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Abstract: Salmonella is a main cause of foodborne illnesses and rapid screening of Salmonella is the key to
prevent Salmonella outbreaks, however available detection methods either require a long time, or need
complex pretreatment, or have low sensitivity. In this study, a microfluidic biosensor was developed
for Salmonella detection using viscoelastic inertial microfluidics for separating magnetic bacteria
from unbound magnetic nanoparticles (MNPs) and enzyme catalytic colorimetry for amplifying
biological signals. The polyclonal antibodies and horseradish peroxidase (HRP) modified MNPs
were first used to specifically capture Salmonella to form magnetic HRP-bacteria. Both magnetic
HRP-bacteria and unbound MNPs were magnetically separated from background and resuspended
in viscoelastic polyvinylpyrrolidone solution as sample flow. When sample flow was injected with
polyvinylpyrrolidone sheath flow into a T-shaped microchannel, larger-sized magnetic HRP-bacteria
could penetrate the sample flow, however smaller-sized MNPs remained in the sample flow due to
weaker inertial lift force and elastic lift force, resulting in continuous-flow separation of magnetic
HRP-bacteria. Finally, magnetic HRP-bacteria were collected and concentrated to catalyze tetramethyl
benzidine, and absorbance was measured to determine the bacteria. This biosensor was able to detect
Salmonella as low as 30 CFU/mL in 1 h and featured the advantages of shorter time due to a one-step
immunoreaction, easier extension due to only one antibody and one label, and lower cost due to less
expensive materials.

Keywords: microfluidic biosensor; viscoelastic inertial microfluidics; particle separation; enzyme
catalytic colorimetry; bacteria detection

1. Introduction

Food safety has attracted more and more concerns globally, and foodborne illnesses are mainly
caused by foodborne pathogenic bacteria. A key to prevent the outbreaks of foodborne illnesses is
early screening of bacteria contaminated foods. Currently available methods, such as polymerase
chain reaction [1–3], enzyme-linked immunosorbent assay [4–6] and culture plating, have been applied
for bacteria detection, however they have limitations of either complex DNA extraction, or relatively
low sensitivity, or long detection time. Therefore, simple, rapid and sensitive methods for bacteria
detection are urgently needed to ensure food safety.

Due to the complexity of the food matrix, target bacteria often need to be separated from the
complex background to minimize non-specific reaction and improve sensitivity [7]. Immunomagnetic
separation has been widely used for specific separation of various biological targets from different
samples in the past decades [8–10], since it can not only purify the targets to reduce the background
noises, but also concentrate the targets in a small volume of buffer solution to improve the detection
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sensitivity. Magnetic nanoparticles (MNPs) modified by biological recognition components, such as
antibodies and aptamers, are first used to specifically identify and capture target bacteria in food
samples, and the target bacteria conjugated with the MNPs (magnetic bacteria) are then oriented at the
presence of an external magnetic field, leading to specific separation of target bacteria from sample
background [11,12]. Although this conventional magnetic separation has shown its great merits of
good specificity and high separation efficiency, there still is a big challenge to directly use the MNPs as
detection signal, which could obviously reduce the detection cost, save the detection time and simplify
the detection procedure, since the magnetic bacteria are co-existing with the unbound MNPs.

In recent years, several studies have been attempted to separate the magnetic bacteria from the
unbound MNPs. Some of them were based on the size difference. At present, most commercially
available MNPs usually have the diameter of 20–200 nm, while foodborne pathogenic bacteria are
basically 1–3 µm, which are much larger than the MNPs. Shim [13] et al. developed a typical filtration
method combined with immunomagnetic separation to detect Salmonella in vegetables. After the
target bacteria were separated using magnetic separation, the magnetic bacteria were further separated
from unbound MNPs using filtration membrane, resulting in the trap of magnetic bacteria on the
membrane, whose color was measured to determine the target bacteria. This method was able to
detect Salmonella as low as 100 cells/g in 45 min, however it might suffer from clogging and inaccurate
separation. Another interesting study was proposed based on size-based separation by Lee et al. [14]
using a 3D-printed microfluidic device to separate the magnetic bacteria from the unbound MNPs in a
helical channel with trapezoid cross-section. The other studies were based on the magnetic response
difference. One target bacterium is often conjugated with multiple MNPs [15], making the magnetic
bacterium have a stronger magnetic response in the magnetic field than one unbound MNP. A couple
of interesting studies on magnetophoretic chromatography with immunomagnetic separation were
reported by Kwon et al. [16,17] to detect pathogenic bacteria. After the immune magnetic nanoclusters
(MNCs) were used to magnetically separate the target bacteria in milk, the viscous polyethylene glycol
(PEG) solution and the mixture of the magnetic bacteria and the unbound MNCs were successively
sucked into the pipette tip and two layers were formed. After the strong magnet was placed under the
tip, the magnetic bacteria moved from the buffer to PEG solution because the downward magnetic force
was larger than the upward buoyancy, however the unbound MNCs remained in the PEG solution due
to the smaller magnetic force. Finally, the bacteria were determined by measuring the color change
of the interface of the solutions. This method was able to detect Salmonella as low as 100 CFU/mL,
however it required very precise operation.

