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Abstract: Composite materials very often provide new catalytic, optical or other physicochemical
properties not observed for each component separately. Photofunctions in hybrid systems are an
interesting topic of great importance for industry. This review presents the recent advances, trends and
possible applications of photofunctions of hybrid systems composed of Schiff base metal complexes
and metal or semiconductor (nano)materials. We focus on photocatalysis, sensitization in solar
cells (DSSC—dye sensitized solar cell), ligand-induced chirality and applications in environmental
protection for Cr(VI) to Cr(III) reduction, in cosmetology as sunscreens, in real-time visualization of
cellular processes, in bio-labeling, and in light activated prodrug applications.

Keywords: photofunction; Schiff base; metal complex; photocatalysts; semiconductors; nanomaterials;
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1. Introduction

Photocatalysis seems to be the ultimate solution for the global energy crisis. How-
ever, there are still missing large scale sustainable solar energy storage systems. One of
the emerging problems is the lack of efficient, cost-effective and, preferably, non-toxic
photocatalyst materials for large scale applications [1–8]. The answer to this need may
be among others novel hybrid materials built of Schiff base metal complexes combined
with metal or semiconductor (nano)materials such as gold or TiO2 nanoparticles, which
exhibit a wide range of photofunctions and may find applications also in other scientific
and industrial branches.

In general, Schiff bases and their metal complexes are multipurpose compounds pro-
duced from the condensation of amines with carbonyl compounds and are extensively
utilized in many research and industrial applications. These compounds are often utilized
alone or for a preparation of various hybrid materials, such as, for example, supramolecu-
lar elastomers with imine-functionalized polysiloxanes [9], conducting metallopolymers
for electrochemical sensing [10], hybrid SiO2 nanoparticles with flame retardant and an-
tibacterial properties [11] or recently reported cocrystals of a Schiff base with lead iodide
perovskite showing photo-triggered ferroelectricity [12].

There are many original papers, as well as excellent reviews on the current state of
knowledge in chemistry of such compounds concerning their synthesis methods, crystal
structure and useful properties including bioactive, magnetic, catalytic, electrochemical
and photoluminescent ones [10,13–20]. The current review focuses on very interesting
photofunctions observed in hybrid systems built of Schiff base metal complexes and various
materials, such as metal or semiconductor nanoparticles, as well as polymer matrices.
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These composite materials provide new catalytic and optical properties not observed for
each system separately and give new possibilities to use them for solar cell materials as
sensitizers or co-sensitizers, in optoelectronic devices, in catalysis as for example Cr(VI)
reductors and many more. The current review shows the recent advances, trends and
possible applications of photofunctions of such hybrid systems.

2. Photocatalysis—UV-Induced Reduction of Cu(II) Complexes by TiO2

Takeshita et al. [21–26] created a complex system of a tetracoordinated planar chiral
Schiff base amino acid Cu(II) complex and a TiO2 photocatalyst. They evaluated the
expression of electronic functions and the micro-optical electronic state by ultraviolet light
irradiation. This photocatalytic system enabled the reduction of the Cu(II) ions under
ultraviolet light in the presence of the TiO2 because of the intermolecular photoelectron
transfer, which cannot be observed by the complex alone.

The dye sensitization was adjusted in this hybrid system by a special design of the
ligand molecules of the chiral metal complexes. The aim of the research was to obtain
the knowledge applicable to the solar cells. To develop such systems, several chiral Schiff
base amino acid Cu(II) complexes were synthesized using various amino acids (valine,
lysine, methionine, threonine, arginine, asparagine and phenylalanine) and salicylalde-
hyde derivatives.

As a development to the model catalyst system for the water splitting the reduction
reaction of Schiff base Cu(II) complex to Cu(I) by TiO2 after ultraviolet light irradiation
was studied by Nishizuru et al. [27]. The photoreduction reaction after irradiation with UV
light resulted in the decrease of the absorption intensity of the d-d transition band near
650 nm, suggesting that the Cu(II) complex was reduced to the Cu(I) complex (Figure 1).

