smooth the nuclear membrane boundary. For
the SC-1 and SC-2 samples, all three morphological

operations were applied to trim the nuclear shape and extract
chromatin texture information from the cell nucleus; how-
ever, for the SC-3 sample, erosion was not applied because of
the previous manual segmentation.

Texture Feature Extraction

Texture analysis provides information about the spatial pat-
terns of intensity and color and is typically performed using
statistical-, moment-, spectral energy-, and form-based
methods (14). We carried out statistical-based techniques,
namely GLCM, GLRLM, and GLSZM. Statistical texture

Figure 2. Nuclear segmentation. (a) Original image. (b) Minimum and maximum threshold values for color separation. (c) L*a*b* color

segmentation. (d) A threshold value for removing noisy pixels. (e) De-noised image extracted from (c). [Color figure can be viewed at

wileyonlinelibrary.com]

Figure 3. Overlapping nuclei segmentation using a watershed algorithm. (a) Pre-processed image after L*a*b* color segmentation.

(b) Labeled image. (c) Nuclei selection is based on a pathologist’s decision. (d) Result of watershed segmentation. The red dot in

(c) indicates the overlapping nuclei and the red dots in (d) are the markers. [Color figure can be viewed at wileyonlinelibrary.com]
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analysis describes the relationship among pixels in the image
according to their gray-level values, where GLCM and
GLRLM are typical algorithms used for this purpose. GLCM
can describe the inter-pixel relationships and GLRLM
describes the relationships in linear one-dimensional terms;
GLSZM is an extended version of GLRLM that describes the
gray-level size zone in two dimensions.

A list of abbreviations for all the textural features
extracted in this study is provided in the Supporting Informa-
tion Appendix SI and Abbreviation. Conversion from RGB to
gray-level was performed as follows: R × 0.2989 + G × 0587
+ B × 0.114. The matrices were created using grayscale levels
in the range of 0–255. The pixel navigation angles were 0, 45,
90, and 135�, and the mean result was calculated for all four
directions.

Gray-Level Co-Occurrence Matrix

GLCM, which describes second-order statistical texture prop-
erties and provides the informations regarding the positions
of pixels having similar gray-level values, was proposed by
Haralick et al. (5). After determining the displacement vector,
d = (dx, dy), of the matrix, the intensity values are used to
calculate the frequency of occurrence of pairs of pixels sepa-
rated by d and to generate a matrix describing the spatial dis-
tribution of intensity (15). The matrix is normalized as the
sum of each element divided by the total number of pairs of
pixels. Characteristic values that can be calculated using the
normalized GLCM include angular second moment, inverse
differential moment, entropy, correlation, contrast, homoge-
neity, correlation, and diagnostic moment values (16). The
basic principle of GLCM is shown in the Supporting Informa-
tion Appendix SI and Figure S2. In this article, a two-dimen-
sional, 256 × 256 GLCM was constructed with grayscale
levels in the range of 0–255, based on the four directions 0�,
45�, 90�, and 135� at a distance of d = 1. During GLCM com-
putation, pixels with a zero value were not considered in the
matrix. The extracted 12 features of GLCM were energy,
entropy, correlation, contrast, homogeneity, variance, sum
mean, inertia, cluster shade, cluster tendency, maximum
probability, and inverse variance; the formulae used to calcu-
late these features and their characteristics are given in the
Supporting Information Appendix SI and Table S1.

Gray-Level Run Length Matrix

GLRLM, which analyses statistical texture by calculating the
length of homogeneous runs for each gray level, was intro-
duced by Galloway (6). The matrix describes the gray inten-
sity pattern of pixels in a specific direction relative to
reference pixels; run length is the range of adjacent pixels
with the same gray intensity in that direction. The basic prin-
ciple of GLRLM is shown in the Supporting Information
Appendix SI and Figure S3. The extracted 11 features of
GLRLM were short-run emphasis (SRE), long-run emphasis
(LRE), gray-level non-uniformity (GLNU), run length non-
uniformity (RLN), run percentage (RP), low gray-level run
emphasis (LGRE), high gray-level run emphasis (HGRE),
short-run low gray-level emphasis (SRLGE), short-run high
gray-level emphasis (SRHGE), long-run low gray-level
emphasis (LRLGE), and long-run high gray-level emphasis
(LRHGE); the formulae used to calculate these 11 features are
given in Supporting Information Appendix SI and Table S2.

