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Abstract

Clinical trials conventionally test aggregate mean differences and assume homogeneous

variances across treatment groups. However, significant response heterogeneity may exist.

The purpose of this study was to model treatment response variability using gait speed

change among older adults participating in caloric restriction (CR) trials. Eight randomized

controlled trials (RCTs) with five- or six-month assessments were pooled, including 749 par-

ticipants randomized to CR and 594 participants randomized to non-CR (NoCR). Statistical

models compared means and variances by CR assignment and exercise assignment or

select subgroups, testing for treatment differences and interactions for mean changes and

standard deviations. Continuous equivalents of dichotomized variables were also fit. Models

used a Bayesian framework, and posterior estimates were presented as means and 95%

Bayesian credible intervals (BCI). At baseline, participants were 67.7 (SD = 5.4) years,

69.8% female, and 79.2% white, with a BMI of 33.9 (4.4) kg/m2. CR participants reduced

body mass [CR: -7.7 (5.8) kg vs. NoCR: -0.9 (3.5) kg] and increased gait speed [CR: +0.10

(0.16) m/s vs. NoCR: +0.07 (0.15) m/s] more than NoCR participants. There were no treat-

ment differences in gait speed change standard deviations [CR–NoCR: -0.002 m/s (95%

BCI: -0.013, 0.009)]. Significant mean interactions between CR and exercise assignment

[0.037 m/s (95% BCI: 0.004, 0.070)], BMI [0.034 m/s (95% BCI: 0.003, 0.066)], and IL-6

[0.041 m/s (95% BCI: 0.009, 0.073)] were observed, while variance interactions were

observed between CR and exercise assignment [-0.458 m/s (95% BCI: -0.783, -0.138)],

age [-0.557 m/s (95% BCI: -0.900, -0.221)], and gait speed [-0.530 m/s (95% BCI: -1.018,

-0.062)] subgroups. Caloric restriction plus exercise yielded the greatest gait speed benefit

among older adults with obesity. High BMI and IL-6 subgroups also improved gait speed in

response to CR. Results provide a novel statistical framework for identifying treatment het-

erogeneity in RCTs.
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Introduction

Clinical trials with continuous outcomes are conventionally designed to test aggregate mean

differences, typically assuming homogeneous variances across treatment groups. While useful

in guiding overall recommendations, this approach often fails to uncover prognostic indicators

or underlying mechanisms of treatment effects. Indeed, experiential wisdom imparts that

intervention efficacy can vary significantly by subgroup [1, 2], with individualized clinical

decision making a fundamental tenet of precision medicine [3]. In pharmaceutical trials, for

example, identification of “high responders” has led to prescribing practices aimed at maxi-

mizing treatment benefit while minimizing side effects [4, 5]. Consideration of individualized

response in lifestyle-based trials has also helped to identify subgroups that are more likely to

respond to exercise [6, 7] and nutrition [8, 9] prescriptions designed to mitigate chronic dis-

ease risk.

While quantifying response variability is generally recognized as important [10], it can be

technically challenging. For instance, variability often stems from within-subject characteris-

tics [11, 12] which can be difficult to separate from random error [13]. Additionally, many tri-

als are not designed with sufficient power to adequately examine mean subgroup differences;

and attempts to do so rarely employ appropriate methodology to test for heterogeneity of vari-

ances. Assumed homogeneous variances can be problematic if they lead to biased variance

estimates—negatively impacting analytic power, probabilities associated with individual

response, and understanding of within-subgroup treatment effects. Furthermore, existing sta-

tistical methods are most appropriate for parallel group studies [14]; thus, the ability to test for

treatment heterogeneity from alternate designs, such as studies with multiple interventions,

are lacking.

Consideration of heterogeneity of treatment response is an especially salient issue for

weight loss trials conducted in older adults. While advanced age and excess adiposity are well-

recognized risk factors for chronic disease and disability [15], variability surrounding the risk-

benefit of intentional weight loss in this population—particularly as related to disability risk—

has stalled widespread clinical recommendation [16, 17]. Encouragingly, evidence from the

majority of lifestyle-based randomized controlled trials (RCTs) of caloric restriction and exer-

cise in older adults demonstrate mean improvement in physical function following clinically

meaningful (5–10%) weight loss [15]; however, substantial variation in the magnitude of

change exists, with a subset of participants inevitably experiencing a null or negative effect

[18]. Better understanding of the extent and predictors of inter-individual variability in physi-

cal function treatment response in this population has the potential to optimize geriatric obe-

sity treatment strategies, while also providing a clinically relevant platform upon which to

refine modeling approaches designed to manage heterogeneity.

Several similarly designed RCTs testing the effects of caloric restriction and exercise on

physical function among older adults with obesity were conducted over the past two decades

at Wake Forest University and Wake Forest School of Medicine, providing an unique infra-

structure to pool data to assess subgroup effects and account for inter-individual variability in

treatment response [19–26]. Herein, we focus on change in gait speed, as it is arguably the

most clinically relevant measure of physical function [27], and utilize a statistical modeling

approach from a Bayesian framework to: 1) determine if there are inter-individual differences

in gait speed as a result of randomization to caloric restriction, and 2) understand predictors

of inter-individual variability in gait speed response, including demographic characteristics,

health status, and exercise. We primarily hypothesize there will be an overall mean increase in

gait speed because of caloric restriction, but that variability in gait speed change will also exist.

