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A multi‑step approach to managing missing 
data in time and patient variant electronic 
health records
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Abstract 

Objective:  Electronic health records (EHR) hold promise for conducting large-scale analyses linking individual 
characteristics to health outcomes. However, these data often contain a large number of missing values at both 
the patient and visit level due to variation in data collection across facilities, providers, and clinical need. This study 
proposes a stepwise framework for imputing missing values within a visit-level EHR dataset that combines informative 
missingness and conditional imputation in a scalable manner that may be parallelized for efficiency.

Results:  For this study we use a subset of data from AMPATH representing information from 530,812 clinic visits from 
16,316 Human Immunodeficiency Virus (HIV) positive women across Western Kenya who have given birth. We apply 
this process to a set of 84 clinical, social and economic variables and are able to impute values for 84.6% of variables 
with missing data with an average reduction in missing data of approximately 35.6%. We validate the use of this 
imputed dataset by predicting National Hospital Insurance Fund (NHIF) enrollment with 94.8% accuracy.
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Introduction
Electronic Health Records (EHRs) are systematized 
sources of patient data that medical providers collect 
and store using digital tools. They have the potential to 
improve patient care by providing access to rich, longi-
tudinal, patient-level data that may be used to advance 
precision medicine and lead to more personalized care 
[1–5]. In addition to facilitating more customized care, 
EMRs can be used to build machine learning models and 
generate new insights regarding patient behavior, biology 
and health outcomes [6–8].

One of the primary challenges posed by EHRs is that 
they often contain large amounts of missing data [2, 4, 9]. 
Practitioners entering data for a clinical-encounter may 

only elect to enter fields relevant to the patient’s clinical 
needs at that time, and data may be aggregated across 
sites that have varying standards for record-keeping 
[10]. By proposing a scalable, stepwise system for imput-
ing considerable volumes of missing values we hope to 
make EMR data more accessible researchers interested 
in leveraging the big data aspects of these records, and 
promote collaboration between medical researchers and 
data scientists.

Handling missing data in electronic health records
Approaches toward managing missing EHR data vary. 
In summarizing the use of EHR data to develop risk pre-
diction models, Goldstein et  al. [9] found that only 58 
of the 90 studies evaluated addressed missing data prior 
to analysis. The simplest approaches toward managing 
missing values involve selecting subsets of the data that 
contain complete information [11, 12], and using strati-
fied mean imputation used to fill-in missing values [13]. 
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Others have designed functions to interpolate longitu-
dinal variables with limited individual-level variability 
that are typically not dependent on other covariates [14]. 
This approach is applicable only to continuous measures. 
Few studies using EHR utilize ‘informative observations’ 
where the presence of a variable is meaningful for associ-
ated, possibly missing values [9].

Simpler approaches toward EHR imputation must con-
sider whether missing values are missing completely at 
random (MCAR), missing at random (MAR), or miss-
ing not at random (MNAR) [14]. Conditional imputation 
methods may be used to account for these dependencies, 
most effectively if missing data are MAR [10, 12, 15]. 
While they may improve completeness and predictive 
precision, these methods may be computationally inten-
sive when applied to large-scale EHR data with signifi-
cant amounts of missing values.

Research objectives
Our goal in this study is to design and utilize a scalable, 
multi-step approach toward imputing missing values in 
EHR data (Fig.  1). Our approach recognizes that EHR 
data is both patient- and time-variant, but that collec-
tion methods do not produce data that closely resembles 
repeated measures from a random population [16]. To 
assess results, we measure differences in response cover-
age for each variable, and feed our results into a decision 
tree classifier designed to predict NHIF enrollment. The 
ability to accurately predict National Hospital Insurance 
Fund (NHIF) enrollment serves as validation for the util-
ity of using predicted values in research.

Data used
For this study we use data from AMPATH—a robust 
EHR system containing health records for over 150,000 
HIV + individuals across Western Kenya. Past research 
has focused on cohort studies of AMPATH data, select-
ing measures and observations that minimize the miss-
ingness of these data [17]. We specifically focus on a 
subset of these data that contain longitudinal information 
from 530,812 clinic visits for 16,316 HIV positive women 

who have given birth. Clinic visits span from December 
19th, 2001 to September 2nd, 2013. The average number 
of clinic visits per patient is 32 with a standard deviation 
of 23. The maximum number of visits across this dataset 
is 162.

This analysis focuses on a set of 84 variables of inter-
est to researchers studying HIV diagnosis and maternal 
health outcomes among HIV positive Kenyan women 
[17, 18]. Approximately 93% of these variables contain 
missing values across visits. Among these, 42% are miss-
ing more than half of possible recorded values. Variables 
included access factors such as antiretroviral (ARV) 
medication regimen, clinical HIV wellness information 
such as CD4 count and viral load, diagnosis of respira-
tory illness, delivery information, social and economic 
background information about the mother, and NHIF 
enrollment.

