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Background and Objective. Glaucomatous vision loss may be preceded by an enlargement of the cup-to-disc ratio (CDR). We
propose to develop and validate an artificial-intelligence-based CDR grading system that may aid in effective glaucoma-suspect
screening. Design, Setting, and Participants. 1546 disc-centered fundus images were selected, including all 457 images from the
Retinal Image Database for Optic Nerve Evaluation dataset, and images were randomly selected from the Age-Related Eye Disease
Study and Singapore Malay Eye Study to develop the system. First, a proprietary semiautomated software was used by an expert
grader to quantify vertical CDR. &en, using CDR below 0.5 (nonsuspect) and CDR above 0.5 (glaucoma suspect), deep-learning
architectures were used to train and test a binary classifier system.Measurements. &e binary classifier, with glaucoma suspect as
positive, is measured using sensitivity, specificity, accuracy, and AUC. Results. &e system achieved an accuracy of 89.67%
(sensitivity, 83.33%; specificity, 93.89%; and AUC, 0.93). For external validation, the Retinal Fundus Image Database for
Glaucoma Analysis dataset, which has 638 gradable quality images, was used. Here, the model achieved an accuracy of 83.54%
(sensitivity, 80.11%; specificity, 84.96%; and AUC, 0.85). Conclusions. Having demonstrated an accurate and fully automated
glaucoma-suspect screening system that can be deployed on telemedicine platforms, we plan prospective trials to determine the
feasibility of the system in primary-care settings.

1. Introduction

Glaucoma is a group of diseases that damage the eye’s optic
nerve and result in vision loss and blindness [1]. Glaucoma,
with age-related macular degeneration (AMD) and diabetic
retinopathy (DR), is one of the three leading causes of
blindness in developed countries and is now the second
leading cause of blindness globally, after cataracts [2, 3].

Glaucoma is characterized by loss of retinal ganglion
cells (RGCs), which results in visual field impairment and
structural changes to the retinal nerve fiber layer (RNFL) and
optic disc [4]. Glaucoma has few early symptoms; over 3
million Americans have glaucoma, and the number is over
76 million worldwide, with projections showing 111 million
by 2040 [5]. About half of those affected do not know it [6].
Most of the time, when detected, it is already late, i.e., with

irreversible visual field loss. &erefore, it is essential to
identify individuals at the early stages of this disease for
treatment. &e social and economic costs of vision loss from
glaucoma are also extremely high. Early detection of these
conditions halts a downward spiral in overall health: de-
pression, loss of independence, need for nursing home care,
falls, fractures, and death. &ese adverse outcomes are also
highly costly. &e total economic burden in the USA, direct
and indirect, of vision loss and blindness from all causes, is
now $145 billion, expected to triple by 2050 in real Dollars,
with increased longevity generally [7].

&e relationship between estimated RGC counts and
CDR suggests that assessment of change in CDR is a sen-
sitive method for the evaluation of progressive neural losses
in glaucoma; specifically, the retinal cup-disc ratio (CDR) is
highly correlated with glaucoma [8–13]. Although several
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techniques [8, 9, 12–14] have been proposed to measure the
cup-disc ratio, they have not been extensively validated for
screening, and the current research is mainly focused on
overall glaucoma detection. For example, Saxena et al. [15]
proposed a method for glaucoma detection using the
standard ORIGA dataset in 2020, whose AUC is 0.82.
However, the American Academy of Ophthalmology out-
lined a set of tests to determine glaucoma, which are eye
pressure, eye drainage angle, optic nerve damage, peripheral
side vision (visual field test), computerized imaging of optic
nerve, and thickness of the cornea [16]. &us, using color
fundus imaging alone is not a standard protocol for glau-
coma detection or diagnosis. &e CDR can be an effective
tool to identify the glaucoma suspect, and our focus is
mainly to identify the glaucoma-suspect individuals (as a
screening process from primary-care settings), who can be
further tested to determine glaucoma and its progression.
&us, starting with cup-to-disc ratio may also be more suited
for clinical applicability because of its inherent explicability.
At present, although there are techniques to detect CDRs, a
full-fledged low-cost automated system that passively detects
glaucoma from patients’ yearly visits in a primary-care
setting is still not widely available.