We secondarily hypothesize that demographic characteristics, health status, and exercise
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assignment will interact with caloric restriction to influence gait speed mean and variance het-

erogeneity. Finally, as exploratory analyses we include continuous covariate data when avail-

able rather than dichotomized variables to determine if the subgroup differences persist using

a linear model for the means and variances.

Materials and methods

Studies and participant descriptions

Relevant design characteristics of the included trials are summarized in Table 1. Briefly, indi-

vidual participant data from eight RCTs conducted at Wake Forest University or Wake Forest

School of Medicine and housed within the Wake Forest Older Americans Independence Cen-

ter data repository were eligible for inclusion in the pooled analysis. Study-specific inclusion

and exclusion criteria are summarized in S1 Table. Individual study lengths varied, but all

studies assessed fast-paced gait speed before and five/six months after assignment to either a

caloric restriction intervention (CR) with or without exercise or to a non-caloric restriction

control condition (NoCR) with or without exercise. The Wake Forest Health Sciences Institu-

tional Review Board approved secondary analyses pertaining to the pooled project

(IRB#54086). As all data/samples were fully anonymized, the requirement for informed con-

sent was waived under Exemption Category 4. The final sample (n = 1343) includes all ran-

domized participants with baseline and follow-up gait speed data.

Table 1. Descriptive summary of randomized controlled trials included in the pooled analysis.

Study Acronym and NCT# N (%♂; %Black) Mean Age (years) Health Status Intervention (n) Complete Gait Speed (n)

ADAPT 231 68 Overweight/Obese CR (n = 65) 218

AE (n = 57)

NCT00979043 (29%; 21%) OA CR+AE (n = 54)

Control (n = 55)

APPLE 33 70 Obese OA CR (n = 15) 33

NCT02239939 (24%; 18%) CR+VEST (n = 18)

CLIP 267 67 Overweight/Obese CR+AE (n = 95) 261

AE (n = 86)

NCT00119795 (34%; 17%) CVD/METS Control (n = 86)

I’M FIT 109 70 Overweight/Obese CR+RE (n = 55) 109

At-risk for disabilityNCT01049698 (45%; 12%) RE (n = 54)

IDEA 376 66 Overweight/Obese CR (n = 120) 351

NCT00381290 (30%; 17%) OA AE (n = 124)

CR+AE (n = 132)

INFINITE 146 69 Obese Low CR+AE (n = 52) 142

NCT01048736 (25%; 24%) High CR+AE (n = 51)

AE (n = 43)

MEDIFAST 82 70 Obese/At-risk for disability CR (n = 43) 80

NCT02730988 (27%; 25%) Control (n = 39)

SECRET 99 67 Overweight/Obese CR (n = 24) 89

AE (n = 26)

NCT00959660 (19%; 45%) HFPEF CR+AE (n = 25)

Control (n = 24)

NCT# = clinicaltrials.gov identifier; n = sample size; %♂ = percent male; m/s = meters per second; OA = osteoarthritis; CVD/METS = cardiovascular disease or

metabolic syndrome; HFPEF = heart failure with preserved ejection fraction; CR = caloric restriction; AE = aerobic exercise; RE = resistance exercise; VEST = weighted

vest use during activities of daily living; SPPB: Short physical performance battery.

https://doi.org/10.1371/journal.pone.0267779.t001
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Primary exposure measure: Caloric restriction

Arms within each study were collapsed into CR (n = 749) and NoCR (n = 594) categories

based on whether CR to induce weight loss was specified in the original study protocol. As

shown in Table 1, six studies randomized a subset of participants to traditional aerobic or

resistance exercise (n = 854), with over half (n = 464) also receiving CR. Specifically, among

thirteen study-specific interventions collapsed into the CR arm, five included participants ran-

domized to CR only (n = 285), and six included participants randomized to CR combined

with exercise (n = 464). Among ten study-specific arms collapsed into the NoCR arm, four

included participants randomized to attention control (n = 204), and six included participants

randomized to exercise only (n = 390).

Primary outcome measure: Change in objectively measured fast-paced gait

speed

Time recorded from the six-minute walk test (53% of the study sample) or fast-paced

400-meter walk test (47% of the study sample) was used to derive fast-paced gait speed at base-

line and five/six month follow up. Gait speed, in general, is associated with survival among

older adults [28], with long distance walk performance highly predictive of subsequent disabil-

ity and death [29]. During the six-minute walk test [30], participants were asked to walk as far

as they could around a circular track in six minutes. During the 400-meter walk test [31], par-

ticipants were asked to briskly walk 10 laps of a 40-meter course and were given a maximum

of 15 minutes to complete the test.

Covariate measures

All studies captured self-reported demographic characteristics (age, sex, and race) and pres-

ence of select comorbidities [cardiovascular disease (CVD) and diabetes] via questionnaire at

baseline. Standing height was measured using a clinical stadiometer and body mass was mea-

sured at baseline and five/six months follow up with a standard scale (with shoes and outer

garments removed). Body mass index (BMI) was calculated as weight in kilograms divided by

height in meters squared (kg/m2). Whole body fat mass was also measured in four studies

(n = 958) using dual-energy x-ray absorptiometry (DXA) on the same machine [Hologic Dis-

covery (Bedford, MA)] and following a standardized protocol [19, 22–24]. Lastly, high-sensi-

tivity C-reactive protein (CRP; n = 1293) and interleukin-6 (IL-6; n = 1288) were measured on

all available blood samples using standard methodology [32].

