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�ith recent advances in microarray technology, there has been a �ourish in genome-scale identi�cation of molecular signatures for
cancer. However, the differentially expressed genes obtained by different laboratories are highly divergent.e present discrepancy
at gene level indicates a need for a novel strategy to obtain more robust signatures for cancer. In this paper we hypothesize that
(1) the expression signatures of different cancer microarray datasets are more similar at pathway level than at gene level; (2) the
comparability of the cancer molecular mechanisms of different individuals is related to their genetic similarities. In support of the
hypotheses, we summarized theoretical and experimental evidences, and conducted case studies on colorectal and prostate cancer
microarray datasets. Based on the above assumption, we propose that reliable cancer signatures should be investigated in the context
of biological pathways, within a cohort of genetically homogeneous population. It is hoped that the hypotheses can guide future
research in cancer mechanism and signature discovery.

1. Introduction

Microarray technology has evolved rapidly in the past several
years as a powerful tool for large-scale gene expression
pro�ling [1]. By monitoring changes in gene expression
patterns,microarray technology is widely utilized in search of
molecular signatures for many medical conditions including
cancer. However, evidence is mounting that differentially
expressed gene (DEG) lists detected from different studies
for the same disease are oen inconsistent [2, 3]. One might
attribute the inconsistency to the variation in microarray
platforms, experimental samples, normalization and analysis
methods, and inherent biological uncertainty. Yet this discor-
dance remains even in technical replicate tests using identical
samples as in the case of Ein-Dor et al. [4]. erefore,
signature identi�cation at the level of differential genes
has been challenged about its robustness and reliability. In
light of the inconsistency between DEG lists obtained from

different datasets, we propose herein two hypotheses: (1) the
expression signatures of different cancer microarray datasets
are more similar at pathway level than at gene level; (2)
the comparability of the cancer molecular mechanisms of
different individuals is related to their genetic similarities.
e hypotheses are subsequently veri�ed by case studies of
colorectal cancer and prostate cancer microarray datasets,
respectively. Hopefully, the hypotheses would explain the
inconsistency of the DEG lists derived from multiple experi-
ments and provide novel methods for discovering robust and
speci�c biomarkers of cancer.

2. Materials and Methods

2.1. Data Collection. �e collected 5 gene expression pro�ling
datasets on colorectal cancer and 10 datasets on prostate
cancer from public gene expression data repositories, for
example, Gene Expression Omnibus (GEO), Oncomine
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T 1: Colorectal cancer gene expression datasets used in the meta-analysis.

Dataset Platform Total genes Total samples Experimental design Statistical method
Normal Tumor

Hong HGU133 54675 22 10 12 𝑡𝑡-test
Sabates-Bellver HGU133 54675 64 32 32 Mann-Whitney test
Galamb1 HGU133 54675 30 11 19 SAM
Galamb2 HGU133 54675 38 8 30 PAM
Graudens cDNA 23232 30 12 18 z-statistics
SAM: signi�cance analysis of microarrays� PAM: prediction analysis of microarrays.

[5] and Supplementary Materials from published litera-
tures. e detailed information of the datasets was summa-
rized in Table 1 for colorectal cancer and Supplementary
Table 1 (see Supplementary Material available online at
http://dx.doi.org/10.1155/2013/909525) for prostate cancer.
ese data were collected from two types of platforms, that
is, cDNA two-channel arrays and Affymetrix microarray
platforms including Human 6800 Affy gene chips, HG-U95A
and HG-U133 series. Each dataset was named aer the �rst
author of the original literature. Only pro�les of normal and
cancer tissues were extracted for further analysis.

2.2. Preprocessing of Raw Data. e images of the cDNA
array were processed using GenePix Pro 5.0.1.24 soware.
Background correction was performed by subtracting the
median background intensities from the median foreground
intensities of all spots in both channels. e raw datasets
measured with Affymetrix chips were analysed via MAS5.0
algorithm in R platform. To eliminate the systematic error
from heterogeneous datasets before the identi�cation of
signatures, we performed Locally Weighted Scatter Plot
Smoothing (LOWESS) method for within-chip normaliza-
tion of cDNA array’s dataset and Median Absolute Devia-
tion (MAD) method for between-chip normalization of all
datasets. In addition, data was �ltered to eliminate bad spots,
and the �lter criterion was de�ned as 60% absence across all
of the samples. All of the data of preprocessing procedures
were performed in R programming environment.