We have considered the vertical cup-disc ratio and the
threshold value to determine the normal and abnormal,
based on the following studies. A larger or abnormal CDR
is mentioned in [10] and categorized as CDR> 0.5. &e
same research scheme also suggested that small changes in
CDR may be associated with significant losses of RGCs,
especially in eyes with large CDRs. Enlarged CDR is one
indicator of the risk of glaucoma [11]. Most individuals fall
near the average vertical CDR of 0.4, and 2.5% of the
population have a cup/disc ratio of over 0.7 [17]. Studies
showed that, for the normal (nonglaucoma) population, the
horizontal C/D ratio is usually larger than the vertical C/D
ratio, but the vertical ratio increases faster in the early and
intermediate stages of glaucoma [18]. Also, studies have
documented that the normal C/D ratios range from less
than 0.3 (66 percent of normal individuals) to greater than
0.5 (only 6 percent of normal individuals). &erefore, we
considered CDR 0.5 and above as glaucoma suspect [19, 20]
and began exploring deep-learning methods for detecting
larger CDRs [21].

We note that we have utilized the quantified vertical
CDR when other research schemes used the qualitative
assessment (e.g., small, medium, and large). We developed
and validated our vertical CDR quantification software to
perform this quantified grading. &e software demonstrates
high repeatability and reliability, which we have also pro-
vided in the paper. We developed and validated our AI-
based glaucoma-suspect screening results based on the
quantified vertical CDR. &is should provide higher accu-
racy and confidence than selective judgment.

(i) &is paper describes a method for glaucoma-suspect
screening that utilizes a cloud-based system and
incorporates telemedicine facilities. &us, the
screening will be available in remote clinics and
primary-care settings.

(ii) &is paper describes results on a novel automated
method that addresses the early screening of
glaucoma suspects, which is a major public health
concern.

(iii) &erefore, an accurate and efficient screening in
remote primary-care settings can provide a mass
screening of the population currently dropping
from yearly visits to the ophthalmologist.

&e rest of the paper describes the development and
validation of this glaucoma-suspect screening tool.

2. Materials and Methods

&e global strategy of the study is organized as follows:

(2.1) Data sources, describing the various datasets
(2.2) Ground truth, describing manual grading
(2.3) Preprocessing, describing data curation and data

processing before training
(2.4) Architecture, describing the technical details of the

training and validation

2.1. Data Sources. Fundus images from three sources were
used to conduct training experiments and a fourth for ex-
ternal validation. A total of 1546 color fundus images that
included the disc were selected randomly from the Age-
Related Eye Disease Study (AREDS) [22] and Singapore
Malay Eye Study (SiMES) study [23], and all the images from
the Retinal Image Database for Optic Nerve Evaluation
(RIM-ONE) dataset [24], an ophthalmic reference image
database specifically designed for glaucoma analysis, were
selected. For external validation, we used the Online Retinal
fundus Image database for Glaucoma Analysis (ORIGA)
[25]. Although these retinal images had already been graded
for glaucoma, we performed our gradings for consistency
(Section 2.2).

Briefly, the AREDS is a 13-year study of age-related eye
diseases.&e participants were of the ages 55 to 80 when they
were enrolled. 30-degree fundus photographs were graded as
glaucoma present or absent by the AREDS ophthalmic
grading center. We used fundus images from those cases as
well as from the normal control population for this
experiment.

SiMES-1 was a cross-sectional, population-based epi-
demiological study of eye diseases. It was performed on
3,280 randomly selected Malay adults living in the south-
western part of Singapore. All study participants underwent
various questionnaires and detailed eye examinations. We
have taken those images for which information about the
presence or absence of glaucoma was present.

RIM-ONE is an ophthalmic reference image database
specifically designed for glaucoma diagnosis, not only for
medical education purposes but also as an evaluation tool for
designers of segmentation algorithms. RIM-ONE is available
as a free download as part of a research collaboration be-
tween three Spanish hospitals: Hospital Universitario de
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Canarias, Hospital Cĺınico San Carlos, and Hospital Uni-
versitario Miguel Servet.