In the past decades, particle separation technologies based on inertial microfluidics have received
an increasing attention due to their smaller sample consumption, shorter separation time, and easier
integration [18–22]. The particles with different sizes are often separated in the microfluidic chips
based on the difference of inertial force on the particles, which is proportional to the mass (size) of the
particles [23]. Since only the particles with larger sizes can experience enough force to change their
moving trajectory, inertial force is usually used to separate the particles with the size of >3 µm [24],
however both the bacteria and the MNPs are too small and not susceptible to inertial force. Recently,
coupling enhancement of viscoelastic force and inertial force was demonstrated to successfully separate
the particles with submicron size from viscoelastic fluid [25,26]. Liu et al. [27] used polyethylene oxide
(PEO) as viscoelastic fluid to separate the particles with different sizes in a T-shaped straight channel,
and verified that the particles with the size of 100 nm could be successfully separated from those with
the size of 500 nm.

In this study, we developed a novel microfluidic biosensor for detection of Salmonella typhimurium
based on viscoelastic particle separation for isolating the magnetic bacteria from the unbound MNPs
and enzyme catalytic colorimetry for amplifying and measuring the biological signals. As shown
in Figure 1, the MNPs modified with anti-Salmonella polyclonal antibodies (PAbs) and horseradish
peroxidase (HRP) were first conjugated with Salmonella typhimurium to form the bacteria-MNP-HRP
complexes (magnetic HRP-bacteria). After magnetic separation, both the magnetic HRP-bacteria and
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the unbound MNPs were concentrated in the viscoelastic polyvinyl pyrrolidone (PVP) solution as
sample flow. Then, the sample flow and the sheath flow (the same PVP solution) were simultaneously
injected into the T-shaped separation microchannel, and combined force of elastic lift force (FE)
and inertial lift force (FI) would intercept the smaller-sized MNPs and allow the penetration of the
larger-sized magnetic HRP-bacteria. After the magnetic HRP-bacteria were collected at the central
outlet, they were used to catalyze tetramethyl benzidine (TMB) and the color development was
terminated with sulfuric acid, followed by measuring the absorbance to determine the concentration
of the bacteria.

Sensors 2020, 20, x FOR PEER REVIEW 3 of 12 

solution) were simultaneously injected into the T-shaped separation microchannel, and combined 

force of elastic lift force (FE) and inertial lift force (FI) would intercept the smaller-sized MNPs and 

allow the penetration of the larger-sized magnetic HRP-bacteria. After the magnetic HRP-

bacteria were collec 

Figure 1. Schematic of the microfluidic biosensor based on viscoelastic particle separation and enzyme 

catalytic colorimetry. 

2. Materials and Methods

2.1. Preparation of Bacteria 

Salmonella typhimurium (ATCC14028) was used as target bacteria while Listeria monocytogenes 

(ATCC 13932), Escherichia coli O157:H7 (ATCC 43888) Staphylococcus aureus (CICC10001), Salmonella 

derby, Salmonella enteritidis, Salmonella mbandaka, and Salmonella meleagridis were used as non-

target bacteria. The bacteria were first cultured in the LB medium (Aoboxing Biotech, Beijing, China) 

at 37 °C for 12–16 h with shaking at 180 rpm, and then were serially diluted by phosphate buffer 

saline (PBS, 10 mM, pH 7.4, Sigma Aldrich) to obtain the bacteria at the concentrations from 101 to 106 

CFU/mL. 

