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Abstract: The pathological aggregation of the presynaptic protein α-synuclein (α-syn) and propa-
gation through synaptically coupled neuroanatomical tracts is increasingly thought to underlie the
pathophysiological progression of Parkinson’s disease (PD) and related synucleinopathies. Although
the precise molecular mechanisms responsible for the spreading of pathological α-syn accumulation
in the CNS are not fully understood, growing evidence suggests that de novo α-syn misfolding
and/or neuronal internalization of aggregated α-syn facilitates conformational templating of en-
dogenous α-syn monomers in a mechanism reminiscent of prions. A refined understanding of the
biochemical and cellular factors mediating the pathological neuron-to-neuron propagation of mis-
folded α-syn will potentially elucidate the etiology of PD and unravel novel targets for therapeutic
intervention. Here, we discuss recent developments on the hypothesis regarding trans-synaptic
propagation of α-syn pathology in the context of neuronal vulnerability and highlight the potential
utility of novel experimental models of synucleinopathies.
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1. Introduction

Parkinson’s disease (PD) is a major neurodegenerative disease causing progressive
motor disability in individuals over 55–60 years of age and affects both genders with a
slight male preponderance [1–3]. Clinical PD is defined by the cardinal signs of TRAP
(resting Tremor, Rigidity, Akinesia/bradykinesia and Postural/gait instability) [4], which
respond to L-dopa therapy (especially tremor and rigidity) [1,2]. The etiology of PD-
like motor disability, termed parkinsonism, is predominantly of idiopathic nature, but
can also be observed in other neurological conditions (e.g., post-encephalitis, repetitive
traumatic brain injury, progressive supranuclear palsy) [5]. Moreover, the clinical pre-
sentation of idiopathic PD can also be heterogeneous and is further sub-classified into
additional variants (e.g., tremor dominant, akinetic-rigid, early disease onset or mixed)
with distinct responses to the existing therapeutic modalities [6–8]. Lastly, long-standing
PD invariably results in cognitive decline and dementia in as many as 30–40% of the cases,
especially in patients with the late-onset disease [1,2]. However, it is becoming increasingly
evident that PD has a long (15–20 years) prodromal phase during which the affected indi-
viduals experience non-motor symptoms, particularly anosmia, autonomic dysfunction,
constipation and REM sleep behavior disorder (RBD) [9,10]. In the backdrop of clinical
scenarios, the neuropathological diagnosis of PD requires two features: (i) depigmenta-
tion/demelanization of the substantia nigra-pars compacta (SNpc) due to the pathological
loss of dopaminergic neurons and (ii) the presence of Lewy related α-synuclein (α-syn;
gene symbol SNCA/PARK1) pathology (LRP), e.g., Lewy bodies (LBs) and Lewy neurites
(LNs), across several brain regions, primarily in the brainstem nuclei [1,11,12]. A detailed
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overview of PD neuropathology is beyond the scope of this review and can be accessed
elsewhere [5,11]. However, it suffices to mention that aggregation and deposition of α-syn
in the CNS, either due to genetic predisposition and/or the presence of factors in the local
microenvironment that are conducive to α-syn aggregation (i.e., impaired redox home-
ostasis, ionic imbalance and neuroinflammation [13–15]), contribute to the proteopathic
stress with detrimental consequences for the neuronal function and/or survival [16,17].
Hence, currently prevailing consensus maintains that PD is the result of chronical loss of
dopaminergic neurons in SNpc, which culminates with dysregulated modulatory innerva-
tions into the striatum and resultant dysfunction of the nigro-striatal-cortical circuitry in
the basal ganglia [1,2,11]. However, post-mortem studies in pathologically diagnosed PD
show that a variable degree of LRP is also found in several extra-nigral locations (nuclei)
in the brainstem, including the dorsal motor nucleus of vagus-dmX and intermediate
reticular zone in the caudal brainstem, and more rostrally in the gigantocellular reticular
nucleus (GRN), locus coeruleus (LC) and subcoeruleus complex, raphe nuclei, the tractus
solitarius, SNpc, the pedunculopontine nucleus-PPN and the ventral tegmental area [18,19].
In late-stage PD, localized LRP has also been detected in distinct nuclei of the basal fore-
brain, thalamus, hypothalamus, the olfactory and basolateral portions of the amygdala, the
anterior olfactory nucleus, CA2 of the hippocampus, as well as the insular, cingulate and
prefrontal cortices [11,20]. These observations suggest that, although not unique to PD, the
distribution of LRP in PD is not random and exhibits a predilection for distinct neuronal
populations and their connectivity [11,18,21,22]. Accordingly, recent opinions have sought
to reconcile the symptomatology of PD with the known aspects of α-syn LRP, especially
the pattern(s) of LRP initiation and propagation in the nervous system and the consequent
dysfunction in affected neuronal populations [9,20,23].

2. α-Syn Aggregation and Cytotoxicity

α-Syn is a 140-amino-acid cytoplasmic protein that is mostly found within presynaptic
nerve terminals and is involved in the assembly of the SNARE complexes [24,25]. α-Syn
contains an amphipathic lysine-rich N-terminal region, which plays a crucial role in lipid-
binding [26], and an acidic carboxyl-terminal region, which is enriched with acid residues
and that has been implicated in the protein’s chaperone-like activity [27]. The central
domain of α-syn is known as the non-amyloid-component (NAC) (61–95) and contains a
highly hydrophobic motif, essential for α-syn aggregation [28]. Burgeoning genetic and
neuropathological evidence suggests that the abnormal aggregation of monomeric α-syn
into intracellular insoluble protein inclusions in the brain (e.g., LBs and LNs) plays a key
role in the development of several adult-onset neurodegenerative diseases, including PD,
Multiple System Atrophy (MSA) and Dementia with Lewy Bodies (DLB), all collectively
known as synucleinopathies. LBs are spherical cytoplasmic inclusions, which are 5–25 µm
in diameter, and mainly composed of aggregated α-syn, with a dense eosinophilic core
surrounded by aggregated α-syn brighter halo [29]. Several point mutations (A30P, E46K,
H50Q, G51D or A53T) within the SNCA, as well as duplication and triplication of SNCA,
are closely associated with rare early-onset familial PD and DLB cases, demonstrating an
unequivocal connection between α-syn and neurological disease [30–33]. Nevertheless,
with the exception of the aforementioned rare familial forms, the great majority of PD
cases are sporadic, suggesting that PD etiology is most likely multifactorial, involving
a complex interplay between aging, genetic susceptibility and environmental factors [1].
Therefore, understanding the earliest physiological to pathological events underlying α-
syn misfolding and abnormal aggregation is of utmost importance, since they provide
opportunities for therapeutical intervention.