Main text
Methods
Step 1: filling binary variable dependencies in visit‑level data
Missing values in the dataset may be non-applicable, or 
they may represent “no” values depending on the inter-
face available or the decisions of the individual entering 
data. Using domain expertise, we identify dependencies 
between variables and develop a function that uses these 
dependencies to fill missing “no” values within binary 
variables. This step is performed using visit level data for 
each patient. Not only does this cleaning step improve 
data coverage, it provides variance that may be helpful 
when filling in other values. Figure 1 summarizes this and 
all subsequent analytic steps.

Step 2: patient‑level interpolation of continuous values
For continuous, individual-level variables that are miss-
ing instances of reporting throughout the dataset, 
we rely on linear interpolation. Examples of variables 
imputed by this step include body mass index (BMI), 
systolic and diastolic blood pressure, arterial oxygen 
saturation (Sa02). We elect to build linear models using 
observed data and predict values for gaps based on this 

Fig. 1  Visual representation of workflow, noting unit of analysis shifts
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relationship. For this step, we utilize visit level data for 
each patient. Because this step relies on individuals’ data, 
it can be completed in parallel and is highly scalable for 
larger datasets.

Step 3: multiple imputation by chained equations 
for patient‑level data
Using the dataset that has been partially filled based on 
the previous two steps, we use multiple imputation by 
chained equations (MICE) to fill the remaining values. 
First, due the challenge of accounting for temporal vari-
ation in this dataset, we convert the data from visit-level 
to patient level prior to MICE imputation by randomly 
selecting one observation to represent an individual. 
MICE is a conditional imputation approach that has been 
shown to be effective for imputing EHR data with low 
error [10, 19]. This imputation process leverages five dis-
tinct steps. First, it creates multiple copies of the dataset 
and replaces missing values with randomly selected, tem-
porary ‘placeholder’ variables. Separate regression mod-
els are used to impute missing values across data copies 
for each variable. These predictions are then pooled, cre-
ating a set number of candidate, imputed datasets from 
which we randomly select a value. Given that the major-
ity of responses are categorical and variation is mini-
mal, we do not anticipate random selection to change 
the structure of the data. To complete this step, we use 
the package mice in R [20], and specify the use of clas-
sification and regression trees with five data copies to fill 
values.

Step 4: filling visit‑level dataset and cleaning date variables
To create values that represent individuals and reduce 
the possible impact of outliers, we randomly select one 
row per patient. Finally, because we note that MICE 
incorrectly fills in date values for two variables—delivery 
date and CD4 count date—we elect to complete our data 

generation process by carrying the last available date for-
ward for each patient.

Validation using random forest modeling
We validate imputed values by building a random forest 
model designed to predict enrollment in the NHIF. This 
measure is both patient- and time-variant, and it is pre-
sent for 107,566 visits within the dataset. We randomly 
select 80% of the dataset to use as a training set, and 
20% to use as a test or validation set. The random forest 
model includes fourteen measures expected to correlate 
with NHIF enrollment, all of which were included in the 
imputation process. We then measure the performance 
of this classifier by comparing the accuracy and F1-scores 
of the predicted and observed test set enrollment values 
(Table 1).

Results
Filling binary variable dependencies in visit‑level data
The majority of dependency-filled variables relate to 
ARV medication regimens. We assume that if individu-
als report: (a) being on ARV but; (b) have no reported 
change in ARV regimen, then we mark  all subsequent 
change behaviors as values as “no”  (Table  1). This 
approach led to an average 72.4% increase in the number 
of visit-level values filled.

Step 2: patient‑level interpolation of continuous values
Using the parameters identified, we interpolated values 
for 33 variables in our dataset. These variables represent 
variables that are numeric and have at least ten unique 
values across the total dataset. The majority of these val-
ues are continuous values with variance that depends 
only on the individual and not on the cohort or clinic. 
Because we have a limited number of observations for 
many individuals, this limits our degrees of freedom and 

Table 1  Variables imputed using value dependencies

Dependency 1 Dependency 2 Variable of interest Original variation Imputed variation

No Yes No Yes

On ARV NA Change in ARV regimen 0 1375 386,984 1375

On ARV Change in ARV regimen ARV stop: Completed T-pMTCT​ 0 2588 384,488 2588

On ARV Change in ARV regimen ARV stop/change due to regiment failure 0 352 386,937 352

On ARV Change in ARV regimen ARV stop/change due to toxicity 0 1696 385,509 1696

On ARV Change in ARV regimen ARV stop/change due to weight change 0 10 386,974 10

On ARV Change in ARV regimen ARV stop/change due to other reason 0 2002 385,266 2002

On ARV Change in ARV regimen ARV stop/change due to new TB 0 43 386,942 43

On ARV Change in ARV regimen ARV stop/change due to non-adherence 0 358 386,637 358

On ARV Change in ARV regimen ARV stop/change due to out of stock 0 63 386,927 63
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inhibits the inclusion of control variables and smoothing 
parameters.