2.3. Determination of the Differentially Expressed Outlier
Genes. Cancer Outlier Pro�le Analysis (COPA) method
was performed for detecting genes that were differentially
expressed between cancer and normal samples. We used
COPA package by MacDonald and Ghosh [6] in R platform.
According to the COPA package guidelines, the data was
centered and scaled on a rowwise basis using median average
difference. e rows of microarray expression data matrix
were genes, and the columns were samples. e COPA
function calculates a “COPA” score from a set of microarrays.
As a preliminary step the function used a percentile for pre-
�ltering the data.enumber of outlier samples for each gene
was calculated, and all genes with a number of outlier samples
less than the percentile (default 95th) were removed from
further consideration. A threshold cutoff for “outlier” status
was set as 1.7 and applied to all genes.

2.4. Functional Enrichment of Outlier Genes. e signi�-
cant outlier genes were subsequently mapped to functional
databases, for example, GSEA [7], KEGG [8], and GeneGO
(GeneGO, Inc.) for the pathway enrichment analysis. GSEA
analysis and KEGG pathway analysis were performed using
Gene Set Enrichment Analysis (GSEA) tool [7] and Onto-
Express [9, 10], respectively. GSEA tool used a collection
of gene sets from molecular signatures database (MSigDB),
which was divided into �ve major collections. In our work,
we used C2 curated gene sets. Enriched GeneGO pathways
were detected by MetaCore (GeneGO, Inc) [11] soware. 𝑃𝑃-
value was used to evaluate the statistical signi�cance of each
candidate pathway. In MetaCore, the statistics signi�cance
(𝑃𝑃-value) was calculated by using hypergeometric distribu-
tion. False Discovery Rate (FDR) adjustment was applied for
multiple test correction.

2.5. Pairwise Overlapping Comparison at Gene/Pathway Level.
e overlapping percentage between two datasets is calcu-
lated as follows:

Overlapping percentage = 𝑚𝑚
𝑛𝑛1 + 𝑛𝑛2 − 𝑚𝑚

× 100%, (1)

where 𝑛𝑛1 is the number of all the data in dataset 1, 𝑛𝑛2 is the
number of all the data in dataset 2, and 𝑚𝑚 is the number of
overlapping data between two datasets.

3. Results

3.1. Outlier Detection Using Novel Statistic Method. Table
1 listed the statistical methods for identifying differentially
expressed genes by the original articles.Most of the prevailing
analytical methods like t-test, SAM, and z-statistic consid-
ered the average value of gene intensities in the cancer sam-
ples. ese statistical methods, however, would fail to �nd
“outlier genes” which are only involved in subsets of the can-
cer samples. Despite their scarcity, outlier genes are nontrivial
and may present a hallmark of potential oncogenes. ese
conventional methods are not suitable for detecting such
subset-speci�c oncogene expression pro�les as proposed by
Tomlins et al. [12] and Lian [13]. rough applications to
public cancer microarray datasets in our previous study [14],
we have demonstrated that some newly developed statistics
showed superior performance than traditional 𝑡𝑡-statistics in
outlier detection. We herein applied Cancer Outlier Pro�le
Analysis (COPA), a novel signi�cant genes analysis method
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T 2:e number of pathway/gene sets enriched by differentially
expressed gene for �ve colorectal cancer datasets.

Dataset Number of enriched
pathways in GeneGO

Number of enriched
gene sets in GSEA

Hong 71 154
Sabates-Bellver 50 303
Galamb1 78 91
Galamb2 36 128
Graudens 149 172

proposed by Tomlins et al. [12], to meta-analyze multiple
cancer datasets.

3.2. Signatures Are More Similar at Pathway Level across
Multiple Colorectal Cancer Datasets. In order to verify our
�rst hypothesis, we performed meta-analysis of 5 colorectal
cancer gene expression pro�ling datasets from independent
laboratories [15–19].

