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The accumulation of multiple genetic mutations is essential during the occurrence and development of hepatocellular carcinoma
induced by hepatitis B (HBV-HCC), but understanding their cooperative effects and identifying the warning transition point from
hepatitis B to HCC are challenges. In the genomic analysis of somatic mutations of the patient with HBV-HCC in a patient-
specific protein-protein interaction (ps-PPI) network, we find mutation influence can propagate along the ps-PPI network.
Therefore, in the article, we got the mutation cluster as a new research unit using the Random Walks with Restarts algorithm
that is used to describe the efficient boundary of mutation influences. The connection of mutation cluster leads to
dysregulation of signaling pathways corresponding to HCC, while dysregulated signaling pathways accumulate gradually and
experience a process from quantitative to qualitative changes including a critical mutation cluster called transition point (TP)
from hepatitis B to HCC. Moreover, two subtypes of HCC patients with different prognosis and their corresponding biological
and clinical characteristics were identified according to TP. The poor prognosis HCC subtype was associated with significant
metabolic pathway dysregulation and lower immune cell infiltration, while we also identified several preventive drugs to block
the transformation of hepatitis B to hepatocellular carcinoma. The network-level study integrated multiomics data not only
showed the sequence of multiple somatic mutations and their cooperative effect but also identified the warning transition point
in HCC tumorigenesis for each patient. Our study provides new insight into exploring the cooperative molecular mechanism
of chronic inflammatory malignancy in the liver and lays the foundation for the development of new approaches for early
prediction and diagnosis of hepatocellular carcinoma and personalized targeted therapy.

1. Introduction

Hepatocellular carcinoma (HCC) is a leading cause of
cancer-related deaths worldwide, with a 5-year survival rate
of 18% [1]. Hepatitis B virus (HBV) infection is a major risk
factor for HCC tumorigenesis [2]. Although several studies
have described the molecular mechanisms that hepatitis B
drives hepatocellular carcinoma (HBV-HCC) and proposed
some therapeutic strategies [3–6], the identification of tran-
sition point for early diagnosis of inflammatory-to-cancer
transformation in HBV-HCC is an open question.

HCC tumorigenesis is usually accompanied by the accu-
mulation of somatic mutations; these somatic mutations reg-
ulate different signaling pathways such as cell cycle, signal
transduction, and stress response [7, 8], and different signal-
ing pathway dysfunctions frequently occur simultaneously
in cancer [9], so we can infer that these signaling pathway
dysfunctions provide an advantage to the growth of cancer
cells. Changing analysis of these signaling pathways from
quantitative to qualitative views supplies an insight into
HCC tumorigenesis, which should be essential in evaluating
the transition point of tumorigenesis for the early diagnosis
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of HCC. To investigate the transformation mechanism of
hepatitis B to HCC, Chen et al. identified dynamic network
biomarkers to detect the critical states (meaning the transi-
tion point) of many disease progression using nonlinear
dynamic theory [10], and Liu et al. explored a novel land-
scape dynamic network biomarker methodology to identify
early-warning signals of complex diseases on a single-
sample basis [11]. These efforts have provided new ideas for
the early detection of tumors and focus more on gene expres-
sion rather than the biological processes regulated by genes;
however, the biological processes regulated by genes better
represent the evolution of tumors. To understand the trans-
formation mechanism of hepatitis B driving HCC, our study
researched the transition points from quantitative changes to
qualitative changes during the accumulation of somatic
mutations and their associated signaling pathways in a com-
plex PPI network of HCC patients; this overcomes the bias of
individual gene expression. Our work not only describes the
synergistic effects of mutated genes during uncontrollable
inflammatory progression but also demonstrates the inter-
play of signaling pathways during tumor evolution.

Studies have shown that the progression of many com-
plex diseases has an unstable predisease state, which can be
reversed back to a normal state if treated appropriately
[12]. Here, to further explore the unstable predisease state
of HBV-HCC, the percolation theory is used to simulate
the process of tumorigenesis. The percolation theory is a
physical concept describing random propagation and flow
of fluid in random porous disordered media and there is a
sudden transition point with the change of the random plug-
ging degree of the pores, which is often called percolation
transition [13]. We used the PPI network as the random
porous disordered media, the somatic mutations as the
events of blocked pores, and a sudden transition point as
the percolation transition of tumorigenesis.

In our study, we used a mutation cluster as the basic
research unit to identify each patient’s transition point (TP)
rather than single dominance of somatic mutations, which
not only reflected the synergism between these genes but
was also more consistent with the HCC tumorigenesis. We
constructed patient-specific protein-protein interaction (ps-
PPI) networks and extracted more representative largest con-
nected clusters (LCCs). And then, we calculated the HCC
propensity score (HCC-PS) of genes in LCCs, while HCC-
PS included the biological functions of genes, considered
the cooperation mechanism between genes, and found the
TP of each patient from hepatitis B to HCC. Finally, we pro-
posed a novel subtype model based on the TPs; the patients
in subtype 1 had metabolic dysregulation and low immune
levels and had a worse prognosis. Our finding is crucial for
early detection, prevention, and treatment of HBV-HCC.

2. Material and Methods

2.1. Obtaining and Processing Data. The information of 89
stage I HBV-HCC patients in China (CHCC-HBV) was
obtained from the published research, including gene
expression profile and proteomic data, somatic mutation
profile, and clinical profile of patients with HCC and hep-

atitis B [14]. 68 advanced-stage patients in CHCC-HBV
and 102 HBV-HCC patients in TCGA were selected for
validation [14].