&e ORIGA-light dataset is an ophthalmic reference
image database specifically designed for glaucoma analysis.
ORIGA-light serves as a benchmarking resource for re-
searchers to evaluate image processing algorithms that de-
tect and analyze various image signs highly related to
glaucoma diagnosis. To facilitate this, the authors of ORIGA
used their in-house grading tools to grade several glaucoma-
related signs. &e publicly available dataset that we used has
680 graded images, out of which 460 are healthy, and the rest
are graded as glaucoma, taken from adults aged between 40
and 80 years. Each image is segmented and annotated by
trained professionals from the Singapore Eye Research
Institute.

&e AREDS dataset may be obtained with request on
their website “dbgap.ncbi.nlm.nih.gov.” All the other
datasets are available upon request from the authors of the
corresponding datasets.

2.2. Ground Truth. As noted, we did not use prior anno-
tations of the presence of glaucoma but instead graded each
image manually for vertical and horizontal CDR. A pro-
prietary software called “CDR annotator” [26] was used for
the purpose. Figure 1 shows the interface for marking the
region of the cup and the disc, from which the vertical and
horizontal CDRs are automatically generated. Before this,
regions of interest (optic disc) were identified and cropped
from the fundus image automatically using custom deep-
learning methods (unpublished, Figure 2).

Two computer engineers at iHealthScreen Inc. were
trained by expert ophthalmologists to grade CDRs in each
image. Whenever there was disagreement in grading, the
two graders adjudicated and produced uniform grading
(CDRs) as ground truth for the images. Before adjudication,
250 images were randomly chosen to evaluate intergrader
correlation and 200 for intragrader correlation. &e inter-
grader and intragrader Pearson correlations between their
CDR ratio annotations, 0.832 and 0.841, respectively [27],
showed good consistency. &e vertical CDRs were used to
categorize the images into two classes: class 1 (not glaucoma
suspect): vertical CDR≤ 0.5 and class 2 (glaucoma suspect):
vertical CDR> 0.5. After the categorization, the final dataset
used for training is as shown in Table 1. Similarly, after
quality control (removing 42 ungradable images), 638 im-
ages were selected out of a total of 680 images in the ORIGA-
light dataset and processed and graded. CDRs of 452 images
in the ORIGA dataset were graded by the experts to be less
than or equal to 0.5, and those of 186 images were graded to
be above 0.5.

2.3. Preprocessing. Two types of input images were used
simultaneously: the original RGB and a transformed, or
preprocessed, RGB image. &e transformed RGB image is a
color space-averaged image [28]. We subtracted the local
means with a kernel size 8 and Gaussian blurring. Such a
preprocessing technique of local color averages (LCAs) is
effective when dealing with images from various sources

taken under different conditions. Figures 2(c) and 2(d) show
an example of such a preprocessing technique.

&e images from three datasets were combined to form a
unified dataset.&e test set was then taken from these images
randomly. &ese cropped images from the original RGB
image set and the LCA set form the final input for this
experiment.

2.4. 0e Architecture and the Telemedicine Platform. &e
architecture we propose (shown in Figure 3) consists of an
ensemble of five neural networks and a classical tree learning
algorithm. &e overall system is a binary classifier that
classifies the images into one of the two categories
(CDR≤ 0.5 and CDR> 0.5).

To build an image classification model robust in terms of
image and dataset variations that is capable of learning
features on such a wide scale in terms of size and location,
the image preprocessing techniques and neural network
selections were made carefully [29]. Multiple different neural
networks, when used, are hypothesized to learn features
from an image differently. Combining the results from
different models to produce a final output is a general
practice to obtain a better performance than each of the
constituent network architectures [30]. To increase the ro-
bustness, different input sizes for the networks were chosen.
Also, two types of images are fed into themodels. One type is
regular RGB images, and the other is preprocessed LCA
images.

Deep-learning architectures were trained and validated
to produce completely automatic outputs. All graded images
(1546) were grouped into two categories: CDR≤ 0.5 (1057
images) and CDR above 0.5 (489 images) in the two-class
model.

&e initial test models (from which the final models
are chosen) were built to evaluate feasibility. &e network
architectures used are Inception-Resnet-V2 [31], NasNet
[32], Xception [33], and Inception [34]. Deep-learning

Disc superior
pole

Disc inferior
pole

Figure 1: &e interface of “CDR annotator,” the proprietary cup/
disc ratio grading software. &e optic cup is circled in blue.
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(a) (b)

(c) (d)

Figure 2: (a) A 30-degree fundus image and (b) the automatically cropped optic disc region. (c) Another cropped example that is
preprocessed to obtain the (d) final image.