Statistical analyses

Baseline data were analyzed using descriptive statistics, with means and standard deviations

computed for continuous variables and counts and proportions for discrete variables, overall

and by CR assignment. Crude unadjusted comparisons of CR assignment on changes in

weight and gait speed were compared using independent t-tests. For our primary analysis, we

modeled the impact of CR assignment (xcr = 0 for control and 1 for CR) on both the five/six-

month gait speed change mean response (μi) and residual variability (s2
i ) for the ith individual

by fitting a linear model assuming changes in gait speed are normally distributed, Nðmi; s
2
i Þ,

where the mean:

mi ¼ b0;k þ b1xcr þ bblwbl ð1MÞ

in which β0,k is a study-specific random intercept distributed Nðb0; s
2
s Þ where β0 is the control

group mean and s2
s is the study random effect, β1 is the mean CR treatment effect, and βbl is
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the coefficient for baseline gait speed. Furthermore, we model the residual response variability

s2
i using:

logðs2

i Þ ¼ �0 þ �1xcr ð1VÞ

such that differences in group response variability can be tested by comparing the parameter

ϕ1 to 0, i.e., identifying whether the 95% posterior credible interval contains 0, and the CR

groups’ variances are s2
cr¼0
¼ expð�0Þ and s2

cr¼1
¼ expð�0 þ �1Þ. Using the log-scale for model-

ing variance terms adds convenience because to the support for log(σ2) spans the full real line;

therefore, all model parameters (β, ϕ) can be fit using diffuse normal prior distributions (N
(0,10)), and s2

s with inverse-gamma(0.001,0.001), to minimize prior assumptions and to allow

the data likelihood to dominate the posterior estimates.

Our secondary objective is to estimate and compare the impact of CR assignment and

covariates, whether a continuous covariate xs or discrete subgroup membership (xs = 0 vs. 1),

on changes in gait speed. We added terms for covariates and the treatment-covariate interac-

tion such that:

mi ¼ b0;k þ b1xcr þ b2xs þ b3xcrxs þ bblwbl ð2MÞ

where β2 is the coefficient for key covariates/subgroup membership, β3 quantifies the interac-

tion, and all remaining model parameters remain the same as (1M). Furthermore, for the

response variance we modified (1V) to include subgroup/covariate term ϕ2 and interaction

term ϕ3 as follows:

logðs2

i Þ ¼ �0 þ �1xcr þ �2xs þ �3xcrxs: ð2VÞ

The combinations of Model (2M) and (2V) permitted separate estimates for treatment

means and variances across continuous or discrete subgroups and tests for differences in treat-

ment response variability across covariate levels by comparing ϕ3 to 0. Again, we fit noninfor-

mative diffuse prior distributions as described above using OpenBUGS.

Subgroups were defined by dichotomizing continuous baseline predictors: age�65 years,

median BMI >33.3 kg/m2, sex-specific median percent body fat (male median: 32.1%, female

median: 44.5%), IL-6>2.5 pg/dL [33], CRP >3.0 mg/L [34] and gait speed <1.0 m/s [35].

Dichotomous baseline variables [sex (male/female), race (black/white), comorbidity status

(CVD and diabetes: yes/no), and randomized assignment to exercise (yes/no)] were also ana-

lyzed as subgroups. Continuous covariates (age, BMI, percent body fat, log IL-6, log CRP, and

baseline gait speed) were included in separate exploratory models as linear predictors for

means and variances, with log adjustment for right skewed biomarkers. Mean models of gait

speed response adjusted for study and baseline gait speed, except models in which baseline gait

speed and gait speed subgroup were predictors, means were adjusted only for study. All associ-

ations and comparisons were determined based on whether the 95% Bayesian Credible Inter-

val (BCI; analogous to a frequentist 95% Confidence Interval), overlaps the null value of 0, and

all variability estimates are presented as standard deviations for ease of interpretation. Results

focus on the effect of CR and whether CR interacts with subgroups or covariates. Summary

data and frequentist comparisons were performed using SAS software, version 9.4 (SAS Insti-

tute, Cary, NC) using 2-sided hypothesis tests and assuming a Type 1 error rate of 0.05, while

Bayesian models were created using OpenBUGS and executed in R using the package

R2OpenBUGS.
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Results and discussion

Baseline characteristics of study sample

Analyses were performed on a sample of 1343 participants, with baseline demographic and

health characteristics presented in Table 2. Participants were older [mean (SD), 67.7 (5.4)

years], predominantly female (69.8%), white (79.2%), and living with obesity [BMI: 33.9 (4.4)

kg/m2]. Overall prevalence of self-reported CVD (4.9%) and diabetes (14.4%) was low and did

not differ by CR assignment; however, most participants had higher levels of inflammation

defined as IL-6�2.5 pg/mL (55.0%) and CRP�3.0 mg/L (60.1%). Fast-paced gait speed was

1.2 (0.2) m/s, indicative of a well-functioning cohort at baseline [36], with only 174 (13.0%)

presenting with gait speed below 1.0 m/s. Participant characteristics were mostly similar across

treatment groups with respect to all baseline characteristics, except for a small difference in

baseline body fat percentage [CR: 41.1 (7.0) % vs. NoCR: 40.2 (7.2) %, p = 0.04] among the sub-

set of participants with baseline DXA (n = 958). Finally, most (63.6%) participants were

assigned to some form of exercise, although proportions were comparable across groups (CR:

61.9% vs. NoCR: 65.7%, p = 0.16).