Gray-Level Size Zone Matrix

GLSZM was introduced by Thibault (9,10) and is based on
the size of a pixel zone that is different from GLCM and
GLRLM. No specific direction is used when calculating
GLSZM features. The number of neighboring pixels around a
reference pixel having the same gray level is counted and
stored in a matrix. The resulting matrix is determined by the
size of the largest zone. The 8-connectivity was used for
assessing neighboring pixels in this study, as with the example
shown in the Supporting Information Appendix SI and
Figure S4. The extracted 16 texture features of GLSZM calcu-
lated in this article were small zone emphasis (SZE), large
zone emphasis (LZE), low gray-level zone emphasis (LGLZE),
high gray-level zone emphasis (HGLZE), small zone low
gray-level emphasis (SZLGLE), small zone high gray-level
emphasis (SZHGLE), large zone low gray-level emphasis
(LZLGLE), large zone high gray-level emphasis (LZHGLE),
GLNU, normalized gray-level non-uniformity (NGLNU),
zone size non-uniformity (ZSNU), normalized zone size non-
uniformity (NZSNU), zone percentage (ZP), gray-level vari-
ance (GLV), zone size variance (ZSV), and zone size entropy
(ZSE); the formulae used to calculate these features and their
description are given in Supporting Information Appendix SI
and Table S3.

Figure 4. Morphological transformations of segmented nuclei. (a) Cropped images after watershed segmentation. (b) Nuclear contour

smoothing using morphological operations, namely erosion, opening, and closing. Finally, we obtained a total of 1,320 nuclear images

(440 nuclei for each SC-1, SC-2, and SC-3, respectively). [Color figure can be viewed at wileyonlinelibrary.com]
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Statistical Analysis

Two tests were used to analyze statistically whether the
extracted texture features have a significant impact on the
nuclear pleomorphism scoring of breast carcinoma. First,
one-way analysis of variance (ANOVA), a method of hypoth-
esis testing that uses F-values created by comparing the vari-
ances within and between the groups, was performed (17).
Here, distribution analysis was used to determine whether
there was a difference in mean values among scores. Texture
features with an F-value of less than 5 or a P-value greater
than 0.05 were excluded, as was GLCM cluster shade
(P > 0.05). Second, we performed Pearson’s correlation coeffi-
cient. High correlation coefficients were indicated by a linear
tendency. As shown in the Supporting Information
Appendix SI and Figure S5, the two distributions of SZE with
significantly different correlation coefficients. From among
the total of 39, we selected 24 texture features for classifica-
tion testing based on their F-values, p-values, and strong cor-
relations (r > 0.9). To analyze the magnitude differences
between the nuclear pleomorphism scores and feature impor-
tance, the effect size (Cohen’s f and eta squared) has been
computed using F-values, numerator degrees of freedom, and
denominator degrees of freedom obtained from the ANOVA
hypothesis test, shown in the Appendix SI and Table S4.

Classification Model

After preprocessing and feature calculation, classification was
performed based on two machine-learning algorithms: sup-
port vector machine (SVM) and k-nearest neighbor (KNN).
Supervised learning techniques were used in this study: for
training, labeled data samples were used to determine the dis-
criminant function, while various newly labeled data samples
were used to test the derived function. Fivefold cross-
validation was used to validate the training set. During our
classification based on the texture characteristics of cell nuclei
in histological sections of breast carcinomas, both SVM and
KNN performed well.

SVM is typically used for binary classification; the algo-
rithm searches for the optimal boundaries for discriminating
and classifying data (18), shown in the Supporting Informa-
tion Appendix SI and Figure S6. Six classifiers were used to
carry out SVM classification in this study, namely linear, qua-
dratic, cubic, fine Gaussian, medium Gaussian, and coarse
Gaussian.

KNN is an important method that does not require any
assumptions to be met regarding the distribution of the data.
This simple classification algorithm uses the minimum dis-
tance from the query instance to the training samples to
determine the class that the majority of the “k” nearest neigh-
bors belong to (19). Six classifiers were used to carry out
KNN classification in this study, namely fine, medium, coarse,
cosine, cubic, and weighted KNN. This algorithm stores all
available cases and classifies new cases based on similarity
measures, as shown in the Supporting Information
Appendix SI and Figure S7. The KNN classifier is a nonpara-
metric method used for classification and regression.

RESULTS AND DISCUSSION

A data set of texture features based on GLCM, GLRLM, and
GLSZM was created for each nuclear pleomorphism score.
Chromatin texture data were extracted from a total of 1,320
nuclear images (440 nuclei for each SC-1, SC-2, and SC-3).
The data set was divided into training and testing data sets
according to an 8:2 ratio. The mean and standard deviation
values for the size of the nuclei are as follows: 708 ± 220 μm2

for SC-1, 871 ± 220 μm2 for SC-2, and 2,275 ± 928 μm2 for
SC-3. We hypothesized that when the nuclear score is deter-
mined by the degree of nuclear atypia and the texture fea-
tures, the mean values of these features will tend to increase
or decrease consistently with nuclear score due to the contin-
uous nuclear scoring system spectrum.