Table 1: Number of images taken from AREDS, SIMES, and RIM-ONE1. &e table shows the various groups to which the images belong
based on their graded cup/disc ratios.

Category (manually graded for vertical cup/disc ratio) AREDS SIMES RIM-ONE1 Total
≤0.5 462 253 342 1057
Above 0.5 131 243 115 489

Xception,
250 × 250

Xception,
71 × 71

Inception-V3,
299 × 299

NasNet,
150 × 150

Inception-Resnet-V2,
200 × 200

2-class probs

2-class probs

10 features2-class probs

2-class probs

2-class probs

Logistic 
model tree

Preprocessed
(transformed)

images

RGB images

Concatenation

Input

Output

Local color
space

averaging

Figure 3: Overall schematic representation of the model building.&e two types of input images (RGB and transformed) fed into five neural
networks are shown. Each network accepts a rescaled image (shown below the name of the architecture) and produces two probabilities.&e
ten resulting probabilities are then concatenated to form a feature array of size 10 and fed as input to a logistic model tree which acts as the
final classifier in this system.
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architectures such as alexnet [35] and VGG networks [36]
initially focused on stacking layers deeper and deeper,
hoping to get better performance. Inception architecture
changed this approach by going “wider” instead of focusing
ongoing just “deeper.” Every version of Inception optimized
speed and accuracy, and the version used in our experiment,
Inception-V3, uses an RMSProp optimizer [37], factorized
7× 7 convolutions, and added batch normalization [38] in
the auxiliary classifiers.

&e original Inception networks without depth-wise
separable convolutions were modified to include the residual
connections, called the Inception-ResNet networks. Incep-
tion modules allowed for adding more layers, and residual
connections made the network converge faster, which is the
basis for Inception-Resnet-V2. Xception is a novel deep
convolutional neural network architecture inspired by In-
ception, where Inception modules have been replaced with
depth-wise separable convolutions.&is architecture slightly
outperforms Inception-V3 on the ImageNet dataset. NAS-
Net learns the model architectures directly on the dataset of
interest by searching the best convolutional layer (or “cell”)
on a small dataset and then applying it to a larger dataset by
stacking together more copies of this cell [39].

&e various input sizes used range from 71× 71 to
399× 399.&e best models, thus, obtained will be ensembled
to form a final architecture. &rough experimentation, we
developed an ensemble of five networks in the final archi-
tecture for the glaucoma screening system. &e description
of the five models is given below.

(1) Xception- input size: 71× 71; input image type: local
color averaged (transformed)

(2) Xception- input size: 250× 250; input image type:
RGB

(3) Inception-Resnet-V2- input size: 200× 200; input
image type: RGB

(4) NasNet- input size: 150×150; input image type: RGB
(5) Inception-V3- input size: 299× 299; input image

type: RGB

&e full framework for building the model is shown in
Figure 3. &e networks are trained for 500 epochs. We
trained the networks with a batch size of 20 images. &is is a
high number considering the limitations of GPU memory.
&e low resolution of cropped images helped achieve a
bigger batch size. &e Adam [40] optimizer was used with a
learning rate of 0.0004. To save time, an early stopping
mechanism halted training if there was no improvement for
20 consecutive epochs. Every epoch is monitored for loss,
and this value is used for early stopping. &e loss function
used in this system was categorical cross entropy. &is
quantity was used to determine the hyperparameters of the
networks. SoftMax activation is used as the last layer in each
of the architectures. All the networks were trained on
NVIDIA Titan V GPU for two weeks with an average time of
20 to 30 minutes per epoch.

Each model gives a probability array of size 2 for 2
classes. &e five arrays from five models are concatenated to

form a feature array of size 10 that is then used to build a
Logistic Model Tree [41] model for final output. Sensitivity,
specificity, accuracy, and Cohen’s kappa were calculated to
evaluate the models.