2.2. Fabrication of the Microfluidic Chip 

The microfluidic chip plays the most important role in separation of the magnetic HRP-bacteria 

from the unbound MNPs. It mainly included an asymmetric T-shaped separation microchannel with 

the length of 31 mm, the width of 50 μm and the depth of 25 μm, which was fabricated using soft 

lithography. More details can be found in Figure S1 in the supplemental material. The microchannel 

was connected with two 4 mm long side-branch channels for injecting the sample flow and the sheath 

flow, respectively. The end of each side-branch channel is a 600 μm wide expansion region with 5 

rows of small rods (diameter: 50 μm) for avoiding the blocking of the microchannel by the large 

particles in food samples. The end of the main-branch channel is an 800 μm wide expansion region 

for increasing the separation distance and observing the trajectories of the particles. The particle 

motions at the expansion region and other regions of the microchannel were visualized and recorded 

using an inverted fluorescent microscope (Eclipse Ti, Nikon, Kyoto, Japan) with a CCD camera at the 

rate of around 15 frames per second. Fluorescent and bright-field lights were simultaneously used to 

visualize both the fluorescent particles (appearing in green) and the channel edges (appearing in 

black).  

2.3. Modification of the MNPs 

Figure 1. Schematic of the microfluidic biosensor based on viscoelastic particle separation and enzyme
catalytic colorimetry.

2. Materials and Methods

2.1. Preparation of Bacteria

Salmonella typhimurium (ATCC14028) was used as target bacteria while Listeria monocytogenes
(ATCC 13932), Escherichia coli O157:H7 (ATCC 43888) Staphylococcus aureus (CICC10001), Salmonella
derby, Salmonella enteritidis, Salmonella mbandaka, and Salmonella meleagridis were used as non-target
bacteria. The bacteria were first cultured in the LB medium (Aoboxing Biotech, Beijing, China) at 37 ◦C
for 12–16 h with shaking at 180 rpm, and then were serially diluted by phosphate buffer saline (PBS,
10 mM, pH 7.4, Sigma Aldrich) to obtain the bacteria at the concentrations from 101 to 106 CFU/mL.

2.2. Fabrication of the Microfluidic Chip

The microfluidic chip plays the most important role in separation of the magnetic HRP-bacteria
from the unbound MNPs. It mainly included an asymmetric T-shaped separation microchannel with
the length of 31 mm, the width of 50 µm and the depth of 25 µm, which was fabricated using soft
lithography. More details can be found in Figure S1 in the Supplementary Materials. The microchannel
was connected with two 4 mm long side-branch channels for injecting the sample flow and the sheath
flow, respectively. The end of each side-branch channel is a 600 µm wide expansion region with
5 rows of small rods (diameter: 50 µm) for avoiding the blocking of the microchannel by the large
particles in food samples. The end of the main-branch channel is an 800 µm wide expansion region for
increasing the separation distance and observing the trajectories of the particles. The particle motions
at the expansion region and other regions of the microchannel were visualized and recorded using an
inverted fluorescent microscope (Eclipse Ti, Nikon, Kyoto, Japan) with a CCD camera at the rate of
around 15 frames per second. Fluorescent and bright-field lights were simultaneously used to visualize
both the fluorescent particles (appearing in green) and the channel edges (appearing in black).
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2.3. Modification of the MNPs

The MNPs modified with the polyclonal antibodies and horseradish peroxidase (Solarbio, Beijing,
China) were used to capture the target bacteria and amplify the biological signals. HRP was
first modified with biotin using the biotinylation kit (Elabscience, Wuhan, China) according to the
manufacturer’s protocol. The biotinylated HRP with the concentration of 1 mg/mL was stored at
−20 ◦C with glycerol. Prior to test, 10 µL of the streptavidin conjugated MNPs (Fe concentration:
1 mg/mL, Diameter: 100 nm, MHS-150-10, Ocean Nanotech, Dunedin, FL, USA) were incubated with
1 µL of the biotinylated PAbs against Salmonella typhimurium (Concentration: 2 mg/mL, Abcam,
Cambridge, MA, USA) and 0.5 µL of HRP at 15 rpm for 45 min and magnetically separated using
a magnetic separator (MS0406, Aibit Biotech, Wuxi, China) for 2 min to remove the excessive PAbs
and HRP. Finally, the MNPs were resuspended with 1 mL of PBS containing 1% BSA to obtain the
PAb-MNP-HRP conjugates (immune HRP-MNPs), which were stored at 4 ◦C for further use.