Despite recent advances, the nature of precise native conformation of α-syn under
physiological conditions remains elusive. However, it is widely accepted that α-syn pri-
marily occurs as an intrinsically disordered monomer in the cytosol [34], with few tertiary
interactions between the C-terminus and the central hydrophobic NAC region and the
N-terminus of the protein [35,36]. A wide variety of conditions have been found to induce
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α-syn misfolding and aggregation in vitro, including acidic pH [37,38], increased tempera-
ture [37], molecular crowding [39], divalent and trivalent metal ions such as aluminum, cop-
per(II), iron(III), cobalt(III) and manganese(II) [40], organic solvents [41], lipids with high
solubility in aqueous solution and short hydrocarbon chains [42], heparin and other gly-
cosaminoglycans [43], polycations [44], pesticides [45] and α-syn binding proteins [46–48].
In addition, α-syn can undergo extensive post—translational modifications (PTMs) that
are known to modulate its neurotoxicity and its propensity to aggregate, including phos-
phorylation [49–52], ubiquitination [53,54], nitration [55,56], sumoylation [57,58], trunca-
tion [59,60] and N–terminal acetylation [61,62]. Among the PTMs, approximately 90% of
the α-syn aggregates present in LBs are phosphorylated on the serine residue-129 (p-S129),
hence S129 hyperphosphorylation of α-syn has been widely regarded as a pathological
hallmark of PD and related synucleinopathies [63]. Whether the disease-associated α-
syn phosphorylation stimulates or hampers α-syn aggregation, and its neurotoxicity in a
pathophysiological context, remain debatable [64,65]. Resembling other aggregation-prone
proteins, α-syn self-assembly exhibits a sigmoidal profile in biochemical assays measuring
protein aggregation [66–71]. The formation of α-syn fibrils typically follows a nucleation-
dependent mechanism, consisting of an initial lag phase, followed by a growth phase of
elongation and a plateau phase of fibril maturation [72,73]. The oligomeric aggregates
can be structurally categorized according to their size and shape, and functionally classi-
fied as on-pathway and off-pathway, depending on whether they evolve to form mature
amyloid fibrils or, alternatively, result in amorphous, non-fibrillar assemblies [74,75]. More-
over, whether low molecular weight α-syn oligomers, rather than mature fibrils, are the
most toxic entities underlying α-syn toxicity remains uncertain. In this regard, a robust
dopaminergic loss in the substantia nigra in transgenic animals expressing α-syn variants
that form ring/pore-like oligomers has been reported (i.e., E57K and E35K), whereas the
α-syn variants that rapidly form fibrils were found to be comparatively less toxic in these
experiments [76]. Of note, this study was based on an ectopic lentivirus expressing system,
thus, partly limited by the fact that α-syn is overexpressed locally. It is plausible that the
fibril forming variants can be actively recruited by LBs into aggresome-like structures,
and prevent their abnormal interactions with other cytoplasmic proteins and deleterious
effects on the function of cellular organelles [77,78]. A supporting role of oligomeric α-syn
neurotoxicity is also suggested by immunotherapy using antibodies targeting oligomeric
α-syn, which rescued motor dysfunction in a PD transgenic mouse model [79]. In line
with these observations, increased levels of soluble α-syn oligomers have been detected
in brain and cerebrospinal fluid (CSF) of patients with LB pathology compared to healthy
age-matched controls [80–83].

Compounding evidence in animal models and cell cultures, including neuronal cul-
tures, implicate a pathogenic role of pathological α-syn aggregation in triggering detrimen-
tal effects on the synaptic function, purportedly via calcium dyshomeostasis, mitochondrial
impairment, endoplasmic reticulum (ER) stress, defective autophagy, neuroinflammation
and oxidative stress [15,17,84]. It has also been suggested that α-syn aggregation in the
presynaptic terminals and sequestration into the inclusions affects the assembly of SNARE
complexes, thus decreasing the efficiency of dopamine release [85]. Moreover, several
synaptic proteins and neurotransmitter receptors (e.g., NMDA glutamate receptors) have
been identified as putative interaction partners of α-syn, and these aspects have been
reviewed elsewhere [86,87].

3. α-Syn Cell-to-Cell Propagation

Prions are infectious agents in which the conformationally altered protein PrPSc re-
cruits and corrupts its normal counterpart PrPC generating self-propagating misfolded
species, which can spread from cell-to-cell [88]. In recent years, it has been demonstrated
that several amyloid-forming proteins possibly share an analogous prion-like spreading
mechanism, including α-syn [89,90], β-amyloid [91,92], tau [93,94] and Huntingtin [95,96].
Accordingly to the Braak model, PD neuropathological staging follows a highly stereo-
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typical and spatiotemporal progression for the Lewy pathology, suggesting propagation
of misfolded α-syn through vulnerable neuroanatomically connected pathways (elabo-
rated below under Section 4) [18]. Initial evidence supporting a prion-like propagation
of α-syn came from the observation of α-syn aggregation in grafted fetal mesencephalic
progenitor neurons several years after transplantation, and implied host-to-graft Lewy
pathology transmission [97,98]. Since then, accumulating evidence has shown that α-syn
seeds formed from recombinant proteins or aggregate-containing lysates from diseased
brains can propagate following the prion-like paradigm in neuronal cells, in organotypic
slice cultures and in rodent models of PD [48,89,90,99–106].