2.5. 0e Role of the AI Platform. &e CDR carries three
advantages: first, it is a single variable that is known to be
strongly correlated with the disease, in particular with losses
of RGCs as noted and, as such, is inherently explicable and
acceptable to the eye community; second, measurement of
CDR can be accomplished from a single retinal color
photograph obtained by an automated, nonmydriatic
camera in a primary-care office and forwarded on a tele-
medicine platform for expert interpretation with semi-
automated methods [26]; and third, that expert
interpretation, which is still time consuming and expensive
for humans, can be replaced by AI for efficiently and ac-
curately evaluating the images as we propose to demonstrate
herein. In fact, we have already introduced such a HIPAA-
compliant telemedicine platform, iPredict, with the requisite
capabilities of AI solutions and report generation.

A telemedicine platform has been introduced that en-
ables the cloud-based processing of the AI solutions, and
report generation can extensively simplify the process of
evaluating the images on a mobile/tablet or a low-perfor-
mance computer, a requirement for the successful glau-
coma-suspect screening at primary-care settings. We aim to
address this with our HIPAA-compliant telemedicine
platform iPredict.

In the future, we propose to use the Software Tool
‘iPredict-glaucoma’ at the iPredict platform (https://ipredict.
health/). An online version of the Glaucoma-Suspect
Screening system is available at https://www.ihealthscreen.
org/ipredict-glaucoma/(the username and password can be
obtained for research purposes through writing to the
corresponding author). &e AI-based telemedicine platform
iPredict developed by iHealthscreen Inc. integrates the
server-side programs (the image analysis and deep-learning
modules for screening systems) and local remote computer/
mobile devices (for collecting and uploading patient data
and images). &e images are first checked for gradability
automatically by an artificial-intelligence-based system de-
veloped in house from 3000 fundus images manually graded
for gradability, and the system achieved over 99% accuracy.
&e server analyzes the images, and a report will be sent to
the remote clinic with an individual’s screening results and
further recommendations.

2.6. Role of the Funding Source. &is research project was
funded by the NIH National Eye Institute, grant no.
R44EY031202. &e funding was for AI-based macular de-
generation screening through primary-care settings. It was
found that this AI-based tool can be extended to screen
glaucoma suspects and help identification of glaucoma
suspects from the same settings. Nearly half of the glaucoma
patients are not identified on time. &erefore, this tool, with
an aim to enable large-scale screening for on-time
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identification of the glaucoma suspects, is proposed to help
prevent this sight-threatening disease.

3. Results

&e two-class glaucoma model (CDR≤ 0.5 and above 0.5)
achieved an accuracy of 89.67% (95% CI −85.65% to 92.87%)
with a sensitivity of 83.33% (95% CI −75.44% to 89.51%) and
a specificity of 93.89% (95% CI - 89.33% to 96.91%) along
with Cohen’s kappa of 0.78 (95% CI −0.71 to 0.85) when
above 0.5 cases are considered as positive. &e AUC for the
same data was 0.93 (0.89 to 0.96), as shown in Figure 4. &e
complete results of the system are detailed in Table 2.

On the external validation dataset, the two-class model
achieved a sensitivity of 80.11% (73.64% to 85.59%) and
specificity of 84.96% (81.32% to 88.12%) with Cohen’s kappa
of 0.62 (0.57 to 0.67) on the ORIGA dataset.&e AUC for the
same data was 0.85 (0.81 to 0.90), as shown in Figure 4. &e
complete results on the external validation dataset can be
found in Table 2.

&e cloud-based and HIPAA-compliant telemedicine
platform ‘iPredict’ (https://ipredict.health/) has been vali-
dated for image and data transfer accuracy. We have
transferred and analyzed nearly 850 images for AMD
screening and DR screening from 4 primary-care clinics in
Queens and Manhattan, New York, USA. &e initial results
from utilizing our platform are reported in [42, 43]. We
found a 100% correlation between the results obtained from
directly evaluated images and the images transferred and
processed by iPredict. We have also tested 100 images for
vertical CDR computation and received the same accuracy.

4. Discussion

In this study, we have demonstrated an accurate and fully
automated deep-learning screening system for glaucoma
suspects through retinal photography that may be effective
for the identification of glaucoma suspects in primary-care
settings.