Overall effects on of CR assignment on weight loss and gait speed response

On average, participants assigned to CR significantly reduced their body mass more than

those assigned to NoCR [absolute changes CR: -7.7 (5.8) kg vs. NoCR: -0.9 (3.5) kg, p<0.01;

Table 2. Baseline characteristics of study sample, overall and by treatment group.

Variable Na Overall (N = 1343) Na CR (N = 749) Na NoCR (N = 594)

Age in years 67.7 (5.4) 67.6 (5.4) 67.7 (5.3)

�65 years 932 (69.4) 527 (70.4) 405 (68.2)

Female Sex, n (%) 938 (69.8) 533 (71.2) 405 (68.2)

Black Race, n (%) 1328 276 (20.8) 742 161 (21.7) 115 (19.6)

Presence of Comorbidities, n (%)

Cardiovascular Disease 1213 60 (4.9) 662 33 (5.0) 551 27 (4.9)

Diabetes 1329 191 (14.4) 739 100 (13.5) 590 91 (15.4)

Body Weight/Composition

Weight in kg 93.7 (15.3) 93.8 (15.2) 93.7 (15.6)

BMI in kg/m2 33.9 (4.4) 34.0 (4.3) 33.7 (4.6)

�median BMIc 670 (49.9) 383 (51.1) 287 (48.3)

Percent body fat 958 40.7 (7.1) 537 41.1 (7.0) 421 40.2 (7.2)

�sex-specific mediand 958 480 (50.1) 537 281 (52.3) 421 199 (47.3)

Inflammatory Burden

IL-6 in pg/dL 1288 3.7 (7.2) 720 4.0 (9.3) 568 3.4 (2.8)

�2.5 pg/dL 1288 708 (55.0) 720 410 (56.9) 568 298 (52.5)

CRP in mg/L 1293 7.1 (9.3) 726 7.4 (9.3) 567 6.7 (9.2)

�3.0 mg/L 1293 777 (60.1) 726 438 (60.3) 567 339 (59.8)

Fast Paced Gait Speed (m/s) 1.2 (0.2) 1.2 (0.2) 1.2 (0.2)

<1.0 m/s 174 (13.0) 91 (12.1) 83 (14.0)

Abbreviations: BMI: Body Mass Index; IL-6: Interleukine-6; CRP: C-reactive Protein
aSample sizes provided only when they differ from column headers.
bData are presented as mean (SD) or n (%).
cMedian BMI was 33.3kg/m2.
dMedian DXA-acquired percent fat mass was 32.1% for males and 44.5% for females.

https://doi.org/10.1371/journal.pone.0267779.t002
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relative changes: CR: -8.1 (5.9) % vs. NoCR: -1.0 (3.7) %; p<0.01], with significant differences

BMI change as well [CR: -2.8 (2.1) kg/m2 vs. NoCR -0.4 (1.3) kg/m2; p<0.01]. In unadjusted

analyses, CR participants showed a significant increase in gait speed compared to NoCR

[+0.10 (0.16) m/s vs. +0.07 (0.15) m/s, respectively, p<0.01] (see Fig 1). After adjustment for

baseline gait speed and study, CR continued to yield a mean increase in gait speed [+0.021 m/s

(95% Bayesian Credible Interval, BCI: 0.005, 0.037)], which was slightly attenuated compared

to the unadjusted comparison. However, as illustrated in Fig 1, there were no differences in

standard deviations between groups [CR: +0.143 m/s (95% BCI: 0.136, 0.151) vs. NoCR:

+0.141 m/s (95% BCI: 0.133, 0.150)], indicating that although means differed by CR treatment,

there was no observable heterogeneity of response variances due to overall CR assignment.

Heterogeneity of gait speed change means and standard deviations across

subgroups

Model adjusted outcomes that estimate treatment and subgroup heterogeneity across baseline

demographic and health characteristic subgroups are presented in Table 3. Means are esti-

mated from Model (2M) and standard deviations are estimated from Model (2V). Significant

mean interactions between CR assignment and subgroup membership were observed for BMI

(�33.3 kg/m2) and IL-6 (�2.5 mg/dL), while significant variance interactions were observed

for age (�65 years) and low gait speed (<1.0 m/s). Subgroups based on baseline BMI produced

enhanced gait speed effects for CR among the higher BMI subgroup compared to the lower

subgroup [CR benefit for BMI�median: +0.039 m/s (95% BCI: 0.016, 0.061) vs. CR benefit

Fig 1. Crude six-month mean (95% Bayesian Credible Interval) change in percent weight (A) and fast-paced gait speed (B) by caloric

restriction assignment group.

https://doi.org/10.1371/journal.pone.0267779.g001
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Table 3. Subgroup mean and standard deviation estimates in gait speed change, presented by treatment group and after fitting an interaction term.