Figure 1. Schiff base Cu(II) complex (* denotes an asymmetric carbon atom) reduced in the presence
of TiO2 after UV light irradiation and UV-Vis spectral changes associated with d-d transition of Cu(II)
species before and after UV light irradiation [27].

Kurata et al. [23] studied the mechanism of action of the hybrid systems composed
of Cu(II) complexes and TiO2 microparticles affected by UV light and oxygen exposed.
They synthesized a novel chiral threonine derived Schiff base Cu(II) complex having a
biocompatible imidazole co-ligand, which was prone to be dissociated. The electrochemical
studies showed that the Cu(II)/Cu(I) redox reaction in the presence of titanium oxide was
reversible, regardless of exchanging the co-ligand to solvent molecule.

Yoshida et al. [28] synthesized a novel chiral amino acid ester derivative Cu(II) complex
in which the side chain carboxyl group of glutamate was esterified with a benzyl alcohol
(Figure 2). It was investigated whether the photoinduced electron transfer (PET) will occur
even with the presence of a large steric hindrance in the ligand. The reduction reaction of
the Cu(II) complex proceeded by irradiation with ultraviolet light occurred eventually, in
the TiO2 composite system; however, the irradiation with ultraviolet light did not change
the absorption spectrum until the first 20 min. After that, an increase in the absorption peak
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due to the d-d transition was observed. This increase in absorption peak was the opposite
of that of the non-ester complex.

Figure 2. Ester type amino acid Schiff base Cu(II) complexes (* denotes an asymmetric carbon
atom) [28].

3. Sensitization in Solar Cells (DSSC)

Dye-Sensitized-Solar-Cell (DSSC) is a promising approach in modern solar cell tech-
nology [29–34]. The efficiency of Ru complexes is around 10% and additionally the price
of this noble metal is quite high; therefore, there is still need for better photosensitizers.
Many research groups tried to replace ruthenium with other transition metal complexes
for application in DSSC. Recently, Mahadevi and Sumathi published a mini review on the
application of Schiff base and their metal complexes as photosensitizers [35]. The limitation
of salen type complexes is that π-conjugation is difficult to be spread. Therefore, Yam-
aguchi et al. [36] synthesized a new group of binaphthyl Schiff base complexes of Cu(II),
Ni(II), and Zn(II)) with carboxyl group to overcome this problem. The authors evaluated
the complexes for application in DSSC by TD-DFT calculation and experimental analysis.

In order to improve the power generation efficiency of DSSC the scientists try to
broaden the absorption region to the entire visible light and near-infrared region. A suc-
cessful method seems to be the usage of phthalocyanine, perylene or the like compounds in
solar cell materials [37–39]. However, there are problems, such as high cost, low absorption
strength, dye regeneration due to narrow HOMO-LUMO gap and reduction of the electron
injection rate into the semiconductor for example TiO2. Therefore, new building blocks
based on chiral salen-type Cu (II) complexes with carboxyl groups attached to the ethylene-
diamine linker were synthesized by Yamane et al., Takahashi et al. and Yamaguchi et al.
(Figure 3) [33,40,41]. The carboxylic acid group function was to anchor the organometal-
lic dye on the oxide surface. The complexes absorbed the light at a longer wavelength.
The authors studied the band shift of the electronic/CD spectrum due to the effect of the
substituent of the ligand of the chiral Schiff base metal complex.

The combination of these both molecular features—halogen substitution at π-conjugated
moiety (Figure 3c), resulted in dual purpose materials with possible application as DSSC
dyes with enhanced incombustibility of PMMA films [41].

On the other hand, Matsuno et al. [42] introduced 1-naphthyl groups at the ethylenedi-
amine bridge instead of carboxy ones to improve the electron transfer properties (Figure 4).
This procedure induced a change of dipole moment of TiO2 particles due to chemical
adsorption, and affected their electronic state.