Similar to PrPSc, α-syn can self-assemble into β-sheet-rich amyloid fibrils giving rise
to epidemiologically and histopathologically distinct neurodegenerative diseases. In PD
and DLB, widespread α-syn aggregation is observed not only in α-syn-expressing neuronal
populations (such as LBs and LNs) but also in neighbouring astroglial cells [107,108]. In
comparison, the neuropathology of MSA is principally characterized by α-syn aggregates
in the oligodendroglia as glial cytoplasmic inclusions (GCIs) and in instances of neuronal
nuclear inclusions in discrete brain regions (e.g., base of pons) [12]. In addition, α-syn
pathology is also observed in Alzheimer’s disease (AD) [109,110], and in about 20% of
neurologically normal elderly individuals as the incidental LB disease (iLBD) [111].

The detailed molecular pathways underlying α-syn exocytosis, the potential interac-
tion of α-syn with extracellular components and the conformational properties of released
α-syn in terms of aggregation state remain largely elusive. Misfolded α-syn seeds are
secreted from donor cells to the interstitial compartment as naked protein or in vesicles
(e.g., exosomes) [112–117]. Although the initial focus of this mechanistic research was
primarily in neurons, compounding evidence has shown that microglial exosomes may
significantly contribute to the progression of α-syn pathology, and potentially serve as a
therapeutic target for PD [118,119]. Once in the extracellular space, α-syn seeds have been
shown to be taken up by neighbouring cells in culture via several routes, including direct
penetration of the plasma membrane, fluid-phase or receptor-mediated endocytosis (e.g, via
lymphocyte-activation gene 3 in cultures of primary neurons) or fusion of plasma-exosomal
membranes [112–114,120,121]. In addition to the release and internalisation mechanisms,
tunnelling nanotubes that directly connect two adjacent cells have also been reported to
play a role in cell-to-cell transfer of pathological α-syn assemblies [122,123]. Once inside the
recipient cell, α-syn seeds purportedly undergo multiple PTMs (e.g., truncation, phospho-
rylation, ubiquitination), that facilitate interactions with endogenous α-syn monomers and
other cytosolic proteins, and further promote α-syn aggregation and propagation [112–114].
Therefore, potential therapeutic approaches to modulate these processes include antibodies
that specifically target the α-syn seeds or the cellular release and uptake machinery.

Lastly, the involvement of α-syn aggregates in several diseases that exhibit dissimilar
phenotypic traits, together with the fact that synthetic α-syn monomers can form poly-
morphs with distinct conformations and biological activities [124–127], has led to the recent
hypothesis that multiple α-syn strains may underlie the clinical heterogeneity observed in
synucleinopathies and other neurodegenerative diseases [48,128–130]. Indeed, α-syn inclu-
sions isolated from MSA brains have unique ultrastructural features that differ from those
of individuals with DLB [131,132]. Interestingly, it has been shown that oligodendrocytes,
but not neurons, phenoconvert LB-like α-syn fibrils into a GCI-like strain, highlighting
the fact that the oligodendroglial intracellular milieu determines how MSA-associated
α-syn strains are generated [130]. Supporting these findings, it has been found that sub-
stoichiometric concentrations of oligodendroglial protein p25α redirects α-syn aggregation
into a unique α-syn/p25α strain with a different structure and enhanced in vivo neurode-
generative properties [48]. Taken together, these observations highlight the importance of
both misfolded seeds and intracellular milieu in the formation of α-syn strains.
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4. α-Syn Propagation in the Clinical Pathology of PD: Models and Hypotheses

Although a single unifying hypothesis is still lacking, the prevailing viewpoints on
the pathogenic role of α-syn aggregation in PD mainly posit the following set of arguments:
(i) pathological α-syn aggregation is triggered in extra-nigral location(s), purportedly
in contact with the external environment, and subsequently propagates in the nervous
system following neural connectivity [18,133]; and (ii) the profound neurodegeneration of
neuronal populations (primarily SNpc) in PD reflects selective vulnerability to pathogenic
processes, including α-syn induced proteopathic stress [20,134]. Despite some differences,
largely due to the basis of the primary evidence, advances in investigative methodology
such as brain imaging and refinements in the experimental models will possibly reveal
some degree of overlap in these viewpoints. In the following sections, we will summarize
the salient features of these hypotheses and provide some perspectives on the significance
of extra-nigral α-syn LRP for PD.

4.1. ‘Dual-Hit’ Hypothesis

According to this hypothesis, pathological α-syn aggregation is initiated in peripheral
(i.e., extra-cerebral) locations such as olfactory epithelium and/or gut mucosa in response
to the exposure to environmental factors, presumably a neurotropic viral pathogen or
a toxin [135]. Based on post-mortem neuropathological assessment of LRP in PD and
iLBD, Braak and colleagues proposed that the α-syn LRP in PD develops in defined
spatiotemporal patterns (stages) and is possibly multifocal in origin. Briefly, in the ear-
liest phase (stage 1), LRP is detected in the dmX/IX and within few projections of the
medullary intermediate reticular zone, peripheral autonomic ganglia and spinal cord (and
anterior olfactory nucleus). Subsequently, there is a caudo-rostral propagation into the
pontine tegmentum (stage 2; GRN, LC and raphe magnus), midbrain (stage 3; SNpc),
basal forebrain and olfactory areas (stage 4) and eventually neocortical regions (stages
5–6) [18,133]. Given the observations that symptomatic PD usually indicates the loss of
30–70% of SNpc dopaminergic neurons in the ventrolateral tier of SNpc (and their striatal
terminals) [136–138], i.e., stage 3 of Braak scheme, this neuropathological scheme in its
simplest form arguably serves to categorize PD as presymptomatic (Braak stages 1–2), early
symptomatic (Braak stages 3–4) and late symptomatic (Braak stages 5–6) phases [20]. It
is noteworthy that not all PD cases, between 17% and 47%, show clinical correlation with
the distribution of LRP following this scheme [8,20,139]. For instance, in some studies
there was a remarkable lack of LRP in dmX despite significant involvement of higher
brainstem or cortical regions in up to 8% of the examined specimen [140]. Nevertheless,
these data show that pathological α-syn accumulation in the form of LRP preferentially
affects distinct neuronal populations/nuclei and that neuronal susceptibility to LRP accu-
mulation is possibly modulated by genetic factors [20,141]. Furthermore, non-physiological
α-syn deposition has also been reported in peripheral sites, presumably in the areas of
innervations of peripheral autonomic nerves [134,142].

