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COVID-19, hyper-inflammation,
and sex-specific features

Since January 10, 2020, when the first death linked to the
severe acute respiratory syndrome-related coronavirus 2
(SARS-CoV-2) occurred in Wuhan, China, more than
530,000 people have died (as of July 4, 2020). Globally, there
are 11.2 million people infectedwith the virus, with 2.9 million
in the USA alone and other populous countries surging. While
there is a charge to develop a vaccine, as well as means of
eliminating the virus from those infected (e.g., remdesivir),
neither of these therapeutic strategies will directly address the
major life-threatening complications that may occur once in-
fected, namely, the profound upregulation of the innate im-
mune system. Like the severe acute respiratory syndrome co-
ronavirus that emerged in 2002 (SARS-1, caused by SARS-
CoV) and the Middle East respiratory syndrome-related coro-
navirus of 2012 (MERS-CoV), COVID-19 (the disease asso-
ciated with SARS-CoV-2) is associated with a storm of pro-
inflammatory cytokines like IL-1β, IL-6, and TNF. Precisely
why some patients evolve to this hyper-inflammation state
while others do not remains unclear but is likely due to nonvi-
ral factors that are specific to the host, including age and co-
morbidities (Yang et al. 2020). These cytokines play an impor-
tant role in various tissue complications with acute respiratory
distress syndrome (ARDS), a form of acute lung injury that is

without tangible therapeutic options apart from supportive
care, of principal concern (Nieto-Torres et al. 2015).

What do we know about sex differences in the COVID-19?
The COVID-19 mortality rate in men is double than that of
females (Wu and McGoogan 2020). This is not surprising, as
clinical and experimental studies with SARS-1 and MERS
noted that the infection occurred more readily and was more
persistent in males (Channappanavar et al. 2017; Karlberg
et al. 2004; Mobaraki and Ahmadzadeh 2019; Zheng et al.
2020). Of note, there are exceptions to the male sex predom-
inance in COVID-19 mortality rate. For example, in Canada,
54% of deaths are in females—however, this appears to be
linked to factors other than sex, as 85% of the national deaths
occurred in long-term care (LTC) facilities where the vast
majority of residents are older females (Estabrooks et al.
2020). For the rest of the world, LTC residences do not rep-
resent the hot-bed of COVID-19 deaths (e.g., only 29% of
deaths in Australia occurred in LTC). Hence, the global sta-
tistics overwhelmingly point to a male predominance of this
disease, which has spurred a number of excellent opinions
papers (Bischof et al. 2020; Suba 2020). Moreover, based on
the assumption that ovarian hormones may be protective, a
small clinical trial has begun in men > 18 years and women
> 55 years with confirmed or suspected COVID-19, random-
izing subjects to a transdermal patch containing estradiol or
placebo (Estrogen Patch for COVID-19 Symptoms n.d.).
With this in mind, we now postulate that heat shock protein
27 (HSP27), recently recognized to have potent anti-
inflammatory effects (Inia and O’Brien 2020), may also have
a role in the treatment of COVID-19.

Heat shock protein 27,
an estrogen-responsive protein for treating
COVID-19?

HSP27 is a member of the small heat shock protein family that
is primarily known as an intracellular chaperone and more
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recently for its extracellular, anti-inflammatory roles (Batulan
et al. 2016). While looking for estrogen receptor-beta associ-
ated proteins that might be involved in modulating hormonal
transcription, we discovered HSP27 and began to study the
role of this protein in atherosclerosis. Investigations by several
laboratories, including our own, highlight that HSP27 arterial
expression and blood levels are higher in healthy subjects
compared with patients with cardiovascular disease
(Lepedda et al. 2009; Liang et al. 2016; Martin-Ventura
et al. 2004; Miller et al. 2005; Park et al. 2006). What we also
uncovered is a complex relationship between HSP27 and es-
trogens, as HSP27 acts as a repressor of estrogen-mediated
transcription in vitro, yet its expression and extracellular re-
lease are also partially regulated by estrogens (e.g., there is an
estrogen response element found in the HSP27 promoter)
(Miller et al. 2005; Rayner et al. 2009). As well, we recently
noted that natural IgG auto-antibodies to HSP27 (AAbs) are
detectable in human blood (Chen et al. 2020b) and demon-
strated how HSP27 immune complexes (ICs) form, dock at
the cell membrane where they engage with Toll-like receptor
4 (TLR4), and compete with LPS to reduce inflammatory
signaling (Shi et al. 2020). Interestingly, HSP27 activates
the NF-κB pathway—but only modestly—resulting in the ex-
pression of both pro- and anti-inflammatory cytokines and
proteins (Salari et al. 2013). Boosting HSP27 antibodies via
vaccination reduces atherosclerosis and promotes the anti-
inflammatory effects of the HSP27 immune complex (Shi
et al. 2020). It is the combination of the protein and its anti-
body that produces the therapeutic benefit—a concept that we
refer to as HSP27 Immune Complex Altered Signaling and
Transport (or ICAST; transport refers to cellular internaliza-
tion of HSP27).