Δ Gait Speed Mean Estimates (95% Bayesian Credible Interval)c Δ Gait Speed Standard Deviation Estimates (95% Bayesian Credible

Interval)d

NoCR CR CR–NoCR Interaction NoCR CR CR–NoCR Interactionb

Age

<65 years 0.067 (-0.002,

0.136)

0.081 (0.010,

0.149)�
0.014 (-0.016,

0.043)

0.011 (-0.024,

0.046)

0.128 (0.115,

0.143)�
0.158 (0.143,

0.174)�
0.029 (0.009,

0.050)�
-0.557 (-0.900,

-0.221)�

�65 years 0.041 (-0.027,

0.107)

0.065 (-0.002,

0.131)

0.024 (0.005,

0.044)�
0.147 (0.137,

0.159)�
0.137 (0.129,

0.146)�
-0.010 (-0.024,

0.003)

Sex

Male 0.086 (0.014,

0.155)�
0.090 (0.020,

0.159)�
0.004 (-0.028,

0.037)

0.026 (-0.011,

0.063)

0.156 (0.141,

0.173)�
0.159 (0.145,

0.175)�
0.003 (-0.018,

0.025)

0.021 (-0.314,

0.352)

Female 0.031 (-0.038,

0.097)

0.061 (-0.008,

0.127)

0.030 (0.012,

0.048)�
0.131 (0.123,

0.141)�
0.136 (0.128,

0.144)�
0.004 (-0.008,

0.017)

Race

White 0.056 (-0.014,

0.124)

0.071 (0.001,

0.138)�
0.015 (-0.004,

0.033)

0.032 (-0.005,

0.069)

0.143 (0.134,

0.153)�
0.147 (0.138,

0.156)�
0.004 (-0.010,

0.016)

-0.025 (-0.422,

0.364)

Black 0.011 (-0.062,

0.081)

0.058 (-0.013,

0.128)

0.047 (0.015,

0.079)�
0.129 (0.113,

0.148)�
0.130 (0.116,

0.146)�
0.002 (-0.022,

0.024)

Cardiovascular Disease

No 0.049 (-0.021,

0.118)

0.069 (-0.000,

0.138)

0.020 (0.004,

0.037)�
0.018 (-0.054,

0.090)

0.142 (0.134,

0.151)�
0.144 (0.136,

0.152)�
0.002 (-0.009,

0.014)

-0.424 (-1.258,

0.356)

Yes 0.016 (-0.074,

0.104)

0.055 (-0.026,

0.135)

0.039 (-0.032,

0.109)

0.143 (0.109,

0.194)�
0.117 (0.091,

0.151)�
-0.026 (-0.084,

0.024)

Diabetes

No 0.052 (-0.017,

0.120)

0.068 (-0.001,

0.134)

0.016 (-0.002,

0.033)

0.036 (-0.014,

0.084)

0.140 (0.131,

0.149)�
0.140 (0.132,

0.148)�
0.000 (-0.012,

0.012)

0.190 (-0.259,

0.655)

Yes 0.021 (-0.054,

0.093)

0.072 (-0.003,

0.146)

0.051 (0.005,

0.097)�
0.148 (0.128,

0.173)�
0.164 (0.142,

0.190)�
0.015 (-0.017,

0.049)

Body Mass Index (using median split: 33.3 kg/2)

<median BMI 0.067 (-0.002,

0.135)

0.071 (0.002,

0.138)�
0.004 (-0.018,

0.027)

0.034 (0.003,

0.066)�
0.144 (0.133,

0.156)�
0.146 (0.135,

0.157)�
0.002 (-0.014,

0.018)

0.037 (-0.271,

0.343)

�median BMI 0.028 (-0.040,

0.096)

0.067 (-0.000,

0.134)

0.039 (0.016,

0.061)�
0.137 (0.126,

0.149)�
0.141 (0.131,

0.152)�
0.004 (-0.011,

0.020)

Percent Fat Mass (using sex-specific median split: male = 32.1%, female = 44.5%

<Sex-specific

median

0.073 (-0.020,

0.165)

0.097 (0.004,

0.187)�
0.024 (-0.003,

0.051)

-0.001 (-0.039,

0.036)

0.143 (0.130,

0.159)�
0.142 (0.130,

0.155)�
-0.002 (-0.021,

0.017)

-0.120 (-0.493,

0.263)

�Sex-specific

median

0.054 (-0.039,

0.145)

0.077 (-0.016,

0.167)

0.023 (-0.003,

0.050)

0.143 (0.130,

0.159)�
0.133 (0.123,

0.146)�
-0.010 (-0.028,

0.009)

Interleukin-6

<2.5 pg/mL 0.068 (-0.005,

0.140)

0.068 (-0.006,

0.139)

-0.001 (-0.025,

0.024)

0.041 (0.009,

0.073)�
0.142 (0.130,

0.154)�
0.153 (0.142,

0.166)�
0.012 (-0.005,

0.029)

-0.212 (-0.527,

0.109)

�2.5 pg/mL 0.029 (-0.043,

0.100)

0.069 (-0.003,

0.140)

0.041 (0.019,

0.062)�
0.137 (0.127,

0.149)�
0.134 (0.125,

0.144)�
-0.004 (-0.019,

0.011)