In this mechanistic model of caudo-rostral α-syn neuroinvasion, the enteric nervous
system (ENS) of the gastrointestinal tract (GIT) and the associated autonomic ganglia have
been proposed as the putative sites of origin for α-syn aggregation in the periphery [133].
α-Syn aggregation induced dysfunction in the ENS has, in turn, been implicated in several
GIT related non-motor symptoms in PD (i.e., constipation) [143]. The neuropathological
findings that support the role of ‘gut-brain’ axis in PD have recently been discussed in
several review opinions [144–146] and some key aspects of this model are presented below.
Within the ENS, α-syn immunopositivity has been reported in the intramuscular myen-
teric and submucosal Meissner’s plexuses in the gastric, duodenal and colonic biopsies
during the prodromal stages of PD (i.e., in the absence of motor disability) [18,147,148],
as well as in patients with idiopathic rREM sleep behaviour disorder (iRBD), which is
present in as much as one-third of PD patients and considered a strong indicator of pro-
dromal PD [149]. In population-based studies, truncal vagotomy (i.e., division of the
anterior and posterior trunks proximal to the gastro-esophageal junction; used mainly
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in the treatment of complicated peptic ulcer disease) has been shown to reduce the risk
of developing PD by 40–50% after 5 years post-procedure [144,150,151]. Furthermore,
positron emission tomography (PET) studies using [11C]-donepzil, a surrogate marker
for assessing cholinergic parasympathetic gut innervation, show reduced signal in the
colon and small intestine during early-stage PD [152] and in the cohorts of subjects with
iRBD [153]. These observations reinforce the idea that, in a subset of PD cases, initial α-syn
pathology may originate within the ENS and subsequently involve autonomic ganglia
peripherally and dmX centrally. In support of this viewpoint, exogenous inoculation of PD
brain lysates or preformed fibrillar (PFF) α-syn into the GIT of wild type rats was followed
by the emergence of α-syn accumulation in ENS and subsequently in the dmX as early as
2–3 days post-inoculation [154]. Similarly, PFF α-syn inoculation in the gastric or intestinal
wall of C57BL/6 mice resulted in substantial α-syn phosphorylation (p-S129) in the dmX,
which was prevented by vagotomy prior to the PFF α-syn inoculation [146,155]. Although,
the spreading of α-syn inclusions beyond the dmX has not been consistently observed
in these experiments, their findings provide support for the notion that α-syn aggrega-
tion in ENS can spread centrally into the CNS, and mimics a pattern observed following
ectopic induction of α-syn expression in the vagus nerve of rodents using recombinant
adeno-associated viruses (rAAV). With regards to the factors that promote de novo α-syn
in the ENS, several mechanisms have been implicated including the altered composition
of gut microbiome in PD [156], chronic helicobacter pylori infection [157], disruption of
intestinal epithelial barrier due to bacterial and environmental toxins leading to a ‘leaky
gut’ [158,159] and potentially a pro-inflammatory milieu due to dysregulated immune
response in the GIT [160,161] (Figure 1).
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Figure 1. A schematic representation of hypothesized α-syn aggregation and spreading from the ENS
towards the CNS via vagus nerve. Environmental factors, including changes in the gut microbiota
(dysbiosis), are hypothesized to initiate pathological processes within the enteric nerve cell plexus,
provoking mucosal inflammation and oxidative stress and thereby inducing abnormal aggregation
of α-syn. Increased permeability of the intestinal barrier (‘leaky gut’) will ultimately provide a route
of transmission for the ENS-formed α-syn seeds into the brain. Structures are not drawn to scale.
The illustration was created in biorender.com (accessed on 3 August 2021).

However, it is worth mentioning that none of the neuropathological studies published
to date have identified isolated α-syn accumulation that is localized only to the gut compo-
nent of ENS and, in the absence of intracerebral LRP, that eventually progressed into clinical
PD [145]. Even if such cases of localized α-syn pathology in ENS do exist, their detection

biorender.com
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is a highly challenging task technically as the human GIT is 8–10 m long and rigorous
analyses would necessitate a large number of tissue sections. Furthermore, some studies
have also shown instances of α-syn immunodetection in the intestinal biopsy specimen
from neurologically normal individuals [162,163]. As in the case of intracerebral LRP in
iLBD [164], it remains unsettled if these individuals eventually will progress to develop a
Lewy body disorder or represent a population with an intact ENS function (as revealed by
the expression of ENS neurotransmitter molecules [163] that potentially compensates in
response to local α-syn aggregation.