For the selection of meaningful features according to
nuclear score, we focused on: (1) the consistency of textural
features; (2) the difference between SC-1 and SC-3; and
(3) data reduction after statistical analysis. In the view of con-
sistency, all of the GLRLM and GLSZM features showed a
consistent trend, except for the following four GLSZM fea-
tures: LZLGLE, NGLNU, ZSNU, and GLV. However, only
three GLCM features were consistent: contrast, inertia, and
inverse variance. Figure 5 shows example graphs of consistent
and inconsistent GLCM and GLSZM features.

In the view of between SC-1 and SC-3, Figure 6 shows
the feature value ratios, which represent feature difference,
derived by dividing the mean feature values of SC-1 by those
of SC-3 (colored in blue). If the result of SC-3 was more than
SC-1, its reciprocal (SC-3/SC-1) was calculated instead (col-
ored in red). Among the three different texture analysis
methods, no feature for GLCM had a ratio exceeding the
arbitrary value of 2, shown in Figure 6a.

Figure 6b,c shows the results GLRLM and GLSZM,
respectively. The GLRLM features with the highest two mean
SC-1/SC-3 values were SRLGE and SRE, and those with the
highest two mean SC-3/SC-1 values were LRHGE and GLNU.
The GLSZM features with the highest two mean SC-1/ SC-3
values were SZLGE and LGLE, and those with the highest
two mean SC-3/SC-1 values were LZHGLE and ZSV. Among
the three different texture analysis methods, the GLSZM fea-
ture LZHGLE showed the largest difference between SC-1
and SC-3.

In the view of data reduction after statistical analysis,
24 features were selected from among all 39, based on their
strong correlations (r > 0.9) and high F-values. These were
included 6 GLCM features (entropy, contrast, variance, sum
mean, max probability, and inverse variance), 6 GLRLM fea-
tures (LRE, RLN, RP, HGRE, SRLGE, and LRHGE), and
12 GLSZM features (SZE, HGLZE, SZLGLE, LZLGLE,
LZHGLE, GLNU, NGLNU, ZSNU, NZSNU, ZP, GLV, and
ZSE). Regarding the nuclear pleomorphism score of breast
cancer, chromatin texture-based classification using KNN and
SVM showed accuracies of 83.7% and 84.1% for GLCM,
93.9% and 91.7% for GLRLM, 93.2% and 93.6% for GLSZM,
and 94.3% and 93.9% for the combined (GLCM, GLRLM,
and GLSZM) features, respectively. Table 1 shows the overall
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classification results of breast carcinoma, and the performance
of the classifier has been evaluated using four types of metrics
namely, accuracy, precision, recall, and f1-score. Among
these, recall is the most important metric, which indicates the
accurate classification for each score.

From the obtained results, we have analyzed that GLCM
features significantly affected the performance of the classi-
fiers and achieved the lowest accuracy, whereas the features of
GLRLM and GLSZM afforded high accuracy and can be con-
sidered as highly accurate features for classifying SC-1, SC-2,
and SC-3. Combinations that include GLCM, GLRLM, and
GLSZM features had the highest accuracy compared to other
classification groups. The confusion matrices in the
Supporitng Information Appendix SI and Tables S5-S8 were
obtained from the machine learning classification.

Considering that the three factors of consistency along
the scores, difference ratio > 2 between SC-1 and SC-3, and
statistical analysis are important for the selection of meaning-
ful features from the three matrices; four features of GLRLM
(LRE, RP, SRLGE, and LRHGE) and four features of GLSZM
(HGLZE, SZLGLE, LZHGLE, GLV) were selected.

However, mathematical review of the functions of the
features revealed the similarity of the functions, such as

GLRLM’s SRLGE 1
NrðθÞ
� �PNg

i= 1

PNr

j= 1

Pði, jjθÞ
i2 j2

 !
and GLSZM’s SZLGLE

1
Nz

� �PNg

i = 1

PNs

j= 1

Pði, jÞ
i2 j2

 !
, GLRLM’s LRHGE 1

NrðθÞ
� �PNg

i = 1

PNr

j= 1
i2j2Pði, jjθÞ

 !

and GLSZM’s LZHGLE 1
Nz

� �PNg

i= 1

PNs

j= 1
i2j2Pði, jÞ,

 !
which was

understandable based on the fact that GLSZM is an extended
version of GLRLM (9,10).