In turn, Tsaturyan et al. decided to use carboxyl substituted naphthyl moieties
(Figure 5) [43]. The advantage of this approach was that the hydrophilic COOH groups
increased the adsorption energy, whereas the extended π-conjugated aromatic groups
prevented the dye from aggreging on the semiconductor surface.
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Figure 3. Design of chiral salen-type Schiff base Cu(II) complexes having (a) halogen substituents
(X, Y) or (b) extended π-conjugated system and (c) both of these features (* denotes an asymmetric
carbon atom) [33,40,41].

Figure 4. Chiral salen-type Schiff base Cu(II) complexes with π-conjugated ligand (* denotes an
asymmetric carbon atom) [42].
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Figure 5. Schiff base complexes with both functionalities: hydrophilic carboxylic groups and π-
conjugated systems (* denotes an asymmetric carbon atom) [43].

Sato et al. [44,45] have studied absorption wavelength shifts and intramolecular
charge transfer in a series of salen-type transition metal complexes incorporating azo
group (Figure 6). They discovered that linearly polarized UV light may increase the ad-
sorption amounts of dye complexes onto TiO2 due to photo-isomerization and special
dye-complex alignment.

Figure 6. Salen-type transition metal complexes incorporating azo group (* denotes an asymmetric
carbon atom) [44,45].

Imer et al. [46] developed a different group of symmetrical pyridine bridged azo-Schiff
base metal complexes for DSSC (Figure 7). The application of pyridine resulted in a series
of nonchiral, dinuclear species, with the solar conversion efficiency reported to be lower
than 1%.
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Figure 7. Symmetrical pyridine bridged azo-Schiff base metal complexes for DSSC [46].

4. Co-Sensitization Using the Schiff Base Metal Complexes

Co-sensitization is a method for enhancing the performance of DSSC devices by using
a combination of two or more photosensitizing dyes to broaden the light-harvesting abilities
and to improve the efficiency.

In order to widen the range of absorption wavelength and to enhance the spectral
response in photoelectric conversion systems Iwama and Soejima et al. [47] adsorbed two
kinds of dyes on TiO2 simultaneously—chiral azo-salen Schiff base Fe(II) complex and
Zn(II) phthalocyanine one (Figure 8). The purpos e of this attempt was to develop a new
photoelectric conversion mechanism using the aggregation interaction of these complexes.
The peak of Zn(II) complex in the UV-Vis spectra was observed to be shifted from 343 nm
to 346 nm which suggests intermolecular interaction like J-aggregation. The photoelectric
effect in the cell incorporating Fe(II) and Zn(II) species was observed in the near infrared
region from 900 nm to 1000 nm.

Figure 8. Formation of J-aggregation of Fe(II) and Zn(II) complexes on the surface of TiO2 (* denotes
an asymmetric carbon atom). Adapted with permission from Ref. [47]. Copyright 2022, Elsevier.
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Zhang et al. [48] used the co-sensitization approach for enhancing the overall con-
version efficiency of DSSC based on Schiff base transition metal-coordination complexes
and a dye N719 deposited on ZnO electrode. They observed not only the extension of
the electrode photo-response in the UV region, but also an increase of the intensity in the
absorption spectrum.

Dong et al. [49] also studied the co-sensitization with the use of dye N719 and Schiff
base transition metal complexes. They reported a luminescence tuning of the hybrid system
induced by the structure of the complex. The overall conversion efficiency for the studied
material was of ca. 7%, and it was higher than for the devices sensitized only by N719.

5. Ligand-Induced Chirality in Chiral Schiff Base Complex @ Nanoparticles Composites

It is known that the adsorption of a chiral substance on an achiral medium or reverse
may affect the spectrum of a circular dichroism (CD) of such composites causing an inter-
esting phenomenon of induced circular dichroism (ICD) [50–53]. Tsutsumi et al. [54–58]
observed such effects in hybrid systems of Schiff base metal complexes deposited on nano-
inorganic substances (namely metal nanoparticles or semiconductor nanoparticles). They
studied the influence of bromination on the molecular dipole moment and the CD behavior.