Based on these findings, a significant development in the field has been to investigate
if α-syn misfolding and propagation in the nervous system occurs in a ‘prion-like’ fashion,
i.e., templating of endogenous physiological α-syn into misfolded conformers formed in
situ or received from a neuroanatomically connected location [23,165]. Due to the absence
of validated biomarkers that can be used in longitudinal studies and the absence of clinical
assessment that could reveal PD progression from non/early-symptomatic to symptomatic
stage, unequivocally demonstrating a causative role of LRP propagation with the disease
stage is certainly a daunting task [8,20]. Pivotal evidence in PD brain was provided by
the histological assessment of heterologous fetal transplants in striatum, which revealed
that some of the neurons developed LRP after approximately a decade [97,98]. The im-
plication that these observations indicate bona fide host-to-graft propagation has been
contested [134]. For instance, even at late stage PD, LRP in medulla remains largely con-
fined within specific cell populations and does not invade neighboring neurons, e.g., LRP
is usually found in dmX, intermediate reticular zone and raphe magnus, while the neigh-
boring nuclei are spared [166]. However, these findings emphasize the role of pre-existing
LRP in altering local microenvironment conducive to de novo LRP formation and/or
progression. In this regard, several studies in cellular and animal models support such
‘prionoid’ behavior of α-syn, i.e., trans-synaptic propagation and templating, although
fully recapitulating the spectrum of PD associated LRP combined with preferential loss of
SNpc dopaminergic neurons has been challenging [23,167–169]. Despite some limitations,
these animal models have been instrumental in elucidating that in vivo inoculation with
exogenous fibrillar α-syn, LRP containing human brain extracts or the overexpression of α-
syn via viral mediated somatic gene transfer induces the aggregation of endogenous α-syn
in recipient neurons (and glial cells) [23,90,101,170–173]. Such de novo induced aggregated
α-syn inclusions, in most instances, also contain markers of PD associated LRP, including
α-syn phosphorylation at serine residue 129 (p-S129) along with co-detection of ubiquitin
and/or the general inclusion marker p62 (sequestosome) protein [23,169]. Importantly, in
animal studies several groups have shown that intracerebral or peripherally induced α-syn
aggregation (including direct nerve injections) spreads into connected neuronatomical
tracts and the aggregation is also not random [101,102,174,175]. Nevertheless, widespread,
but circumscribed, LRP-like α-syn deposition in the CNS seems to be more pronouncedly
observed in models using fibrillar α-syn and less so using oligomeric α-syn or virally
induced α-syn overexpression models [20,23,169,171]. Overall, existing evidence suggests
that, in these experimental models, the initial phase of (arguably) trans-synaptic pathologi-
cal α-syn spreading occurs in a retrograde fashion, although the identification of factors
mediating and/or promoting α-syn cell-to-cell transfer remains an evolving field [23].

4.2. Selective Neuronal Vulnerability/Threshold Hypothesis

The basic tenet of this viewpoint is that certain neuronal populations, due to their in-
herent cellular and network properties, are more vulnerable to α-syn induced proteopathic
stress and susceptible to changes in the local microenvironment (e.g., neuroinflammation,
metabolic deficits) [20,134,176]. As suggested earlier, the pathogenic roles of misfolded
α-syn on mitochondrial function, autophagic flux and altered ion balance (e.g., calcium)
are very well studied in cell-based paradigms and have been supported by findings in
animal models of synucleinopathies [84,177]. Current opinion suggests that the neurons
typically affected by pathological α-syn accumulation are CNS projection neurons with
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thin, long unmyelinated or poorly myelinated axons, and with comparatively higher axonal
terminals (i.e., hyperbranching axons) [138,178]. In this regard, it has been estimated that a
single dopaminergic neuron makes up to a quarter million striatal synapses in the rat brain,
while in human brain the number of vesicle release sites can be 10-fold higher [20,179].
Several studies show that the neurodegenerative changes initially comprise the loss of
terminals, with subsequent swelling of neuronal soma and some degree of neuronophagia
by microglial cells [180–182]. In addition, the extensive hyperbranching places extra burden
on metabolic regulation, (e.g., to meet the demand for axonal transport) and compromises
scavenging capacity to mitigate oxidative stress (highlighted in Figure 2) [183–185].
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Figure 2. Schematic depiction of hypothesized α-syn neuron-to-neuron transmission and intracellu-
lar redox imbalance resulting in neurodegeneration. Under normal homeostatic conditions, neuronal
α-syn exists in soluble non-aggregated conformations and the anti-oxidant (AOX) scavenging mech-
anisms are at equilibrium with intracellular reactive oxygen species (ROS) generation. Misfolded
α-syn perturbs cellular redox balance in favor of excessive ROS, which is further aggravated by
additional susceptibility/risk factors (e.g., genetic risk factors and ageing) that promote pathological
α-syn aggregation and proteopathic stress [1,2]. Subsequently, cell-to-cell transmission of α-syn
seeds from the affected neurons (depicted as donor neuron) via the neuroanatomical projections onto
additional neuronal populations results in transmission of α-syn pathology into the recipient neurons.
In the receiving neuron, the newly internalized seeds recruit endogenous soluble α-syn and further
template a vicious cycle of α-syn aggregation and neurotoxicity. In established (i.e., long-term) α-syn
neuronal pathology, there is profound dysregulation of AOX/ROS balance which is associated with
loss of synaptic terminals and neuronal demise. The neuroglial cells modulate these processes by
providing trophic support (e.g., glia derived neurotrophic factor- GDNF) which serves to maintain
pro-survival local microenvironment [185–189]. However, relentless disease progression and ensuing
neurodegeneration are strong triggers for neuroinflammatory response. Structures are not drawn to
scale. The illustration was created in biorender.com (accessed on 3 August 2021).

Supporting this notion of impaired redox homeostasis, several immunohistochemical
studies have shown aberrant localization of redox regulating molecules in association with
LRP in PD SN, including nuclear factor erythroid 2-related factor 2 (NRF2/Nrf2) [186,187],
NRF2 inhibitor Kelch-like ECH-associated protein 1 (Keap1) [188], anti-oxidant heme oxy-
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genase (HO-1) [189] and anti-xenobiotic NAD(P)H quinone dehydrogenase 1 (NQO1) [190].
Moreover, the neuronal populations containing LRP in PD belong to diverse neurotransmit-
ter systems (dopamine, serotonin, noradrenaline and acetylcholine) [23], yet not all neurons
containing pathological α-syn inclusions show relentless neurodegeneration (e.g., tubero-
mamillary nucleus in hypothalamus [191]) as observed in the SNpc.