Glaucoma is a prevalent, blinding disease worldwide
with few symptoms until irreversible later stages and is
undiagnosed at rates approaching 50% even in developed
countries [6]. Hence, the pressing public health calls for
effective community screening. &e need is even greater in
communities of color, with an overall ratio of 8 :1 for
nonwhite to white primary glaucoma blindness, due, at least
in part, to receiving medical care later in the disease than
whites [44], Compounding the problem, there is also a
dramatically earlier age of onset in this group. In an Afro-
Caribbean population, glaucoma-suspect status was high
across all age groups, with significant prevalence even in
populations less than 40 years of age [45].

We have shown on several large datasets that the cup/
disc ratio (CDR) can be measured automatically from retinal
photography with sufficient accuracy to discriminate sus-
pects from nonsuspects and, thus, potentially facilitate re-
ferral of suspects to an ophthalmologist for specialized care.
&us, a future, achievable goal is an AI telemedicine platform
in which our current methodology will be deployed in

primary-care settings through remote image capture. A
prospective trial will be needed to determine the feasibility of
the system in clinical settings, with inexpensive, automated
nonmydriatic retinal cameras and a telemedicine platform
for image transfer to the deep-learning screening system.
Such systems have been tested clinically with proven ac-
curacy for screening DR in comparison to expert graders
[46]. It is, thus, reasonable to expect that similar success may
be achieved with glaucoma.

A National Eye Institute study showed that 90% of
glaucoma subjects can be prevented from progression to
severe glaucoma through timely identification and inter-
vention [6]. However, nearly sixty percent of Americans
with diabetes skip annual sight-saving exams recommended
by their Primary-Care Physicians (PCPs). Given such poor
compliance by diabetics, who are informed about the risks to
their vision, it is likely that compliance with eye exams is
even worse in the general population [47]. &erefore, our
focus is to identify the suspects in the primary-care settings,
not only to get them needed care but also to eliminate large
numbers of unnecessary specialist visits for glaucoma
screening.

&e medical imaging and diagnostics field has been
revolutionized by advances in deep learning in recent years.
Extensive research interest is being shown in using artificial
intelligence for solving medical problems [48]. Ting et al.
[49] detailed the potential applications of AI in ophthal-
mology. Gulshan et al. [50], in their seminal paper, showed
the application of AI in diabetic retinopathy from fundus
images using deep learning. Recently, we have published two
groundbreaking works on late AMD prediction [51] and
diabetes screening in primary-care settings [46].&ere is also
considerable research in othermedical areas such as multiple
sclerosis [52], neurodegeneration [53], and age-related
macular degeneration [54–57]. Several AI techniques
[8, 9, 12–14] have been proposed to measure the cup-disc
ratio, but they have not been validated for screening glau-
coma suspects.

We note that the current research using color fundus
imaging is mainly focused on the detection of glaucoma,
which we believe is not an appropriate option for clinical
settings if we follow the glaucoma detection or diagnosis
protocol (https://www.aao.org/eye-health/diseases/
glaucoma-diagnosis). &us, here, we aim to clear the dif-
ferentiation of the term glaucoma and glaucoma suspect.
&e glaucoma detection is a diagnosis of glaucoma that
requires the structural and functional abnormalities from a
glaucoma suspect, which is implied by its name, a category of
markers with an increased likelihood of the disease.

Li et al. [58] and Ting et al. [59] trained computer al-
gorithms to detect the glaucoma-like disc, defined as a
vertical CDR of 0.7 and 0.8, respectively. In general, an eye
with a vertical CDR above 0.5 is considered a glaucoma
suspect [60]. In this paper, we introduced an automated cup-
disc measurement tool that can determine if the vertical cup-
disc ratio is above or below 0.5, in conjunction with a
deep-machine-learning-based tool. We have published this
approach, an ensemble of deep-learning architectures with a
logistic tree at the end, for effective use in AMD screening,
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but it is novel in glaucoma screening. With a telemedicine
platform, it could screen glaucoma suspects on a large scale
in primary-care settings, conferring substantial public health
benefits of reduced vision loss from glaucoma and reduced
health-care costs.