2.4. Separation of the Magnetic HRP-Bacteria

For separation of the magnetic HRP-bacteria, both polyvinyl pyrrolidone and polyethylene oxide
were purchased from Sigma Aldrich (St. Louis, MO, USA) and prepared in the deionized water
(1%, w/v, 18.2 MΩ·cm, Advantage 10, Millipore, Billerica, MA, USA) as the viscoelastic solution.
For parameter optimization, the fluorescent polystyrene (PS) microspheres with the sizes of both 2.2 µm
and 100 nm purchased from VDO Biotech (Suzhou, China) were prepared in the PVP solution with
the concentration of 0.05% (w/v) for simulating the magnetic HRP-bacteria and the unbound MNPs.
After the magnetic HRP-bacteria were formed, they were resuspended in 50 µL of the PVP solution.
To prevent the particles from aggregating during the separation, Tween-20 (0.5%, v/v, Amresco, Solon,
OH, USA) was added into both the sample flow and the sheath flow.

The sample flow and the sheath flow were injected into the microchannel using two precision
syringe pumps (11Elite, Harvard Apparatus, FL, USA) with different flow rates. The separation of the
fluorescent PS microspheres was observed using the fluorescent inverted microscope. The fluorescent
trajectories were recorded using long exposure time (up to 600 ms). The experimental results were
analyzed using the microscope’s software NIS-Elements AR 2.30.

2.5. Detection of the Target Bacteria

The target bacteria were first specifically separated from the background using immunomagnetic
separation (45 min), and the magnetic HRP-bacteria were then separated from the unbound MNPs
using viscoelastic particle separation (10 min) and finally detected using enzymatic catalysis colorimetry
(5 min). First, 10 µg of the immune HRP-MNPs were incubated with 500 µL of the sample containing
different concentrations (101–106 CFU/mL) of Salmonella typhimurium at 15 rpm for 45 min to form the
magnetic HRP-bacteria. After that, the mixture of the magnetic HRP-bacteria and the unbound MNPs
was resuspended in the viscoelastic solution with 0.5% Tween-20. Then, the magnetic HRP-bacteria
were separated from the unbound MNPs using the microfluidic chip. After magnetic separation to
remove the viscoelastic solution, the magnetic HRP-bacteria were resuspended in 100 µL of PBS and
50 µL of the suspension was pipetted into the microplate. 100 µL of tetramethyl benzidine from
Solarbio was added into the microplate and incubated for 5 min, followed by adding 100 µL of 1 M
H2SO4 to terminate the catalytic reaction. Finally, the catalysate was measured using Infinite M200
PRO (Tecan, Männedorf, Switzerland) and the absorbance at the characteristic wavelength of 450 nm
was used to determine the concentration of the bacteria.

3. Results and Discussion

3.1. Mechanism of Viscoelastic Particle Separation

The mechanism of the particle separation in the viscoelastic solution was illustrated in Figure 1.
The mixture of different sizes (~2 µm and ~100 nm) of particles was first squeezed by the sheath flow



Sensors 2020, 20, 2738 5 of 12

into a thin layer near the top wall of the microchannel at the T-junction. The inherent elastic lift force
(FE) and inertial lift force (FI) were induced in the viscoelastic fluid to push the particles away from the
sidewall in the elongated rectangular main branch. FE can be expressed as:

FE ∼ r3
p∇N1 ∼ r3

pWiγ
2 (1)

where, rp is the particle’s radius, N1 is the first normal stress difference, Wi is the Weissenberg number,
and γ is the average shear rate. It increases with Wi and can push the particles to move toward the
regions with lower shear rate, i.e., the centerline in the rectangular microchannel. For the particles near
the sidewall, FI can be expressed as:

FI ∼ ρV2
mr6

p/w4 (2)

where, ρ is the fluid density, Vm is the maximum fluid velocity, and w is the width of the microchannel.
It increases with Vm and can push the particles to move away from the sidewall. In this study, both FE

and FI work together to move the particles toward the channel’s center.