Azobenzene compounds can be aligned by irradiation of linearly polarized UV light
due to Weigert effect [59–62]. In order to interpret the interaction of light and azobenzene
compounds, as well as, intermolecular interaction of the photofunctional hybrid materi-
als, Sunaga et al. [55] developed composites of chiral azo-Schiff base complexes @ gold
nanoparticles (Figure 9). With the use of TD-DFT calculations and experiments performed
with linearly polarized UV light they managed to elucidate the changes in induced circular
dichroism spectra by the contributions of the Weigert effect and cis-trans photoisomerization
of the azobenzene molecular fragments.

Figure 9. Photoisomerization of azobenzene moiety in chiral Schiff base complexes in the presence of
gold nanoparticles (* denotes an asymmetric carbon atom). Reprinted with permission from Ref. [55].

Saiga et al. [63] have prepared hybrid materials of new chiral azo-Schiff base Mn(II)
and Zn(II) complexes adsorbed at silver nanoparticles or TiO2 (Figure 10). They investigated
their chiroptical properties. In order to understand excited state and reaction intermediates
during light irradiation to return to the ground state, the time-resolving luminescence
measurements were employed. The average fluorescence lifetime of the hybrid materials
was higher than that observed for the complexes alone.
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Figure 10. Proposed structure of chiral Schiff base complexes combined with silver nanoparticles and
titanium oxide. Long lifetime formed hybrid materials measured with time-resolving luminescence
(* denotes an asymmetric carbon atom). Adapted with permission from Ref. [63].

6. Chiral Schiff Base Complexes @ Polymer Matrix

The combining of photochromic compounds with polymethylmethacrylate films
(PMMA) is a well-known technique for fabrication of photoactive, thermoplastic materials
frequently used in opto-electronic instruments [64–66].

Akitsu [67] discussed the mechanism of photo-induced conformational changes of pho-
tochromic azo-compounds: azobenzene, 4-hydroxyazobenzene, and 4-aminoazobenzene
in the presence of chiral Schiff base metal complexes (Figure 11). Few years later Akitsu
and Itoh [68] prepared an organic–inorganic hybrid material built of chiral Schiff base
complexes and azobenzene molecules incorporated within a PMMA cast film. The results
were analogous, they showed a photo-tuning of optical anisotropy and reversible cis-trans
conformational changes of azobenzene upon UV-Vis light irradiation.

However, in reverse, the presence of azobenzene compound may influence the confor-
mational changes of the chiral ligands. Akitsu and Einaga [69] studied a supramolecular in-
duced solvatochromism in a system composed of 4-hydroxyazobenzene as a photochromic
solute and mononuclear nickel (II) complexes incorporating chloro-substituted Schiff base
ligands (Figure 11). The distortion of the [NiN2O2] coordination environment and the
changes in the overall dipole moment of the complexes were affected by both the electronic
withdrawing Cl-substituents and the steric factors of the ligands. After the UV light irra-
diation, slight spectral changes in the π–π* region due to a conformational change of the
chiral ligands caused by a photochromic solute were observed.
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Figure 11. Structures of coordination compounds used by Akitsu and Itoh [67,68] for photoisomeriza-
tion of azobenzene compounds induced by UV and visible light irradiation (* denotes an asymmetric
carbon atom).

7. Chiral Schiff Base Complexes @ Metal-Dendrimer Matrices

Metal-dendrimer nanocomposites are special class of nanomaterials [70]. The dis-
persion of organic and inorganic species is uniform across the whole material because of
pre-organized dendritic macromolecular template. The functionality of such systems may
be controlled both by surface modification, as well as, by supramolecular encapsulation.