Moreover, in SNpc, the number of LRP/total α-syn immunopositive neurons does
not correlate with disease severity and is stable over time, with ~3.6% of the neurons
affected on average [192,193]. In contrast, dopamine transporter (DAT) density is reported
to be inversely correlated to the total α-syn in SN than LRP burden, arguably favoring
defective axonal transport [194,195]. Conversely, some brain regions exhibit variable loss
of neurons (e.g., supraoptic nucleus) in the relative absence of LRP [191]. Apart from
these structural/cytoarchitectural features discussed above, certain functional properties
have also been posited as factors that predispose neurons to α-syn induced neurotoxicity
(i.e., the threshold hypothesis) [134], which do not necessarily correlate with LRP burden in
PD. Electrophysiological measurements show that the SNpc dopaminergic neurons possess
slow, tonic and autonomic pacemaking activity characterized by broad spikes [196–198].
These neurons also exhibit a sustained opening of calcium cav1 channels, with large intra-
cellular Ca2+ oscillations and low intrinsic Ca2+ buffering [196,199–201]. The neighboring
dopaminergic neurons in VTA, which are less susceptible to neurodegeneration, also ex-
hibit autonomic pacemaking and broad spikes, but possess comparatively smaller cav1
currents and robust Ca2+ buffering predominantly mediated by calbindin [202,203]. One
drawback of the slow Ca2+ oscillations in SNpc dopaminergic neurons is the Ca2+ entry into
the mitochondria, which is needed to sustain ATP production with potential for creating
redox imbalance [204–206].

A second aspect is the functional reserve/resilience of neuronal populations and
network compensation under extrenuous demands [134]. In this regard, a common feature
of subcortical motor networks is their extensive connectivity and considerable redundancy
in the control of motor function [19]. Although we do not have a complete map of human
connectome, extrapolation of the known connectivity in the rodent nervous system reveals
extensive projections among the brainstem (SNpc, LC and reticular nuclei, including GRN
and PAG), striatum, pallidum, thalamus and cortical nuclei, which often are reciprocal [207].
Hence, the following can be argued: (i) Networks with high network threshold (i.e., re-
dundancy) are relatively less sensitive to major dysfunction, while networks with low
threshold exhibit impaired compensatory response [134]. This implies that comparatively
lower loss of neurons would lead to dysfunction in autonomic systems (i.e., due to the
LRP affection in autonomic ganglia and dmX/IX) and result in prodromal PD [9,10,142]
compared to the estimated 30–50% neuronal loss observed in SNpc prior to the emergence
of clinical motor disability [1,2,20]; and (ii) the network dysfunction in PD does not neces-
sarily correlate with the trans-synaptic LRP propagation [8,20,134]. For instance, not all
projection/reciprocal innervation regions of LC, which are considered the ‘hotspot’ of LRP
in early PD, develop robust LRP lesions, e.g., cerebellum and central nucleus of amygdale
are relatively spared [20,208].

Lastly, animal studies suggest that neuroinflammatory response of glial cells in re-
sponse to fibrillar α-syn and/or formation ofα-syn inclusion pathology in glial cells [107,108]
may also render the local microenvironment conducive to α-syn propagation and neuro-
toxicity [23,101,169,175]. Human post-mortem studies in synucleinopathies show variable
degrees of diffuse α-syn accumulation in the astroglial cells, which is morphologically
distinct from the compact neuronal LRP and lacks histological markers of LB pathology
(e.g., ubiquitin/p62 immunopositivity) [108]. Cultured astroglia readily internalize ex-
tracellular α-syn in vitro, either added exogenously to the culture medium or within the
conditioned media from α-syn expressing neuronal cells and in neuron-glia co-culture
experiments [108,209]. A substantial number of animal studies also support the view
of possible neuron-to-astroglia transmission of aggregated α-syn. For instance, trans-
genic mice overexpressing human α-syn (wild type or mutant A53T; under the PDGFβ



Int. J. Mol. Sci. 2021, 22, 8338 10 of 23

or mouse Prnp promoters, respectively) in neurons show glial accumulation of α-syn
aggregates, which appears at stages when neuronal α-syn inclusion pathology is clearly
established [209] or occurs significantly later, implicating neuron-to-astroglia transmis-
sion [101,175]. Moreover, inducible expression of the aggregation prone human mutant
A53T α-syn in astrocytes (under the astroglial GFAP promoter; GFAP-tTA/tetO-α-syn)
results in the loss of dopaminergic neurons and neuroinflammation, although it was not
clear if glia-to-neuron transmission of aggregated α-syn occurred since no histological data
on neuronal α-syn pathology were reported [210].

It is worthwhile to mention that neuronal loss in SNpc is associated with extracellular
release of neuromelanin, which is phagocytosed by glial cells and there is evidence for
melanin-induced microglial activation in early PD and in the rat SN [180,181,211]. Although
this implies that the neuroinflammatory processes are contributors to the disease, some
recent reports indicate that activated microglia may also be a source of neurotrophic factors
and play a neuroprotective role (Figure 2) [180,212].