C-Reactive Protein

<3.0 mg/L 0.035 (-0.036,

0.105)

0.064 (-0.006,

0.134)

0.029 (0.009,

0.049)�
-0.018 (-0.052,

0.015)

0.137 (0.127,

0.148)�
0.132 (0.124,

0.142)�
-0.005 (-0.019,

0.009)

0.246 (-0.084,

0.572)

�3.0 mg/L 0.065 (-0.007,

0.135)

0.076 (0.005,

0.147)�
0.011 (-0.016,

0.038)

0.144 (0.131,

0.159)�
0.157 (0.145,

0.172)�
0.013 (-0.006,

0.033)

Baseline Fast Paced Gait Speeda

�1.0 m/s 0.041 (-0.023,

0.104)

0.062 (-0.002,

0.124)

0.021 (0.004,

0.038)�
0.014 (-0.044,

0.071)

0.137 (0.128,

0.146)�
0.146 (0.139,

0.155)�
0.010 (-0.002,

0.022)

-0.530 (-1.018,

-0.062)�

(Continued)
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for BMI<median: +0.004 m/s (95% BCI: -0.018, 0.027)], and participants with higher baseline

IL-6 similarly experienced enhanced gait speed benefit from CR compared to the lower IL-6

subgroup [CR benefit for IL-6�2.5 pg/mL: +0.041 m/s (95% BCI: 0.019, 0.62) vs. CR benefit

for IL-6 <2.5 pg/mL: -0.001 m/s (95% BCI: -0.025, 0.024)]. Similarly, the subgroups of age and

gait speed are associated with differences in standard deviations, with CR inducing increased

variability among younger (<65 years) participants [CR vs. NoCR: +0.029 m/s (95% BCI:

0.009, 0.050)] vs. older (�65 years) participants [CR vs. NoCR: -0.010 m/s (95% BCI: -0.024,

0.003)]; and reduced variability among lower baseline gait speed (<1.0 m/s) participants [CR

vs. NoCR: -0.034 m/s (95% BCI: -0.075, 0.004)] compared to higher gait speed (�1.0 m/s) par-

ticipants [CR vs. NoCR: 0.010 m/s (95% BCI: -0.002, 0.022)]. Similar effects for the means

were observed when modeling BMI and log IL-6 as continuous variables, where the added

benefit of CR persisted with higher BMI and log IL-6 values; furthermore, the baseline gait

speed interaction with CR persisted for the standard deviations using continuous baseline gait

speed but not for continuous age (S2 Table).

A significant interaction for mean gait speed change was observed between random assign-

ment to exercise and CR [+0.037 m/s (95% BCI: 0.004, 0.070)]. As illustrated in Fig 2, partici-

pants who were not assigned to exercise had no difference in gait speed change according to

CR assignment [-0.000 m/s (95% BCI: -0.026, 0.026)], but participants assigned to exercise

plus CR had an added gait speed benefit compared to exercise plus NoCR [+0.037 m/s (95%

BCI: 0.016, 0.057)]. Furthermore, exercise and CR significantly interact with regard to the

standard deviations [-0.458 m/s (95% BCI: -0.783, -0.138)], leading to an increased SD attrib-

utable to CR among participants not assigned to exercise [+0.018 m/s (95% BCI: 0.002, 0.034)]

but a non-significant reduction in the standard deviation among CR participants assigned to

exercise [-0.012 m/s (95% BCI: -0.026, 0.003)].

Discussion

The purpose of this study was to develop an approach to quantify the magnitude and predic-

tors of variability in treatment response, specifically focusing on the clinical conundrum of

physical function response to CR among older adults with obesity. Overall, we found that

mean gait speed modestly and uniformly increased with CR (+0.02 m/s, compared to NoCR),

which was largely driven by the CR-exercise interaction. The combination of CR and exercise

Table 3. (Continued)

Δ Gait Speed Mean Estimates (95% Bayesian Credible Interval)c Δ Gait Speed Standard Deviation Estimates (95% Bayesian Credible

Interval)d

NoCR CR CR–NoCR Interaction NoCR CR CR–NoCR Interactionb

<1.0 m/s 0.101 (0.025,

0.175)�
0.136 (0.064,

0.205)�
0.035 (-0.019,

0.090)

0.189 (0.161,

0.223)�
0.155 (0.134,

0.181)�
-0.034 (-0.075,

0.004)

Abbreviations: NoCR: Non-caloric restriction arms; CR: Caloric restriction arms; kg: kilogram; m: meter; pg: picogram; mL: milliliter; mg: milligram: L: liter; s: second.