Aer COPA analysis, we identi�ed 3258 genes differ-
entially expressed between normal colorectal and colorectal
tumor samples. e searches in the Entrez PubMed database
showed that only 450 out of 3258 (13.8%) identi�ed genes by
COPA method were associated with colorectal cancer.

e number of overexpressed genes was obviously dis-
crepant across all groups because of the different samples,
arrays, and platforms. To decrease the discrepancy, we tried
to understand the cancer molecular mechanism at systems
biological level. We then mapped the DEGs identi�ed by
COPA using Gene Set Enrichment Analysis (GSEA) and
MetaCore soware for pathway enrichment analysis, respec-
tively. Totally we found 262 enriched pathways in GeneGO’s
database with a 𝑃𝑃 value threshold of 0.05; the detailed list
of the pathways are provided in Supplementary Table 2. In
addition, we performed the gene sets enrichment analysis in
GSEA by using C2 curated �le, which includes 1892 gene
sets/pathway annotation. 111 outlier gene sets with NOM 𝑃𝑃-
value <0.05 and FDR < 0.05 were also found and listed in
Supplementary Table 3. e numbers of signi�cant GeneGO
pathways or GSEA gene sets enriched by the differentially
expressed gene for 5 colorectal cancer datasets were listed in
Table 2.

We performed pairwise comparison between 5 datasets
in terms of DEGs, GSEA’s enriched gene sets, and GeneGO’s
enriched pathways, respectively. For 5 different datasets,
10 pairs of datasets are available for comparison. Figure
1 showed the pairwise overlapping percentage at different
observation levels. A signi�cantly higher overlap at pathway
level than at gene level is observed with 70% of the dataset
pairs by GeneGO and 60% of the dataset pairs by GSEA.is
observation supports our �rst hypothesis that the overlapping
percentage at the pathway level is higher than that at the gene
level.

Moreover, we found 4 GeneGO pathways that were
shared by 4 datasets. ese pathways were considered to be
most overlapped and listed in Table 3. Among them, ECM
remodeling, chemokines, and adhesion pathways, belonging
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F 1: Pairwise overlapping percentage of 5 datasets among
differentially expressed genes, enriched gene sets in GSEA, and
enriched pathways in GeneGO database. e x-axis represented all
the two-pair combination of 5 datasets. e y-axis represented the
overlapping percentage.

to cell adhesion category, were previously reported to play
a role in colorectal cancer. e other two pathways, inte-
grin outside-in signalling pathway and L-selenoamino acids
incorporation in proteins during translation pathway, have
not been reported as colorectal cancer associated pathways.
e network objects in both of the pathways, however, have
been widely reported in colorectal cancer. Integrins are het-
erodimeric adhesion receptors, and most of them recognize
ECM proteins. A major function of integrin signaling is to
link ECM proteins to intracellular actin �laments via inter-
actions of integrins with actin-binding proteins. erefore,
the correlation between integrin signaling and ECM pathway
may play an active role in colorectal cancer. We infer that
these two pathways might be putative novel colorectal cancer
related pathways which could provide crucial guidance for
biological scientists. eir roles in colorectal cancer need
further experimental validation in the future.

We performed paired t-test to decide whether the dif-
ferent overlapping percentages observed between different
levels are signi�cant. e 𝑃𝑃-values for the difference between
outlier genes and GeneGO’s enriched pathways were 0.01354
by paired t-test and 0.02441 by Wilcoxon test. e 𝑃𝑃-values
for the difference between outlier genes and GSEA gene sets
were 0.028 by paired t-test and 0.08 byWilcoxon test, respec-
tively.e 𝑃𝑃-values indicate that the overlapping percentages
at gene set or pathway level are signi�cantly higher than that
at individual gene level. We thus came to the conclusion that
the expression signatures of independent datasets at higher
functional level are signi�cantly more consistent than that at
gene level.

3.3. e Prostate Cancer Outlier Gene Enriched Pathways
Show a Regional Distribution Feature. In support of the
second hypothesis, we performed a regional analysis of 10
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T 3: e top 4 most overlapped GeneGO’s pathways shared by 4 datasets.