3.2. Selection of the Viscoelastic Fluid

The viscoelastic fluid is the key to separation of the magnetic HRP-bacteria from the unbound
MNPs. Therefore, two reported viscoelastic fluids (PEO and PVP) with different molecular weights
and concentrations were compared to select a better viscoelastic fluid. The fluorescent PS microspheres
with the diameter of 2.2 µm were used to mimic the magnetic HRP-bacteria and dissolved in 600 kDa
PEO (1%, w/v), 2000 kDa PEO (1%, w/v), 10 kDa PVP (1%, w/v), 40 kDa PVP (1%, w/v) and 360 kDa
PVP (1%, w/v), respectively, followed by separation at the velocity from 0.01 mL/h to 2.20 mL/h.
As shown in Figure 2a, the PS microspheres were focused in the centerline (between the point A and B)
in both PEO fluids only at a low velocity (<0.05 mL/h), however some microspheres were found at
both sidewalls of the microchannel, indicating that PEO was not the ideal viscoelastic fluid. Besides,
the microspheres were not focused in both 40 kDa PVP and 10 kDa PVP, but focused well in 360 kDa
PVP. Thus, the optimal viscoelastic fluid of 360 kDa PVP was used in this study.

The velocity is another key to separation of the magnetic HRP-bacteria. Thus, different velocities
was applied for separation of the PS microspheres in 360 kDa PVP. As shown in Figure 2a, when
the velocity increased from 0.01 to 0.1 mL/h, the microspheres were gradually aggregated into the
middle channel and no microspheres were found near the sidewalls due to the pushing of the elastic
and inertial lift forces from the sidewalls towards the center. When the velocity increased from 0.2 to
0.8 mL/h, the microspheres became more and more focused in the center of the microchannel because
the increasing inertial lift force pushed the microspheres harder towards the center. However, when
the velocity kept increasing to 2.20 mL/h, the microspheres started to disperse probably because the
drag force on the microspheres in the longitudinal direction increased with the velocity and became
dominant compared to the elastic and inertial forces in the lateral direction. Thus, the velocity from 0.2
to 1.8 mL/h was suitable to focus the microspheres in 360 kDa PVP.

To further investigate the impact of the concentration of the viscoelastic fluid on the separation of
the particles, different concentrations (0.5%, 1%, 2% and 4%, w/v) of 360 kDa PVP were used to separate
the PS microspheres. As shown in Figure 2b, the microspheres were well focused at the concentrations
of 1% and 2% with the velocity ranging from 0.2 mL/h to 0.8 mL/h, and at the concentration of 4.0%
with the velocity of 0.2 mL/h, while they were not focused at the concentration of 0.5%. To trade off the
separation speed and effect, the optimal concentration of 1% for 360 kDa PVP was used in this study.
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Figure 2. (a) Images at the expansion of the main-branch for the aggregation of the particles with the
diameter of 2.2 µm in 600 kDa polyethylene oxide (PEO), 2000 kDa PEO, 10 kDa polyvinyl pyrrolidone
(PVP), 40 kDa PVP and 360 kDa PVP at the velocity range from 0.01 mL/h to 2.20 mL/h; (b) images
at the expansion of the main-branch for the aggregation of the particles with the diameter of 2.2 µm
in different concentrations of 360 kDa PVP (0.5%, 1.0%, 2.0% and 4.0%) at the velocity range from
0.01 mL/h to 0.80 mL/h.