�Denotes statistically significant (p<0.05).
aBaseline gait speed subgroup model was not additionally adjusted for baseline gait speed.
bInteraction term presented in log-adjusted scale.
cMeans (95% BCI) estimated from Model (2M) of statistical analysis section. NoCR estimates correspond to β0 (row 1) and β0+β2 (row 2), CR estimates correspond to

β0+β1 (row 1) and β0+β1+β3 (row 2), CR—NoCR correspond to β1 (row 1) and β1+β3+β2 (row 2). Interaction estimates correspond to β3.
dStandard deviations (95% BCI) estimated from Model (2V) of statistical analysis section. NoCR estimates correspond to exp(ϕ0) (row 1) and exp(ϕ0+ϕ2) (row 2), CR

estimates correspond to exp(ϕ0+ϕ1) (row 1) and exp(ϕ0+ϕ1+ϕ3) (row 2), CR—NoCR correspond to exp(ϕ1) (row 1) and exp(ϕ1+ϕ3−ϕ2) (row 2). Interaction estimates

correspond to ϕ3 (log-adjusted scale).

https://doi.org/10.1371/journal.pone.0267779.t003
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had a significantly stronger and more consistent effect on mean gait speed change (+0.04 m/s)

than exercise alone, and exercise had an interaction effect on CR treatment response variabil-

ity. Additionally, those with a high BMI and elevated IL-6 experienced enhanced gait speed

improvement in response to CR, while CR-subgroup interactions in gait speed variance were

observed in age and low gait speed subgroups. Results of this study provide a statistical frame-

work for examining inter-individual variability in treatment response and highlight a situation

where identification of specific phenotypic characteristics (i.e., within this specific scientific

domain: high BMI, and high IL-6) may help guide clinical decision making.

Consideration of inter-individual variability in treatment response, while often ignored in

clinical trials, can offer insight into maximizing treatment efficacy. Indeed, previous clinical

studies examining response variability have reported considerable treatment effect heterogene-

ity across various fields, such as exercise [6, 7] pharmaceuticals [4, 5] and dietary supplements

[8, 9]. Within the field of geriatric weight management, our results suggest that older adults

presenting with elevated BMI or inflammatory burden are more likely see CR-associated

improvement in physical function in comparison to lower BMI/inflammatory burden coun-

terparts. This finding is likely explained by the inflammatory nature of adipose tissue [37] and

its association with impaired muscle fiber contractility [38]. Indeed, mobility impairment in

older adults is associated with high BMI [39] and/or IL-6 [33] both of which can be reduced

with CR [40]. Our observation that exercise paired with CR results in greater improvement in

gait speed response as compared to CR alone, while notable, is not necessarily surprising. As

structured exercise yields well-recognized improvement in muscle coordination and strength

—even among older, sedentary adults [41, 42]—the combination of CR with exercise would be

expected to further improve gait speed. What is surprising, however, is that CR plus exercise

yields markedly and uniformly greater improvement in gait speed change (i.e. +0.04 m/s)

Fig 2. Effect of exercise subgroup membership on change in fast-paced gait speed mean (A) and variance (B) heterogeneity in response to caloric

restriction. Presented as model-adjusted parameter means and 95% Bayesian Credible Intervals.

https://doi.org/10.1371/journal.pone.0267779.g002
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versus exercise alone, and that CR alone had the same effect as the control condition (NoCR,

no exercise) on gait speed change. These findings emphasize the need to combine therapies in

order to maximize functional benefit and also temper the concern that CR alone (and presum-

ably associated muscle loss [43]) exacerbates functional decline in older adults.

Findings surrounding variance interactions for exercise, age, and baseline gait speed indi-

cate that CR can have significantly different effects on gait speed variability, which in the case

of age and baseline speed may occur in the absence of a significant subgroup by treatment

mean interaction. This observation is important to note, as exploration of subgroup effects for

heterogeneous response in the absence of differential treatment effects on standard deviations

has been criticized [14]; yet, our findings suggest there may be meaningful knowledge to be

gained. For example, a situation could exist where differential achievement of clinically mean-

ingful gait speed change (i.e.�0.05 m/s [44]) could occur within subgroups in the absence of a

significant treatment difference in variances if the intervention induces different variability

within subgroups. Furthermore, failure to quantify inter-individual variability in clinical trials

may result in subgroups that experience a beneficial or negative treatment effect that differs

from the overall study effect.

Future trials that use observed variability estimates without taking subgroups into account

can yield biased and inaccurate power estimates. For an example from these analyses, a hypo-

thetical trial of CR among women could use estimates from Table 3 to identify that the stan-

dard deviation of gait speed change among women is roughly comparable by randomization

group (0.133 m/s), but this estimate is lower than the overall (men and women) standard devi-

ation of change (0.142 m/s). A future trial using this information would require 110 observa-

tions per group rather than 128 per group for a 0.05 m/s difference using a two-sample t-test

with 80% power, which could help improve study efficiency and decrease the budget. Collec-

tively, these observations underscore the importance of testing for differences in variances

(across treatment arms and within subgroups) when possible, to enhance the utility of clinical

trial findings.

Strengths of this study include the uniquely large sample achieved by pooling individual

level data from RCTs with similar major design elements and standardized protocols collecting

gait speed data (including training/certification of functional assessors and use of standardized

script language). In addition, heterogeneity among design aspects of the trials can be acknowl-

edged as a limitation, particularly among differing CR targets and entry criteria, but it also

broadens the generalizability of our findings and protects against over-interpretation of idio-

syncratic results from any single study. Our subgroup analysis featured dichotomized and con-

tinuous predictors, with categorization based on medians to maximize power (BMI, body fat

percentage) or empirical evidence (IL-6, CRP, gait speed). Although dichotomization of con-

tinuous variables is commonly criticized in the biostatistical literature [45], it is reassuring that

we observed similar results using continuous linear predictors for both means and variances,

with the sole exception of age. The use of studies performed at a single site could potentially

limit the generalizability of the results due to circumstances and participants unique to the

Winston-Salem area. Additionally, some individuals were participants in multiple trials; this

could affect the assumption of independence between a small proportion of observations.