GeneGO ontology Pathway name Pubmed citation count
Translation (L)-selenoamino acids incorporation in proteins during translation 0
Cytoskeleton remodeling Integrin outside-in signaling 0
Cell adhesion ECM remodeling 64
Cell adhesion Chemokines and adhesion 1117
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F 2: A simple network that associates datasets according to their similarity distances. e distances were calculated based on the
overlapping percentage of the enriched pathways identi�ed by (a) GeneGO and (b) KEGG. e lines between two datasets mean that their
overlapping is more than two-thirds of the all. Each circle represented a dataset, and the overlapping percentage was shown on the lines.

publicly available prostate cancer gene-expression datasets
from different locations [20–28].

We �rst conducted KEGG and GeneGO pathway enrich-
ment analysis on these datasets, followed by a pairwise
comparison of pathway overlapping percentage among them.
Only the signi�cantly enriched pathways with previous evi-
dence of prostate cancer association were adopted for the
comparison. Text mining was performed to make sure that
there was at least one published paper describing the function
of these pathways in prostate cancer.

Based on pathway overlapping analysis, we calculated the
distance matrices between these datasets and generated a
network to display their association. Five common distances,
that is, Euclidean distance, Pearson correlational distance,
Manhattan distance, Kendall’s tau correlational distance, and
Hamming distance were used to measure the similarity of
these datasets. Based on these distances, a network graph was
generated to display the association of these datasets. Figures
2(a) and 2(b) illustrate the association of the datasets based
on GeneGO pathways and KEGG pathways, respectively.

Figure 2 revealed an essential regional distribution fea-
ture of signi�cant pathways across multiple datasets. It is
obvious from the graph that the distance between two
Lapointed [29] datasets is the closest among all the datasets.
Datasets by Dhanasekaran et al. [20], Tomlins et al. [25], and
Magee et al. [23] feature a high pathway overlap which could

be re�ected by distances, indicating their similarities. e
datasets from Singh et al. [26], Luo et al. [22], Welsh et al.
[24], and Nanni et al. [27] diverge less from each other than
those from the other six datasets.

We then investigated the regional sources of the tissue
specimens for each dataset, as listed in Table 4. Samples
of Dhanasekaran et al. [20] and Tomlins et al. [25] were
obtained from the same place; those of Magee et al. [23]
were close to them. Samples of Singh et al. [26], Welsh et
al. [24] and Luo et al. [22, 30] came from adjacent states
in America. Although the samples of Lapointe et al. [21]
were not given a speci�c location, the author informed us
their two experiment datasets were taken from patients of the
same population. Apparently, there is obvious concordance
between dataset similarity and sample source distribution.

Considering the in�uence by different microarray plat-
forms, we compared the total unique genes of each dataset
in order to testify that the signi�cant pathway distribution
feature is caused by different data sources rather than dif-
ferent experimental platforms. As implied in Figure 3, the
similarities of the experimental platforms, here the overlap-
ping proportion of the nonredundant probes used in different
platforms, are not correlated to the regional distribution.
erefore, the regional distribution of cancer signature at
pathway level is independent of the experimental platforms.
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T 4: Tissue specimen sources of each prostate cancer expression dataset.

Datasets Tissue specimens sources Locations

Dhanasekaran
University of Michigan Specialized Program of
Research Excellence in Prostate Cancer (SPORE) tumor
bank

America, Michigan (MI)

Lapointe
Stanford University;
Karolinska Institute;
Johns Hopkins University

America, California (CA);
Sweden, just outside Stockholm;
America, Maryland (MD);

Tomlins University of Michigan America, Michigan (MI)
Luo Johns Hopkins Hospital America, Maryland (MD)

Magee
Washington University School of Medicine;
University of Washington Medical Center

America, Missouri (MO);
America, Washington (WA);

Welsh University of Virginia (UVA) America, Virginia (VA)

Varambally
University of Michigan Prostate Cancer Specialized
Program of Research Excellence (SPORE) Tissue Core America, Michigan (MI)

Singh Brigham and Women’s Hospital America, Massachusetts (MA)
Nanni Regina Elena Cancer Institute Italy, Rome

Singh

DhanasekaranLapointeGPL3044

LapointeGPL3289

Tomlins

Welsh

Varambally

Nanni

Luo

Magee

100

63

46

46

41

41

41

41

100

63

65
38

39

39

F 3: A simple network that associates datasets according to
the similarity in microarray platforms. e distances represent the
overlapping proportion of the probes used in different platforms.