Variables addressed using this technique include con-
tinuous measures such as: body weight, CD4 count, and 
diastolic/systolic blood pressure. Using these four vari-
ables as an illustration, we find that within the visit-level 
dataset, approximately 10.9% and 11.0% of entries are 
missing for systolic and diastolic blood pressure, respec-
tively, 10.1% are missing for body weight, and 84.9% are 
missing for CD4 count. Interpolating values per patient 
drops the number of missing visit-level values to zero 
for all variables. Figure 2 illustrates that filling visit-level 
data gaps with time-based linear interpolation produces 
results that follow patterns similar to those observed for 
patients.

Steps 3 and 4: MICE for patient level data, filling and cleaning 
visit‑level dataset
We next reduce our dataset from visit level to patient-
level, apply MICE imputation, and use generated val-
ues to fill gaps in the visit-level dataset. Comparing the 

original dataset to the final, imputed dataset, we note 
that 78 focal variables required imputation. At least 
some missing values were filled for 66 (84.6%) of vari-
ables. Only 12 variables saw no reduction in missing val-
ues. Figure 3 displays the change in percent missing per 
variable pre- and post-imputation. We note that 20 vari-
ables saw a percent reduction in missing values of 80% 
or more. In terms of processing time, we completed all 
cleaning and imputation steps within 6 hours by parallel-
izing each component.

Validation
We validate our data by predicting visit-level NHIF 
enrollment using a random forest algorithm. Within our 
data, an estimated 7% percent of women are enrolled, 
which is in line with national estimates of approximately 
11% [21]. Our model uses the following measures as 
predictors: pregnancy outcomes and location/delivery 
help; the state of illness as defined by WHO weight loss 
state, respiratory infection, viral load, and ARV medi-
cation regimen; socioeconomic status as measured by 

Fig. 2  Patient weight and Diastolic BP over time for several patients among a random subset of 100 patients. Red indicates observed weight, and 
blue indicates imputed weight
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educational attainment and, and select background 
characteristics including age, age at first pregnancy, and 
number of children under 18 months of age. We find that 
despite class imbalance, our classifier performs well and 
achieves an accuracy of 94.8% and an F1 score of 0.587 
(Appendix: Table 2).

Furthermore, indications of component variable sig-
nificance (Appendix: Table 3), illustrate that indicators of 
illness progression such as BMI and later WHO weight 
loss stages are significant predictors of NHIF enroll-
ment. Education is also a key predictor; a bivariate analy-
sis indicates that those with recorded insurance have an 
average of 9  years of education versus 7.5  years of edu-
cation among those who do not (t = 112.54, p < 0.001). 
These factors correspond with existing research address-
ing determinants of healthcare access among rural Ken-
yan women [18, 22].

Discussion
The scale of EHR data offer numerous advantages for 
health researchers. The primary challenge of using these 
data, however, is that they typically contain a number 

of missing values [2, 4, 9]. By leveraging this step-wise 
cleaning and imputation process, we are able to fill val-
ues for 84.6% of selected variables with initial non-zero 
missingness on a dataset that contains information on 
530,812 visits for 16,316 patients. A predictive model uti-
lizing these data is highly accurate and validates what is 
known about health insurance enrollment among rural 
Kenyan women [17, 18, 21].

One of the goals underlying this work is to encourage 
researchers across disciplines to leverage the ‘big data’ 
aspects of EHR [4, 5]. Rather than reduce their dataset 
to a handful of predictors or a single cohort of observa-
tions, researchers may use the full dataset and engage 
in more data-driven, predictive model building and gain 
new insights into the association between healthcare pro-
vision, patient characteristics and behavior, and health 
outcomes.

Limitations
Two key limitations of this approach is that our MICE 
imputation model is time-invariant, and that it does not 
account for spatial autocorrelation among nearby clin-
ics. In the future, we may adapt approaches for imputing 
panel data to suit this task. There are also variables for 
which we have too few observations to impute. Future 
work may explore methods of predicting these values 
with little to no ground truth data.

Appendix
See Tables 2 and 3

Fig. 3  Percent reduction in missing values pre- and post-imputation 
among focal variables

Table 2  NIHF prediction classifier performance

Yes No

Yes 791 780

No 333 19,608

Accuracy 0.948

Precision 0.504

Recall 0.704

F1 0.587
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