3.3. Optimization of the Velocity of Sample Flow and Sheath Flow

The velocities of the sample flow and the sheath flow play an important role in the separation of
the magnetic HRP-bacteria. The fluorescent PS microparticles with the diameters of 2.2 µm and 100 nm
were used to mimic the magnetic HRP-bacteria and the unbound MNPs, respectively. Different velocity
ratios of the sample flow to the sheath flow (α = sheath flow/sample flow: α = 1.50/0.10 mL/h = 15,
α = 1.50/0.12 mL/h = 12.5, and α = 1.50/0.15 mL/h = 10) were compared to separate the microspheres.
As shown in Figure 3a, part of the 2.2 µm microspheres were not focused in the central outlet (between
point A and B) when the velocities of the sample flow were 0.10 and 0.12 mL/h, and all of them were
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focused in the central outlet when the velocity was 0.15 mL/h. For the 100 nm microspheres, they
were mostly focused in the bottom side of the microchannel. Thus, the optimal velocity ratio α = 10 of
sheath flow to sample flow was used in this study.
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Figure 3. (a) Images at the expansion of the main-branch for the separation of the 2.2 µm particles (in the
middle of the microchannel) and the 100 nm particles (near the bottom sidewall of the microchannel)
in 360 kDa PVP at different velocity ratios (α = 15, 12.5 and 10); (b) images at the expansion of the
main-branch for the separation of the 2.2 µm particles (in the middle of the microchannel) and the
100 nm particles (near the bottom sidewall of the microchannel) in 360 kDa PVP at different sheath flow
rates (1, 1.2 and 1.5 mL/h) and the same velocity ratio of 10.

Furthermore, different flow rates with the same velocity ratio of 10 (sheath flow/sample flow =

1/0.1, 1.2/0.12 and 1.5/0.15 mL/h) were compared to separate the microspheres with the diameter of
2.2 µm and 100 nm. As shown Figure 3b, the microspheres were focused in the central outlet only when
the velocity of the sample flow was 0.15 mL/h. The 100 nm microspheres were almost compressed on
the bottom of the microchannel. Thus, the optimal velocities of the sheath flow and the sample flow
were 1.5 and 0.15 mL/h, respectively.

3.4. Optimization of the PAb-to-HRP Ratio

The antibody and HRP modified on the MNPs have great impact on the sensitivity of this biosensor,
since more antibodies modified on the MNPs might lead to higher capture efficiency and more HRP
modified on the MNPs might lead to higher detection signal, however the total binding sites for
immobilization of PAbs and HRP were fixed. Thus, it is crucial to optimize the ratio of PAbs to HRP.
Different ratios of PAbs to HRP from 1:1 to 16:1 were applied to modify the MNPs. The modified MNPs
were used to separate the target bacteria and the separation efficiency of the bacteria was determined
using culture plating to evaluate the PAbs performance of the MNPs. Besides, the modified MNPs were
also used to detect negative samples and the concentration of the catalysate was determined measuring
the absorbance to evaluate the HRP performance of the MNPs. As shown in Figure 4, the separation
efficiency of the target bacteria increased slightly from 94% to 98% when the ratio of PAbs to HRP
changed from 1:1 to 8:1, indicating that the antibodies on the MNPs were sufficient for each ratio to
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separate the target bacteria. However, the absorbance of the catalysate decreased dramatically from
0.70 to 0.13 when the ratio of PAbs to HRP changed from 1:1 to 4:1 and kept decreasing to 0.07 when
the ratio changed from 4:1 to 16:1. It indicated that the biotinylated HRP had strong binding ability to
the streptavidin coated MNPs, and the amount of HRP modified on the MNPs was too much when
the ratios of PAbs to HRP were 1:1 and 2:1,resulting in strong background signals. Thus, the optimal
PAbs-to-HRP ratio of 4:1 was used in this study.
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Figure 4. The separation efficiency and absorbance for the MNPs with different ratios of antibody to
horseradish peroxidase (HRP) (N = 3).

3.5. Detection of Salmonella Typhimurium in Pure Sample

To evaluate this biosensor for detection of foodborne bacteria, three parallel tests on Salmonella
typhimurium at different concentrations of 1.2 × 102 to 1.2 × 106 CFU/mL in the pure cultures and
negative samples were conducted. The absorbance spectra for different concentrations of Salmonella
typhimurium were shown in Figure 5a. When the concentration of the target bacteria changed
from 1.2 × 102 CFU/mL to 1.2 × 106 CFU/mL, the absorbance of the catalysate increased obviously,
indicating that more magnetic HRP-bacteria were formed and collected with more HRP to catalyze
TMB. To further build up the calibration curve of this biosensor, the absorbance at the characteristic
wavelength of 450 nm were plotted with the concentration of Salmonella typhimurium. As shown in
Figure 5b, a good linear relationship between the absorbance (A) of the catalysate and the concentration
(C) of Salmonella typhimurium was found and could be expressed as:

A = 0.0341× ln(C) + 0.0481 (3)