5. Limitations and Future Work

In our testing, the sensitivities are somewhat lower than the
specificities, with, therefore, a somewhat greater risk of
missing true cases. In our future work in this project, we aim
to understand and anticipate the doctors’ requirements in
this new method of screening and tune the system such that
the false positives and false negatives are in an acceptable
ratio. Small discs with “pathologic cups” are hard to detect.
Geometrically, a small disc with a CDR of 0.7 has much less
healthy neural rim tissue than a normal-sized disc with the
same CDR. &erefore, CDR asymmetry would be a rea-
sonable addition to the screening program. In general, a
provisional diagnosis of a glaucoma suspect is generally
given with CDR asymmetry (>/� 0.20) [61]. &is criterion
could be implemented in the next version of the present DL
architecture that is already tuned to CDR measures.
Asymmetrical cupping of the optic disc was found in 5.6% of
normal individuals, in 30% of a group with ocular hyper-
tension without field defect, and in 36% of those with

established chronic open-angle glaucoma and field loss [62].
We note that our algorithm classifies an optic disc based on
vertical CDR based on a single retinal image, and asym-
metrical cupping may show up as a different reading in the
two eyes of the same image, in turn, helping doctors with an
additional biomarker for glaucoma. Also, we did not have
any data on the refractive errors, high myopia, etc. for the
study subjects which could be sources of errors in inter-
preting disc photos and are more relevant than just as-
sessment of the vertical CDR.We aim to address them in the
future study.

6. Strengths

&emodel was built on several large datasets, with external
validation on another. &e output is an ideal binary target
for glaucoma suspects with a single highly correlated and
easily measured/interpreted variable. We have had success
with a novel hybrid AI approach to screening for AMD and
DR from fundus photos that performs, at least, as good as
other techniques in the literature. So, we chose this route
again for screening glaucoma suspects: an ensemble of DL
techniques is first trained on the image inputs to produce
sets of probabilities (one set for each DL technique) for
classifying the image into a disease state; these sets of
probabilities are then inputted to an independently trained
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Figure 4: Area under ROC of the test data results (a) and the results for the ORIGA-light dataset (b) for the two-class cup-to-disc ratio
model.

Table 2: Accuracy, sensitivity, specificity, Cohen’s kappa, and AUC for the system with 95% confidence intervals on the test data and
ORIGA-light (validation data), with the ratio over 0.5 considered as a positive case for the model.

Measure Test data (with 95% CI) ORIGA-light (with 95% CI)
Accuracy 89.67% (85.65% to 92.87%) 80.11% (73.64% to 85.59%)
Sensitivity 83.33% (75.44% to 89.51%) 84.96% (81.32% to 88.12%)
Specificity 93.89% (89.33% to 96.91%) 83.54% (80.43% to 86.34%)
Cohen’s kappa 0.78 (0.71 to 0.85) 0.62 (0.57 to 0.67)
Area under the curve 0.93 (0.89 to 0.96) 0.85 (0.81 to 0.90)
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logistic model tree which acts as the final classifier in this
system.

A glaucoma diagnosis requires multiple structural and
functional criteria that are not available or appropriate in the
primary-care setting. To our knowledge, our system is the
only one proposed that is a full-fledged, passive screening
system for an adequate screening of glaucoma suspects with
a single disease marker that could be easily obtained in the
primary-care setting on a telemedicine platform without
expensive, specialized equipment or services.

Future work can carry these methods into the primary-
care setting to perform annual screening for this silent
blinding disease. We propose to address this urgent public
health needwith future prospective trials of our system for low-
cost, rapid glaucoma screening.&ese trials will be modeled on
our current ongoing NIH-funded 3-year trial (SBIR Phase IIb
R44EY031202, A Bhuiyan PI, “https://projectreporter.nih.gov/
project_info_details.cfm?aid�10010769”) for detection and
prediction of AMD in primary-care settings with our published
DL algorithms [51]. A complete HIPAA-compliant functional
AI-based telemedicine platform for real-time diagnosis is al-
ready in place, which integrates the server-side screening
programs (image analysis and deep-learning modules) and
local remote devices (for collecting patient data and images).

7. Conclusions

We have developed an effective deep-learning/logistic model
tree hybrid screening tool for the identification of glaucoma
suspects by vertical CDR from nonmydriatic retinal
photographs.

Building on this tool, a full AI telemedicine platform is
envisioned in a future state where our current AI meth-
odology will be deployed in primary-care settings. Fully
automated cameras will capture images for transfer through
the cloud to the server side for immediate results and further
patient referral if needed, with significant public health
benefit for early detection and prevention of this sight-
threatening disease.
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