Akitsu et al. [71] performed some trials to study the hybrid material of chiral Schiff
base complexes incorporated into a poly(amido-amine) (PAMAM) dendrimeric template.
They synthesized and characterized a hybrid system of chiral Schiff base complexes merged
with a metal-dendrimer matrix of Cu-PAMAM G4-NH2.

8. Applications in the Environmental Protection—The Reduction of Cr(VI) to Cr(III)
by TiO2 Photocatalyst in the Presence of Schiff Base Transition Metal Complexes

According to the Restriction of Hazardous Substances (RoHS) directive the hexava-
lent chromium come under limitation to be below 1000 ppm in new electric products,
chrome plating, dyes, pigments etc. The disposal of Cr(VI) from the environment is an
important issue, and the main method is the reduction of Cr(VI) to less toxic Cr(III) ions.
Yoshida et al. [72] have designed and studied a hybrid system for Cr(VI) to Cr(III) reduction
reaction. They synthesized four chiral Schiff base Cu(II) complexes having aspartic acid
or glutamic acid moieties and combined with TiO2. Diphenylcarbazide method indicated
that the new hybrid system under irradiating with visible light can reduce Cr(VI) to Cr(III)
more efficiently than TiO2 severally. Furthermore, even the studied Cu(II) complexes under
irradiating light reduced the Cr(VI) ions more effectively than the hybrid systems.

Miyagawa et al. [73] worked on the development of homogeneous photocatalysts
containing Schiff base Cu(II) complexes for Cr(VI) reduction. They decide to add a polar
hydroxyl group to the aromatic ring of the amino acid Schiff base Cu (II) complex. As a re-
sult, they reported synthesis and characterization of coordination compounds derived from
four amino acids: L-alanine, L-valine, L-phenylalanine, and glycine. The compounds acted
as photo-driven reductants in the reduction reaction of Cr(VI) to Cr(III). Upon irradiation
with visible and ultraviolet light, the complexes reduced Cr(VI) to Cr(III) more efficiently
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than methanol and H2O. The wavelength dependent visible light driven photocatalytic
activity of them solely and hybrid systems with TiO2 in methanol was also investigated
(Figure 12).

Nakagame et al. [74] studied Cu(II) Schiff base complexes with ligands having an
extended π-conjugated system on the aldehyde side (Figure 13). As a result, they obtained
polymeric coordination compounds with carboxylate groups serving as bridges. Both
complexes, as well as the complex @ TiO2 composites, showed higher photocatalytic
activity in a methanolic solution than the titanium oxide alone. The concentration of Cr(VI)
was measured by the diphenylcarbazide method. The incorporation of π-conjugated system
resulted in a red shift of the wavelength in the absorption spectra. The electrochemical
analysis showed that the Cr(VI)/Cr(III) reduction rate depended on the redox potential of
the Schiff base copper complex.

Figure 12. Hydroxy substituted photocatalytic Cu(II) Schiff base complexes studied by Miyagawa et al.
(R = -CH3 (CuADB), i-propyl (CuVDB); L = methanol) and the reduction rate of Cu(II) complexes
and TiO2 in aqueous solutions after UV light irradiation [73].

Figure 13. Amino acid Schiff base ligands with an extended π-conjugated system (* denotes an
asymmetric carbon atom) [74,75].

9. Applications in Cosmetology—Schiff Base Complexes as Sunscreens

The photoactive properties of some materials may be used in sunscreens to protect the
skin from a damage. Apart from the UVA light (up to ca. 400 nm), the IR radiation is also
believed to be harmful to the skin, especially by destroying the collagen fibers. Therefore,
Onami et al. [75] performed studies on Zn(II) Schiff base complexes with a naphthyl moiety
(Figure 13) to examine their ability to absorb in the region of infrared radiation by an



Int. J. Mol. Sci. 2022, 23, 10005 11 of 16

infrared free electron laser method (IR-FEL). The motivation of the project was to determine
if the new material may protect the human serum albumin.