Finally, while exercise assignment was shown to have heterogeneous effects with CR, unfortu-

nately this analysis does not allow for consideration of exercise prescription characteristics,

including frequency, intensity, type, and duration. We encourage future research efforts to

confirm and extend this finding.
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Conclusions

In conclusion, this study examined gait speed response from CR and exercise trials among

older adults and found uniformly increased gait speed with CR compared to NoCR, which was

largely driven by exercise. Results also suggest that exercise combined with CR yields addi-

tional gait speed benefit for older adults compared with exercise alone, and that older adults

with high baseline BMI and IL-6 are likely to experience enhanced gait speed change with CR.

Furthermore, exercise treatment assignment as well as membership in age or baseline gait

speed subgroups can yield differences in gait speed change variances. Our modeling approach

provides a framework to detect novel sources of mean and variance response heterogeneity

due to treatment interactions with covariates, while also creating an avenue for exploring het-

erogeneity in factorial design studies. We implore future clinical trials to consider mean and

variance treatment response heterogeneity as a part of a pre-specified analytic strategy, when

possible.

Supporting information

S1 Table. Inclusion and exclusion criteria for each randomized controlled trial included in

the pooled analysis.

(DOCX)

S2 Table. Effects of WL and continuous characteristics on means and SDs.

(DOCX)

Acknowledgments

The authors are grateful to the two referees and the editor for their helpful comments and

suggestions.

Author Contributions

Conceptualization: Daniel P. Beavers, Stephen B. Kritchevsky, Kristen M. Beavers.

Data curation: Daniel P. Beavers, Dalane W. Kitzman, Stephen B. Kritchevsky, Stephen P.

Messier, Rebecca H. Neiberg, Barbara J. Nicklas, W. Jack Rejeski, Kristen M. Beavers.

Formal analysis: Daniel P. Beavers.

Funding acquisition: Daniel P. Beavers, Kristen M. Beavers.

Methodology: Daniel P. Beavers.

Project administration: Daniel P. Beavers, Kristen M. Beavers.

Supervision: Daniel P. Beavers, Stephen B. Kritchevsky.

Visualization: Daniel P. Beavers, Katherine L. Hsieh, Kristen M. Beavers.

Writing – original draft: Daniel P. Beavers, Katherine L. Hsieh, Kristen M. Beavers.

Writing – review & editing: Daniel P. Beavers, Katherine L. Hsieh, Dalane W. Kitzman, Ste-

phen B. Kritchevsky, Stephen P. Messier, Rebecca H. Neiberg, Barbara J. Nicklas, W. Jack

Rejeski, Kristen M. Beavers.

References
1. Clayton JA, Arnegard ME. Taking cardiology clinical trials to the next level: A call to action. Clin Cardiol.

2018; 41(2):179–84. https://doi.org/10.1002/clc.22907 PMID: 29480590

PLOS ONE Heterogeneity of obesity treatment response

PLOS ONE | https://doi.org/10.1371/journal.pone.0267779 May 5, 2022 12 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0267779.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0267779.s002
https://doi.org/10.1002/clc.22907
http://www.ncbi.nlm.nih.gov/pubmed/29480590
https://doi.org/10.1371/journal.pone.0267779


2. Taylor AL, Wright JT Jr, Cooper RS, et al. Importance of race/ethnicity in clinical trials: Lessons from the

african-american heart failure trial (a-heft), the african-american study of kidney disease and hyperten-

sion (aask), and the antihypertensive and lipid-lowering treatment to prevent heart attack trial (allhat).

Circulation. 2005; 112(23):3654. https://doi.org/10.1161/CIRCULATIONAHA.105.540443 PMID:

16330707

3. Khoury MJ, Iademarco MF, Riley WT. Precision public health for the era of precision medicine. Am J

Prev Med. 2016; 50(3):398–401. https://doi.org/10.1016/j.amepre.2015.08.031 PMID: 26547538

4. Pai MP, Neely M, Rodvold KA, Lodise TP. Innovative approaches to optimizing the delivery of vancomy-

cin in individual patients. Adv Drug Deliv Rev. 2014; 77:50–7. https://doi.org/10.1016/j.addr.2014.05.

016 PMID: 24910345

5. Chen L, Manautou JE, Rasmussen TP, Zhong XB. Development of precision medicine approaches

based on inter-individual variability of bcrp/abcg2. Acta Pharm Sin B. 2019; 9(4):659–74. https://doi.org/

10.1016/j.apsb.2019.01.007 PMID: 31384528

6. Ross R, Goodpaster BH, Koch LG, et al. Precision exercise medicine: Understanding exercise

response variability. Br J Sports Med. 2019; 53(18):1141–53. https://doi.org/10.1136/bjsports-2018-

100328 PMID: 30862704

7. Whipple MO, Schorr EN, Talley KMC, Lindquist R, Bronas UG, Treat-Jacobson D. Variability in individ-

ual response to aerobic exercise interventions among older adults. J Aging Phys Act. 2018; 26(4):655.

https://doi.org/10.1123/japa.2017-0054 PMID: 28952853
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