HSP27 and COVID-19-related endothelial
dysfunction

Clinical evidence of endothelial dysfunction in COVID-19
patients is striking, ranging from vascular thrombosis and al-
tered microvascular function (toes, fingers) to large artery
strokes in relatively young individuals (Teuwen et al. 2020).
Indeed, the presence of frank thrombosis in the lungs and to a
lesser extent the microvessels of the heart are turning out to be
the hallmarks of this clinical entity. With the pulmonary air
space already compromised due to the development of ARDS,
no amount of supplemental oxygen therapy (e.g., with venti-
lators) can overcome the effects of pulmonary circulatory ob-
struction that further impairs gas exchange. What can be done
to improve the endothelium, and why are (pre-menopausal)
women enjoying relative protection from COVID-19?
Currently, there is no answer for that question; regardless,
the acuity and magnitude of COVID-19 pandemic have
prompted a “think now – do now” attitude to exploring a

variety of therapeutic options. Indeed, Perdrizet and
Hightower recently proposed that treatments with stannous
chloride and hyperbaric oxygen (HBOT) may offer protection
to the vascular endothelium that could reduce COVID-19
damage and invoke HSP70 as a biomarker for the
cytoprotected state (Perdrizet and Hightower 2020). In con-
trast, we now propose that vaccination with HSP27 (or alter-
natively passive immunization with anti-HSP27 antibodies)
may be worth exploring for the treatment of the inflammatory
complications of COVID-19—including the important vascu-
lar effects (Table 1).

NLRP3 inflammasome activation
and COVID-19

Elevated plasma levels of pro-inflammatory cytokines such as
IL-1β, IL-6, and TNF seem to drive SARS-CoV-2 pathoge-
nicity in COVID-19 patients and is associated with adverse
outcomes and poor prognosis (Huang et al. 2020). Blood
levels of lactate dehydrogenase (LDH) levels are also highly
elevated in patients with severe COVID-19 (Chen et al.
2020a). LDH is a cytosolic enzyme released from cells under-
going pyroptosis, an inflammatory form of cell death, possibly
triggered by the activation of the NLRP3 inflammasome. The
NLRP3 inflammasome is an innate immune sensor that is
under tight regulation and requires two signals for full activa-
tion (Broz and Dixit 2016). The first signal is received from
the binding of the virus to toll-like receptors on host cells
leading to the NF-κB-mediated transcription of pro-IL-18
and pro-IL-1β. The secondary signals are received in the form

Table 1 Potential therapeutic benefit of HSP27 immunotherapy for
managing the inflammatory complications of COVID-19

Beneficial effects Implications for COVID-19
pathophysiology

Estrogens augment synthesis and
extracellular secretion (Rayner
et al. 2009; Shi et al. 2019; Sun
et al. 2011)

Higher levels of HSP27 that may
attenuate inflammation

Competing for TLR4 and directing
NF-κB activation towards
anti-inflammatory mediators
(Rayner et al. 2008; Shi et al.
2020)

Reduced IL-1β and increased
IL-10

Upregulating GM-CSF (Pulakazhi
Venu et al. 2017; Salari et al.
2013)

GM-CSF maintains alveolar
epithelial and macrophage
health—useful for treating
COVID-19 ARDS

Promoting endothelial repair and
regrowth by upregulated VEGF
(Ma et al. 2014)