And also, it was interesting to note that the two of the
selected four features of GLRLM (LRE and SRLGE) are
related to the low gray level, and the two of the selected four
features of GLSZM (HGLZE and LZHGLE) are related to the
high gray level, which suggests the likelihood of that low gray
level is more detectable to the line-based GLRLM, and the
high gray level is more detectable to size-based GLSZM.

In terms of statistical analysis and data reduction, of the
hundreds of potential features, the choice of key texture fea-
ture is important. For instance, the similar accuracy of all
39 of the features included in this study, and among the
24 selected features, highlights the importance of selecting
statistically significant features. The similar accuracy and
strong correlations of the features can be understood in terms
of the similarity in the mathematical functions of each
feature.

In the view of comparison and integration of histologic
findings with texture analysis, our result was supportive. As
mentioned in the Supporting Information Appendix SI and
Tables S1-S3, the histologic findings of fine, regular chroma-
tin can be translated into short, small, and repetitive features
while hypo- and hyperchromatism can be translated into high
and low gray-level features in GLCM, GLRLM, and GLSZM,

Figure 5. Example graphs of consistent and inconsistent features in the gray-level co-occurrence matrix (GLCM) and gray-level size zone

matrix (GLSZM). (a,d) Inconsistent values can be seen for the GLCM feature of energy and the GLSZM feature of LZLGLE, respectively.

(b,c,e,f) Consistent values can be seen for the GLCM features of contrast and inverse variance, and the GLSZM features of GLNU and

LZHGLE, respectively. [Color figure can be viewed at wileyonlinelibrary.com]
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respectively. In results, SC-1 nuclei with regular fine chroma-
tin pattern showed higher mean values for the SRE, SRLGE,
and SRHGE of GLRLM, and SZLGLE of GLSZM while SC-3
nuclei with irregularly coarse granular hyper and hyp-
ochromatic chromatin pattern showed higher mean values for
the LRHGE feature in GLRLM and LZHGLE feature in
GLSZM (Fig. 5). However, Given that the pattern of irregular,
hyperchromatic, vesicular, coarse granular chromatin is the

nuclear pattern of pleomorphic SC-3 cells, in contrast to the
low difference ratio of LZLGLE suggesting large
hyperchromatin in SC-3, the large difference ratio of
LZHGLE suggesting large hypochromatin in SC-3 may be
related to the likelihood that high grayscale levels will have a
greater impact than low grayscale levels. And this finding
seems to be related to a tendency to be more susceptible to a
high gray level in GLSZM than GLRLM, as we mentioned.

Figure 6. Feature difference analysis of SC-1/SC-3 and SC-3/SC-1. (a) GLCM, (b) GLRLM, and (c) GLSZM. (See the main text for the feature

abbreviations for GLRLM and GLSZM shown in [b] and [c], respectively.) [Color figure can be viewed at wileyonlinelibrary.com]

Table 1. The overall classification performance was obtained from the test data set of GLCM, GLRLM, and GLSZM

CLASSIFIER ACCURACY PRECISION RECALL F1-SCORE

GLCM
K nearest neighbor 83.7 83.7 83.6 83.6
Support vector machine 84.1 83.0 84.0 83.5
GLRLM
K nearest neighbor 93.9 94.0 93.8 93.8
Support vector machine 91.7 91.6 91.6 91.6
GLSZM
K nearest neighbor 93.2 93.2 93.2 93.2
Support vector machine 93.6 93.5 93.5 93.5
Combination of GLCM, GLRLM, and GLSZM
K nearest neighbor 94.3 94.4 94.3 94.3
Support vector machine 93.9 93.9 93.9 93.9

704 A Paradigm Shift in Nuclear Chromatin Interpretation

ORIGINAL ARTICLE

http://wileyonlinelibrary.com


The features of each algorithm in this study showed specific-
ity for each nuclear pleomorphism score. Given the high
accuracy of the GLSZM features for SC-3, in contrast to the
high accuracy of the GLCM features for SC-1, it seems to be
important to select the appropriate algorithm based on the
nuclear chromatin pattern. GLCM would be more appropri-
ate for describing periodic textures such as fine, granular car-
cinoid tumors, endocrine lesions, or low-grade nuclei
(e.g., SC-1 nuclei), whereas GLSZM would be more appropri-
ate for describing more regional, heterogeneous, and non-
periodic textures, such as pleomorphic or high-grade tumors,
or high-grade nuclei (e.g., SC-3 nuclei). Considering our daily
use of two-dimensional glass slides, the parameters of the
two-dimensional GLSZM are closer to our intuitive interpre-
tation than GLCM or GLRLM.