4. Discussion

4.1. Comparison of DEGs between Different Experiments
Revealed Little Overlap. e application of DNAmicroarrays
for the investigation of cancer has led to numerous microar-
ray studies that examined the same clinical conditions.
Nevertheless, experiments from different groups have given
dissimilar results when DEG lists are directly compared. e
disparity was demonstrated in this study, where a meta-
analysis of 5 colorectal cancer microarray expression datasets

from 4 independent laboratories was performed. We calcu-
lated the pairwise overlapping proportion of DEGs between
any two datasets, only to �nd that the overlap between the
two lists was disappointingly small (∼5%).

Such inconsistency has been observed in gene expres-
sion pro�ling of various types of cancer. For example, in
two prominent studies that aimed to predict survival of
breast cancer patients [31, 32], both groups claimed to
have generated gene lists with predictive power, but only
17 genes appeared on both lists. In another attempt to
predict the 5-year metastasis of breast cancer, van’t Veer
et al. [31] and Wang et al. [33] reported a list of gene
sets with good prediction performance, respectively. But the
predictive success of their studies was frustrated by the fact
that the sets of metastasis-related genes identi�ed by these
two independent studies had only 3 overlapping genes. More
recently our colleagues [3] meta-analyzed 10 independent
microarray datasets associated with prostate cancer, but the
resulting set of DEGs had only ∼20% overlap between each
datasets.

e most straightforward explanation of this lack of
agreement is the variation in microarray platforms, exper-
imental samples, normalization, and analysis methods. e
open question is, however, whether the inconsistency can be
attributed only to these trivial reasons?

To address the issue, Ein-Dor et al. [4] sought to remove
all the technical differences mentioned above by analyzing
a single breast cancer dataset [31] with a single method. By
randomly generating training datasets, they demonstrated
that the same analysis could have obtained many equally
predictive gene lists and that two such lists share, typically,
only a small number of genes. is �nding indicates that
low consistency occurs even in technical replicate tests
using identical samples. e reason for this inconsistency or
instability would be that (1) the number of DEGs is large
whereas the number of samples is limited; (2) the resulting
set of DEGs �uctuates according to the subset of patients used
for gene selection.
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4.2. Identifying Robust Molecular Signatures at Functional
Modules Level or Pathway Level. In this study we evaluated
the consistency of signatures across 5 colorectal cancer
datasets produced by different platforms. Although the DEG
lists selected had only ∼5% overlaps, their enriched pathways
were still consistent. Consistency analysis at different levels
provides solid evidence that cancer signatures at pathway
level diminish the discrepancies observed in direct com-
parisons of DEGs and are more consistent across multiple
datasets than at gene level.

As the understanding of tumor biology deepens, it is well
recognized that carcinogenesis is characterized with coordi-
natedmolecular changes. Functionally correlated genes oen
display coordinated expression to accomplish their roles; one
would therefore expect that the inconsistent DEG lists across
independent experiments are functionally more consistent.
In other words, the discrepancies of DEGs would be less
pronounced when they are mapped to functional groups or
biological pathways.

Following this line, some previous studies have shied
their focus from individual genes to the biologically related
groups of genes in the analysis of cancer microarray data. For
example, in order to investigate the robustness of biological
themes, Hosack et al. [34] applied the Expression Analysis
Systematic Explorer (EASE) to determine the biological
theme for DEG lists generated by various gene selection
methods. eir research provided strong evidence that bio-
logical themes are stable to varyingmethods of gene selection.
Zhu et al. [35] developed a novel tool for identifying cancer
signatures at functional modules level. Its applications to
two cancer types demonstrated that the functional modules
enjoy explicit relevance to cancer biology. Recently, Yang
et al. [36] proposed semantic similarity measure for DEG
lists detected under varied statistical thresholds and from
different studies. ey reported that gene lists could be
functionally consistent according to their semantic simi-
larity. In addition, Gorlov et al. [37] conducted functional
annotation analysis of the prostate cancer genes identi�ed
by two different methods. ey observed a considerable
overlap between biological functions identi�ed by varied
methods.