5. Future Prospects and Opportunities

Apart from the rare forms of familial PD, idiopathic PD runs a protracted course over
15–20 years. With an average number of ~3.6% SNpc neurons affected by LRP, and an
estimated lifespan of ~6.2 months in neurons bearing pathological α-syn inclusions before
demise, the observed loss of neurons in SNpc at the time of clinical presentation seems to
support a relentless course driven by α-syn aggregation in the CNS [192,213]. As more
evidence becomes available, i.e., brain imaging, biomarkers in biological fluids or digital
tools in clinical practice, it is likely that the two viewpoints discussed above (i.e., Dual-hit
hypothesis and Neuronal vulnerability hypothesis) may not be as irreconcilable and could
potentially guide a refined understanding of the etiology and symptomatology of PD,
especially with respect to the prodromal non-motor symptoms [10]. In this regard, the
roles of co-existing neuropathologies and the involvement of white matter in PD are often
overlooked [214]. For instance, deposition of tau has been observed in association with LRP,
particularly in neurons of LC, basal forebrain and amygdala, and recent studies indicate
that tauopathy in PD preferentially affects the nigrostrial neurons than compared with
global tauopathy of the Alzheimer type [215–217]. Moreover, some clinical features of PD
(i.e., rigidity and gait apraxia) in the absence of resting tremor are also seen in rare move-
ment disorders such as progressive supranuclear palsy and corticobasal degeneration [5].
In these disorders, tauopathy affects the basal ganglia and brainstem nuclei, including the
SN [5,218]. The akinetic-rigid PD, which is diagnosed in ~50% of patients, preferentially af-
fects the elderly (in contrast to the tremor dominant, which has a younger age of onset), and
is frequently associated with cognitive declinesimilar to the age related tauopathies [5,7].
These observations suggest that LRP and tauopathy could engage common pathogenic
processes and research in the two fields has the potential to be mutually informative.

As for the prospects in PD research in the near future, we expect significant develop-
ments in three areas: (i) Novel therapeutic modalities, especially stem cells and viral gene
therapy; (ii) biomarker discovery, including the use of digital technologies; and (iii) refine-
ments in the disease models, ideally towards prodromal PD-like phenotypes. The status
of the development of therapeutic modalities and novel candidates for therapy has been
reviewed elsewhere [219–222], hence, we will focus on the latter two aspects. The first is the
advancement in the biomarker discovery and technologies that can allow the monitoring
of the disease extent (e.g., neuronal loss) and possibly subtle neuronal dysfunction.

Measurements of total or modified forms of α-syn (e.g., p-S129) in biological fluids
have been the focus of investigation over the last decade with conflicting results in the levels
detected by immunodetection ELISA methods or correlation to the disease severity. Recent
studies indicate that the detection of oligomeric and p-S129-α-syn in the cerebrospinal fluid
may be promising biomarker candidates in PD, with the ratio of oligomeric/total α-syn
greatly improving the sensitivity and specificity of these assays [223,224]. Significant techni-
cal improvements have also been made for the detection of protein aggregates in biological
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fluids that rely on the templated seeding mechanism (e.g., amyloidogenic seeds converting
the native protein into misfolded conformers), such as real-time quaking-induced conver-
sion (RT-QuIC) and protein misfolding cyclic amplification (PMCA) [223]. However, to
date, these methods are still restricted to research purposes. By comparison, a number of
functional neuroimaging approaches, such as the measurement of presynaptic dopamine
or dopamine transporter (DAT) and metabolism of L-dopa, has shown to differentiate PD
from controls with impressive specificity and sensitivity [225,226]. An easily applicable
and low-cost neuroimaging approach using transcranial sonography also distinguishes the
pathological affection of SN, i.e., abnormal extension of SN echogenicity, in the majority of
patients [227]. Similarly, myocardial scintigraphy (using 123I-metaiodobenzylguanidine)
has also been successfully used to detect cardiac sympathetic denervation in early PD
and in the differential diagnosis [228]. Another exciting development is in the area of
digital/telemetric technologies, which can serve as an aid in detecting early neurological
dysfunction, guide in patient monitoring and response to therapy [229,230]. Although,
more scientific data and rigorous analyses on their utility are still missing, these can be
useful clinical tools in the detection of sleep disorders, gastrointestinal problems (i.e., dys-
phagia, salivation, constipation) and tremor.

Lastly, there is a dire need for refinements in experimental models that can be used
to study motor deficits largely due to the extranigral α-syn pathology and non-motor
symptoms, such as postural instability and pain [9,10]. Several animal models, based on
transgenic α-syn overexpression or viral mediated α-syn somatic gene transfer, recapitulate
aspects of PD-like α-syn pathology, such as loss of dopamine and motor phenotypes due to
basal ganglia dysfunction [23,167,169]. Among the transgenic models, the mice expressing
human wild type α-syn under the Thy1 promoter have been consistently reported to
exhibit non-motor phenotypes that are relevant to PD, such as cognitive impairment,
olfactory dysfunction, constipation and changes in the circadian rhythm [231,232]. Given
the nigro-centric neuropathological context of PD, it is understandable that the animal
models have largely focused on the nigrostriatal dysfunction. However, it would be
interesting to study sensorimotor phenotypes by selective α-syn lesions in extra-nigral
locations, such as LC, GRN, PAG and the hypothalamus. In this regard, two recent
studies show that viral mediated induction of mutant A53T α-syn in LC [233] or transgenic
overexpression of human wild-type α-syn under control of the noradrenergic-specific
dopamine β-hydroxylase promoter [234] results in the development of PD-like α-syn
pathology, neuroinflammation and behavioral deficits in the latter [234].