Based on three times of signal-to-noise ratio, the detection limit of this biosensor was calculated as
30 CFU/mL. The high sensitivity of this biosensor might be due to the following aspects: (1) the efficient
separation of the magnetic HRP-bacteria from the unbound MNPs to greatly reduce the background
noises; (2) the effective amplification of the biological signals using the HRP; (3) the enrichment of
the target bacteria using the MNPs. Compared with current biosensors for bacteria detection, this
biosensor has shown obvious advantages, such as shorter time (because only one immunoreaction
between the MNPs and the target bacteria was needed), easier extension (because only one antibody,
not a pair of antibodies, was needed and the HRP could be changed by other enzymes or labels to
develop new assays), and lower cost (because less expensive materials were used).
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Besides, its specificity was evaluated using this biosensor to detect three other types of bacteria,
such as E. coli O157:H7, Listeria monocytogenes, Staphylococcus aureus, and four other serotypes of
Salmonella, such as Salmonella derby, Salmonella enteritidis, Salmonella mbandaka, and Salmonella
meleagridis. Three parallel tests on these seven non-target bacteria at the concentration of 104 CFU/mL
were conducted. As shown in Figure 5c, the target bacteria has obviously higher separation efficiency
(96.7%) and absorbance (0.34) than these three other types of bacteria (1.3%–1.6% for separation
efficiency and 0.12–0.13 for absorbance) and these four other serotypes of Salmonella (4.1%–9.1%
for separation efficiency and 0.13–0.17 for absorbance), indicating that this biosensor is specific for
Salmonella typhimurium.
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Figure 5. Detection of Salmonella Typhimurium in Pure Sample. (a) The absorbance spectra for
different concentrations of Salmonella typhimurium in pure samples; (b) the linear relationship between
the absorbance of catalysate and the concentration of Salmonella typhimurium in pure samples (N =

3); (c) Comparison of separation efficiency and absorbance of target bacteria and non-target bacteria
(N = 3).

3.6. Detection of Salmonella Typhimurium in Spiked Apple Juice

To further evaluate the applicability of this biosensor for detection of Salmonella typhimurium in
real samples, apple juice was purchased from local supermarket and first confirmed without target
Salmonella using conventional culture plating. Then, different concentrations of Salmonella typhimurium
were added into the juice to prepare the spiked sample with the bacterial concentrations from 1.4 × 102

to 1.4× 106 CFU/mL. Three parallel tests on each concentration of the spiked juice were finally conducted
using this biosensor. The recovery for each concentration of the target bacteria was calculated as the
ratio of the detected concentration to the spiked one and shown in Table 1. The recovery ranged from
83% to 124% with the average recovery of 102%. This verified the applicability of this biosensor for
detecting Salmonella typhimurium in real samples.

Table 1. Detection of Salmonella typhimurium in apple juice using this biosensor (N = 3).

Spiked Conc.
(CFU/mL) Absorbance Detected Conc.

(CFU/mL) Recovery CV

0 0.128 ND a - -
138 0.231 171 124% 1.5%

1380 0.306 1144 83% 1.0%
13,800 0.401 12,284 89% 0.5%

138,000 0.497 135,543 98% 0.7%
1,380,000 0.595 1,588,333 115% 1.8%

a ND: Not Detectable.

4. Conclusions

In this study, we successfully developed a microfluidic biosensor based on viscoelastic particle
separation and enzyme catalytic colorimetry for rapid and sensitive detection of Salmonella
typhimurium. The biosensor was able to detect Salmonella typhimurium as low as 30 CFU/mL within
1 h. This particle separation method based on viscoelastic inertial microfluidics was demonstrated
to successfully separate the magnetic HRP-bacteria at the size of micrometer from the unbound
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MNPs at the size of nanometer. Compared with some reported biosensors for bacteria detection in
Table S1, this biosensor has obvious merits of shorter time and/or higher sensitivity. However, it still
needs further efforts to integrate magnetic separation of the target bacteria from sample, viscoelastic
separation of the magnetic bacteria from the unbound MNPs and colorimetric detection of the catalysate
onto a single chip to achieve fully automatic detection.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/9/2738/s1,
Figure S1: Photo of the microfluidic channel; Sketch of the microchannel, Table S1: Compared with some reported
biosensors for bacteria detection.
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