In recent years, pathway analysis has received a great
deal of attention in the study of cancer microarray data
[7, 34]. �athway analysis typically correlates the identi�ed
DEGs with prede�ned pathway databases. It is reported that
pathway analysis applied to differential gene lists detected
under varied statistical methods yielded common results
[38]. is discovery was validated in our previous study
by Wang et al. [3], who evaluated the consistency of
signature across 10 prostate cancer datasets produced by
different platforms. Although the datasets share disappoint-
ingly few DEGs, their DEG-enriched pathways were still
consistent.

4.3. Searching for Common Signatures among a Cohort of
Genetic Homogeneous Population. As for the second hypoth-
esis we assume that the individuals bearing similar genetic/
environmental factors tend to sharemore common pathways.

However, the information on the genetic/environmental
characteristics of the patient samples is generally lacking.
We believe it should be statistically reasonable to take the
geographical location of the sample resources as themeasure-
ment of the similarities of their genetic/environmental fac-
tors. According to the similarity of outlier enriched pathways
found by GeneGO and KEGG, we are able to classify 10 dif-
ferent prostate cancer related datasets into several groups.e
datasets from same or adjacent geographical locations tend to
reside within the same group. In other words, we observed an
essential regional distribution feature of signi�cant pathways
across multiple datasets. In this sense molecular signatures
from the geographically adjacent tissue specimens would be
more consistent than those generated from geographically
isolated samples. is observation is basically in accordance
with our hypothesis that the comparability of the cancer
molecular mechanisms of different individuals is related to
their genetic similarities.

Cancer represents a heterogeneous disease, which re�ects
the interaction of a myriad of etiological and genetic
contributions [39]. erefore the gene expression pro�les
of cancer patients are diverse, depending on factors such
as genetic information, environment effect, and personal
behaviors. e role of genetic and environmental factors
in modulating gene expression variation in humans has
been extensively investigated. Most of the previous stud-
ies on cancer microarray pro�ling, however, ignored the
interindividual variation in gene expression. It is likely that
differences in expression that appear to be related with the
disease may in fact represent random genetic variation. is
situation will further introduce false discoveries and reduce
the overall reproducibility of DEG detection. is concern
was mentioned by Michiels et al. [40], who investigated the
stability of seven published datasets to predict prognosis of
cancer patients. It was observed that the predictive gene
lists reported by the various groups were highly unstable
and depended strongly on the subset of samples chosen for
training.

It is assessed that, to achieve a typical overlap of 50%
between two predictive lists of genes, the expression pro�les
of several thousands of patients would be needed [41].
Unfortunately, obtaining such a large number of samples
is currently impractical due to limited tissue availability
and �nancial constraints. A more practical approach would
be to search for common signatures among a genetically
homogeneous human population other than those among
a mixed population. Although different individuals may
have different regulatory mechanisms and discrepant cancer
associated pathways, we assume that the individuals bearing
similar genetic and environmental factors tend to share more
common pathways.

us it would be reasonable to group patients into well-
de�ned small subgroups on the basis of each person�s uni�ue
genetic and environmental information. In this way, the indi-
vidual difference of cancer mechanism is accounted when
we analyze cancer expression data from different resources.
is kind of investigationwill help to �nd population-speci�c
cancer pathways and facilitate personalized medicine.
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5. Conclusions

Based on previous observations, we proposed herein two
novel points of view for the cancer signatures identi�cation.
e pathway-based approach suggested in this paper would
hopefully improve the comparability of different microarray
datasets and, therefore, may lead to more valid and reliable
biological interpretation of microarray results. Moreover,
the generation of the population-speci�c cancer signatures
would help to deliver effective therapy to patients most
likely to bene�t from such treatment and enable “personal-
ized medicine.” With increasing amount of cancer datasets
available, the challenge in the future is to collect more
cancer datasets from independent populations to prove our
hypotheses.
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