Mathematical approaches for analyzing tissue cross sections
have been applied since the late 1970s (20, 21) and image analy-
sis tools have sparked renewed interest in such approaches.

Each GLCM, GLRLM, and GLSZM feature function is
defined as a combination of squares, divisions, and integrals
using the constants composed mainly of gray intensity and spa-
tial relationship of pixels such as run lengths, size zones. The fea-
tures represent the microscopic findings of granularity,
coarseness, and chromatism of the nuclei. However, similar func-
tions with different constants of each matrix such as GLRLM’s
SRLGE and GLSZM’s SZLGLE or GLRLM’s LRHGE and
GLSZM’s LZHGLE warn of a high correlation between them.

Despite the high accuracy, the lack of generalization of
our results to common invasive ductal carcinoma still remains
due to arbitrary difference ratio > 2, the limited number of
tumors and samples, as well as the biological and histological
heterogeneity within or between tumors. However, we hope
that the experiments integrating the qualitative perception of
histological findings and the features of quantitative texture
analysis could be meaningful in the field of histopathology.
Recalling that GLSZM has been introduced as the expansion
matrix of GLRLM and that a new matrix such as neighbor-
hood gray tone difference matrix has recently been developed,
our anticipated open mind for a new matrix is essential.

In image processing in other medical fields, such as radi-
ology, texture analysis studies (the so-called radiomics) have
been performed for assessing image heterogeneity (22). How-
ever, texture analysis has been performed less frequently in
the field of histology (23-27). With the features of GLCM,
GLRLM, and GLSZM, histologic findings regarding the regu-
larity, granularity, hypochromatism, and hyperchromatism of
chromatin texture can be analyzed, and higher diagnostic
power can thus be achieved based on such objective and
reproducible data.

CONCLUSION

Image analysis based on texture parameters is difficult, while
that based on length and size (i.e., morphometric measure-
ments) is relatively simple. However, overcoming the difficul-
ties with texture-based analysis in the field of diagnostic

cytopathology is important, especially to reduce the subjective
individual interpretation of nuclear chromatin patterns. Our
study aimed to determine whether the texture features of
nuclear chromatin can provide useful information for nuclear
grading. Using 12 texture features of GLCM, 11 of GLRLM,
and 16 of GLSZM, a total of 1,320 segmented nuclei images
of breast cancer (440 nuclei each for SC-1, SC-2, and SC-3)
were studied in terms of their ability to facilitate nuclear scor-
ing. Considering the consistency along the scores, and differ-
ence ratio > 2 between SC-1 and SC-3, four features of
GLRLM (LRE, RP, SRLGE, and LRHGE) and four features of
GLSZM (HGLZE, SZLGLE, LZHGLE, GLV) were significant
with the largest difference in LZHGLE of GLSZM. The
LZHGLE of GLSZM is meaningful in the view of textural
image expression of the histologic finding of large hyp-
ochromatic nuclei of high grade cancer.

High concordance with nuclear pleomorphism score and
classification accuracy rates exceeding 90% were achieved
using SVM and KNN, suggesting that texture parameters can
indeed provide useful information on nuclear chromatin
patterns.

However, many challenges remain. First, the selection of
key texture features from among the hundreds of potential
features now available due to developments in mathematics is
important. For instance, the similar accuracy of all 39 of the
features included in this study, and among the 24 selected
features, highlights the importance of selecting statistically
significant features. The similar accuracy and strong correla-
tions of the features can be understood in terms of the simi-
larity in the mathematical functions of each feature. Although
we selected the 24 features based on Pearson’s correlation and
ANOVA, to identify ideal features from among many similar
ones, more comprehensive mathematical manipulations, and
validation of the correlations of histopathologic features, will
be needed. Second, reliable nuclear segmentation is both nec-
essary and challenging; particularly for high-grade nuclei, this
is a fundamental problem. At the outset, we planned to per-
form automatic nuclear segmentation in our study, but ulti-
mately we had to apply manual segmentation to SC-3 nuclei
because of the high failure rate of automatic segmentation.
Considering the significant impact of segmentation on the
final results, standardization of image resolution and more
effective segmentation are required. Comprehensive research
on standardization and validation of variables, mathematical
manipulations of different matrices, and the integration of
histologic findings and texture analysis will help us overcome
the challenges.
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