10. Real-Time Visualization of Cellular Processes—QDs Doped with Schiff Base
Complex for Real-Time Visualization of Cell Membrane Damages

Quantum dots (QDs) are one of the newest members of nanomaterials. Due to the nano
size their optical properties are exceptional compared to other photofunctional materials.
However, one of the limitations of semiconducting representatives is their hydrophobicity
and low solubility in water. The doping with other substances enhances their biocompati-
bility and broadens the range of application in real-time visualization of cellular processes,
among others [76–79].

Moulick et al. [80] reported an interesting application of Schiff base Gd(III) complex
for modification of CdTe quantum dots. They used the fluorescent properties of the hybrid
material together with its ability to interact preferentially with a specific fragment of protein
building the cell membrane to visualize the cell membrane damages in real-time. This
approach has the advantage of higher resolution and shorter response time compared
to organic dyes. It gives opportunity to apply such materials in examination of cellular
membranes, host–pathogen interactions or cell-penetrating drug mechanisms of action.

11. Schiff Base Complexes @ CdTe QDs as Cytocompatible Fluorophores for Bio-Labeling

Buchtelova et al. [81] used the Schiff base Gd(III), Tb(III) and Yb(III) complexes for
doping of CdTe QDs to decrease their cytotoxicity. The reported composite was water-
soluble, cytocompatible and its fluorescence properties were stable, what predestinates this
kind of material to be applied successfully in bio-labeling.

12. Light Activated Prodrug Applications

Schiff base metal complexes exhibit a wide range of biological activities and often such
systems are used to mimic naturally occurring catalytic active centers [82–85]. Peterson et al.
described a light induced activation of a protein inhibitor by a hybrid material of Schiff-
base complexes @ colloidal PbS QDs [86]. The pivotal factor was the cooperation between
Co(III) Schiff base complex and colloidal PbS quantum dots Figure 14. The activation of the
biologically inert coordination compound was possible due to the photoinduced electron
transfer (PET).

Figure 14. Photoinduced electron transfer (PET) process between Co(III) Schiff base complex and
colloidal PbS quantum dots. Reprinted with permission from Ref. [86]. Copyright 2013, American
Chemical Society.

Later Holbrook et al. presented a mechanism of light activation of an analogous Co(III)
Schiff base complex. They used this coordination compound instead of a covalently bonded
Ru(II) bipyridyl complex. In both cases the photoinduced electron transfer occurred
easily [87]. These experiments show that the Schiff base complex @ PbS QDs hybrid
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materials may be efficiently used for light activated prodrug applications, and may replace
covalently bonded species [88].

13. Summary

In this review, we presented a brief overview of some current directions of applications
of photofunctions of hybrid systems based on Schiff base metal complexes and metal or
semiconductor (nano)materials.

We tried to line out the most interesting directions of possible applications of these
photoactive hybrid materials including light-energy conversion systems, dye sensitized
solar cells, photocatalysis, or medical applications in bio-labeling, or light triggered pro-
drug activation.

These composite materials provide new catalytic and optical properties not observed
for each component separately. The synergistic effects noticed for such systems may help
in controlling the absorption-emission wavelength ranges in new materials just by the
modification of the ligand molecules in the Schiff base complexes. This approach has the
advantage due to the ease of designing and obtaining of new azomethine compounds. The
tuning effect may be achieved in various hybrid systems including metal or semiconductor
nanoparticles, as well as, in polymeric or metal-dendrimer matrices.

The ease of incorporation of Schiff base metal complexes into various hybrid systems
together with the developing research area of photofunctional nanomaterials will bring
some new solutions in the near future. This research area needs the theoretical background
to be explored in detail to help in designing a priori new materials with desirable properties.
The development of new hybrid systems may be carried out via two routes. First, the
Schiff base ligands may be modified to tune the photofunctions, to broaden the absorption
range and to deliver better sensitizers for composite materials. The second promising
direction seems to be the usage of other types of components or matrices for such systems.
An example may be the non-toxic carbon quantum dots, which may provide devices for
medical or environmentally friendly nanotechnological applications.
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