The GRN is part of the brainstem reticular nuclei, which, according to Braak staging,
is also affected very early in the disease [18,133]. The neuronal populations in GRN are
extensively connected to several brain regions including LC and cerebellar nuclei and
via their descending projections to spinal motor systems (i.e., premotor and motor neu-
rons) serve as the ‘gain-setting mechanism’ in the control of movement and posture [19].
In a PFF model of synucleinopathy (M83 transgenic line expressing the human mutant
A53T α-syn) [235] several laboratories, including our own, have shown that, after the
initial appearance of α-syn pathology (p-S129) in the spinal cord following intramuscular
PFF inoculation, periventricular regions of brainstem (i.e., medullary reticular nuclei, LC,
pontine GRN and midbrain PAG) are affected long before the emergence of movement
disability [170,175,236]. This ‘prodromal’ phase coincides with the emergence of a sensori-
motor deficit exhibited as mild degree of hindlimb clasping [102,236], which is a behavior
observed in rodents with lesions in basal ganglia and cerebellum [237]. Moreover, the
(intramuscularly) PFF inoculated M83 mice exhibit a hunched posture at the end-stage,
although it is not clear if this phenotype is due to neuronal dysfunction in higher the
brain region or if it results from the significant loss of spinal motor neurons [101]. It is
worthwhile to indicate that the PFF based models have several limitations to qualify as
bona fide PD models, including the lack of both the dopaminergic cell loss and significant
α-syn pathology in SN [23,169,236]. Nevertheless, several groups have demonstrated that
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these models exhibit α-syn pathology beyond the site of PFF inoculation (i.e., intracerebral
or peripheral) and putative ‘trans-synaptic’ spreading [23].

The neuronal populations in PAG are also heterogeneous and have several projec-
tions that link forebrain structures to the reticular nuclei of the brainstem [238]. This
phylogenetically ancient region has been implicated in autonomic regulation (possibly via
hypothalamus), circadian rhythm and pain modulation (via descending projections to the
raphe magnus and spinal nociceptor neurons) [238,239]. In the PFF inoculated (via the
intramuscular route) M83 transgenic mice, abundant α-syn pathology (p- S129 α-syn) in
the PAG (and spinal cord) was associated with mechanical allodynia and impaired pain
response [102]. However, we are still in the preliminary stages in terms of inferring whether
the impaired pain perception was due to central neuronal/nociceptive dysfunction or the
loss of normal nerve function as measured by nerve conduction velocity and myelin dam-
age in the nerve dorsal roots [102]. Hence, quasi-selective induction of α-syn aggregation
in central pain processing centers, i.e., PAG, may unravel relevant mechanisms for pain,
which is reported in a considerable number of PD patients [10].

6. Conclusions

Since the early discovery of α-syn as a major component of LB pathology in PD, and
genetic linkage between mutations in the SNCA with rare forms of familial PD [30,240–242],
significant progress has been made to make a compelling case for a pathogenic role of α-syn
aggregation in PD and related diseases [12,17,240]. However, there are several aspects that
represent the missing links between α-syn aggregation in the CNS and the onset and/or
progression of clinical PD symptomatology. This is illustrated by the fact that despite
a growing consensus on the putative downstream mechanisms of α-syn neurotoxicity
following its misfolding and/or aggregation [15,17], the identity of causative factor(s) that
promote the initial pathological conversion of α-syn into neurotoxic species in PD is largely
unsettled. Apart from the case of rare familial forms due to specific genetic mutations in
the SNCA locus (i.e., increased protein expression due the gene dosage effect and tendency
to form oligomers as a result of certain point mutations), the nature of mechanism(s)
that promote α-syn aggregation in other forms of PD (genetic or idiopathic) remains
elusive, and the mechanisms are likely to be of multi-factorial origin [1]. For instance,
a sizeable proportion (8–14%) of autopsy proven PD cases reveal mutations in the gene
encoding glucocerebrosidase (GBA) associated with perturbed lysosomal function [243]
and potentially favor α-syn aggregation as a result of ensuing lipid accumulation and
defective autophagy [15,243]. A pathogenic relevance of defective autophagy promoting
α-syn aggregation in PD is also supported by the studies in cellular and animal models
overexpressing PD-associated mutations in the leucine-rich repeat serine/threonine-protein
kinase 2 (LRRK2) [244], vacuolar protein sorting-associated protein 35 (VPS35) [245] and
showing putative interactions of parkin with mutant glucocerebrosidase [246]. Thus, it
could be argued that rectifying the pathological decrease in autophagic flux may hold
promise in mitigating the neurotoxic effects of aggregated α-syn in at least a subset of
PD cases. Mechanistic studies in different PD populations using refined approaches,
e.g., advanced genetic studies in patient derived induced pluripotent stem cells [247], will
potentially reveal whether the defects in autophagic flux of lipids and/or proteins are a
generalized feature in PD or if additional contributing mechanisms underlie the etiology of
pathological α-syn accumulation in different PD populations.

Another relevant consideration is the establishment of a framework for the identifi-
cation of patient specific factors, such as co-existing neuropathology (e.g., tau [218]) and
co-morbidities that predispose to age related neurological dysfunction (e.g., impaired
glycemic control) that may inform on the clinical phenotypes in relation to the distribution
and/or progression of α-syn pathology [248,249]. For instance, while tau pathology is
a pronounced post-mortem feature in the cases of familial PD due to LRRK2 mutations,
not all PD cohorts with pathogenic LRRK2 mutations exhibit α-syn LRP [250,251]. It is
worth considering that the paucity of LRP (inclusions containing fibrillar α-syn, which is
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ubiquinated [114]) in these subsets of PD cases does not rule out the existence of oligomeric
α-syn in the brain, since α-syn oligomers have been reported in the cerebrospinal fluid of
individuals who carry LRRK2 mutations, either with a PD diagnosis [252] or in neurologi-
cally normal volunteers [253]. However, research reagents (e.g., conformational antibodies)
that can detect oligomeric α-syn have not been systematically studied to the extent that
they are generally accepted in their own accord as the tissue biomarkers of pathologi-
cal α-syn accumulation. Moreover, the specificity of these reagents to unambiguously
recognize ‘oligomeric’ α-syn conformations without binding to fibrillar α-syn has also
been contested [254].

In conclusion, the wealth of information about PD symptomatology, extensive char-
acterization of the neuropathological findings and refinements in animal models hold
promise for meaningful discoveries that may yield potential biomarkers of disease as well
as guide the development of disease modifying therapies.
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