Critical for prevention of
COVID-19 vascular complica-
tions like pulmonary emboli and
stroke
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of endogenous or exogenous ATP, reactive oxygen species, or
lysosomal proteases released from damaged or dying cells
leading to NLRP3 inflammasome assembly, activation of cas-
pase-1, and subsequent secretion of IL-18 and IL-1β, a medi-
ator of fever, lung inflamamtion, and fibrosis (Shrivastava
et al. 2016). Under normal physiological conditions,
NLRP3-triggered responses lead to the death of infected cells,
critical in limiting viral spread. However, over-activation of
the NLRP3 inflammasome causes the hyper-inflammatory re-
sponses seen in COVID-19 patients, resulting in a vicious
cycle of release of pro-inflammatory cytokines, pyroptosis,
and infiltration of the lungs with inflammatory cells leading
to ARDS, multi-organ failure and even death (De Nardo et al.
2014; Grailer et al. 2014). The elderly, who are already suf-
fering from age-related low-grade inflammation (Franceschi
et al. 2000) and a decline in their immune systems, are partic-
ularly susceptible due to their inability to mount type I and
type III interferon responses to clear the viral infection
(Molony et al. 2017). Hence a dysfunctional NLRP3
inflammasome and the impaired ability to clear viral infec-
tions are a perfect storm for COVID-19.

SARS-CoV encodes ion-channel viroporins, namely, protein
E, ORF3a, and ORF8a, which are known to induce NLRP3
inflammasome activity and IL-1β production by altering intra-
cellular ionic concentrations (Chen et al. 2019; Siu et al. 2019).
Similarly, treatment of macrophages derived from COVID-19
patients with SARS-CoV-2 spike protein and nigericin activated
the NLRP-3 inflammasome, resulting in IL-1β production (S.J.
Theobald et al. 2020). Incubation of these cultures with
MCC950, a small-molecule NLRP3 inhibitor, blocks IL-1β se-
cretion and therefore highlights the potential value of anti-
inflammatory therapeutics for managing hyper-inflammation in
COVID-19 patients. Accordingly, a number of clinical trials are
ongoing, testing the potential therapeutic effect of individually or
simultaneously blocking IL-6 and IL-1 cytokines using toci-
lizumab, canakinumab, siltuximab, and anakinra in patients with
severe COVID-19. In a phase 3 clinical study, anakinra reduced
mortality and the need for supplemental oxygen therapy (me-
chanical ventilation) in critically ill patients with COVID-19,
thereby pointing to the need for further controlled studies
(Huet et al. 2020). While these antibodies block the release of
pro-inflammatory cytokines IL-6 and IL-1, they do not affect the
secretion of other cytokines such as IL-18 and TNF; hence, they
may be unsuccessful in breaking the vicious cycle of inflamma-
tion and tissue damage. Other synergistic or more broadly acting
strategies may be needed.

HSP27 and NLRP3 inflammasome activation

Growing evidence suggests that HSPs play an important role in
regulating the NLRP3 inflammasome activation. Although
many HSPs act as alarmins and promote inflammation,

HSP27 and HSP70 have been shown to inhibit activation,
supporting their role as modulators of inflammation (Batulan
et al. 2016; Martine and Rebe 2019). Treatment of macro-
phages with exogenous recombinant HSP27 reduces the uptake
of modified low-density lipoprotein (LDL), lowers IL-1β
levels, and increases levels of an anti-inflammatory cytokine,
IL-10 (Miller-Graziano et al. 2008; Rayner et al. 2008).
Additionally, extracellular recombinant HSP27 inhibits modi-
fied LDL uptake by competing for scavenger receptors, SR-A
and CD36 (Shi et al. 2020). Scavenger receptors bind modified
LDL and intiate both signals 1 and 2 for complete NLRP3
inflammasome activation. Thus, the competition between
HSP27 and scavenger receptors might down-regulate inflam-
mation by preventing lysosomal disruption and subequent
inflammasome activation (Duewell et al. 2010; Sheedy et al.
2013). Similarly, in a rat model of skeletal muscle disuse atro-
phy, prophylactic application of HSP27 attenuated NF-κB ac-
tivation and skeletal muscle disuse atrophy (Dodd et al. 2009),
possibly by inhibiting the priming step of inflammasome acti-
vation. These studies support the concept that extracellular
HSP27 (or perhaps HSP27 ICAST) competes for the receptors
that recognize the danger signals and targets pathways upstream
of NF-κB and the inflammasome to dampen the cytokine storm
and prevent the tissue damage characteristic of critically ill
COVID-19 patients. Further study of the anti-inflammatory po-
tential of HSP27 immuno-therapeutics for COVID-19 and oth-
er inflammatory disease states is ongoing, with a plan of mov-
ing from the bench to the clinic soon.
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