The human protein-protein interaction relationships
with a combined score greater than 700 in the STRING
database were obtained [15], which maximizes patient infor-
mation retention while maintaining high confidence in
protein-protein interactions (nodes = 14805, edges =
361152). 218 HCC-associated driver genes were obtained
from the DriverDBv3 [16]. There are 529 pathways, includ-
ing 14851 genes in the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database [17]. We downloaded informa-
tion on 519 pathways, including 28 cancer-related pathways
and 1 hepatocellular carcinoma-related pathway. The
CERES scores of genome-scale CRISPR-Cas9 knockout for
18333 genes in 20 HCC cell lines were acquired from the
Dependency Map (DepMap) portal [18]. CERES score is
used to measure the dependency of the mutations in cancer
cell lines (CCLs), and a lower score indicates that the gene is
more essential in cell growth and survival of a given CCL.
Differentially expressed genes (DEGs) between hepatitis B
and HCC were identified using the R package “limma”
[19]; adj p value < 0.05 and jlog 2FCj > 1 were set as the
threshold. Combined with gene expression profiles and clin-
ical profiles, the univariate Cox proportional hazard regres-
sion model was used to screen overall survival- (OS-)
associated genes (p value < 0.05). For each patient, the
protein-protein interactions in which two gene expression
values were greater than 0 in hepatitis B and HCC were
extracted and the maximal interconnected network was
defined as ps-PPI.

2.2. Mining Mutation Cluster and Connected Clusters (CC)
in ps-PPI. It has been found that genes causing the same or
similar diseases are usually close to each other in PPI [20].
Set genes with mutations as seeds separately to model their
influence over the nonmutated neighbor genes in each ps-
PPI using the Random Walks with Restarts (RWR) algo-
rithm [21]. According to the RWR algorithm, the score of
each nonmutated neighbor gene around the mutated gene
was calculated according to the following formula:

Pt+1 = 1 − rð ÞMPt + rP0: ð1Þ

In the formula, r is the probability of one gene transfer-
ring to its neighboring gene, while the probability of one
gene transferring to itself is 1 − r. According to previous
studies, r = 0:7 is suitable for RWR algorithm [22, 23]. The
vector P0 is a binary matrix ð0, 1Þ, 0 indicates a nonmutated
gene and 1 indicates a mutated gene. M is the adjacency
matrix of ps-PPI, and the mutated gene seeks its affected
neighborhood along with M. Pt eventually converges, and
Pt+1 reaches a steady state when the value of Pt and Pt+1
difference is less than 1e − 10 in this study [23–25].

X-cluster was a series of genes centered on a gene X with
mutation and spread the influence of X over the nonmutated
neighbor genes in the ps-PPI. The closer the nonmutated
neighbor gene was to X, the higher the score was. A series
of mutation clusters are scattered in the ps-PPI and
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connected by nonmutated genes; therefore, the connected
cluster (CC) is some connected mutation clusters in the
ps-PPI.

2.3. Exploring the Order of Mutation Clusters in the Largest
Connected Cluster (LCC). Each mutation cluster is a small
subnet, while each connected cluster is a bigger subnet; the
largest connected cluster (LCC) is the biggest subnet in the
ps-PPI that is formed by some connecting CCs. This study
is based on the idea of continuous somatic mutation during
carcinogenesis. Shin et al. proposed the mutation-select-rule
to choose the next mutation cluster, minimizing the size of
the subnet on the premise that there was overlap among
the previous mutation clusters [26]. We simulated the
sequence of clusters during LCC formation. In each patient,
a cluster centered on passenger mutation was first selected as
the start, and the next cluster was added according to the
mutation-select-rule until all clusters were in the LCC. Then,
repeating the above steps to each cluster centered on passen-
ger mutation, sequences of clusters were obtained with an
equal number of passenger mutations. The order of any
two clusters in all sequences was counted, and each patient
got a unique sequence of clusters during the formation of
LCC eventually.

To test the synergistic effect among the clusters in the
patient’s LCC to expand the effective boundary of mutation
in the ps-PPI, we selected test genes randomly equal to the
number of mutations in each ps-PPI, and the clusters of test
genes were calculated and concatenated into LCC (test) and
repeated 500 times. Finally, we compared the size of LCC
(test) and that of intrinsic mutations.

2.4. Identify the Transition Point (TP) of Each Patient. The
unique sequence of clusters during the formation of LCC
was obtained for each patient, and most passenger mutation
clusters have no obvious oncogenic effect. However, the
accumulation of these passenger mutation clusters with
one or several driver mutation clusters will alter the biolog-
ical process and induce cancer. According to the sequence
of clusters, the HCC propensity score (HCC-PS) was calcu-
lated for each cluster joined in the subnet to form the
LCC. The HCC-PS was completely specific by using KEGG
pathway information and each patient’s gene expression
profile in subnet according to the following equation.
HCC-PS value represented the likelihood that the patients
transform from hepatitis B to HCC, and the cluster with
the largest HCC-PS was selected as the TP from hepatitis B
to HCC.

HCC‐PS = 〠
p

1
Pi: ð2Þ

In the equation, p is the number of KEGG pathways in
which genes of subnet enriched in p < 0:01, and Pi is the pro-
pensity score of pathway i. The formula of Pi is as follows:

Pi =G〠
g

j=1
W × Rj, ð3Þ

G = Gh

Gi
, ð4Þ

W =
wj

Wj
: ð5Þ

Here, g denotes the number of genes in the subnet that
are enriched in pathway i. G is the correlation coefficient
between pathway i and the HCC pathway. W is the oncoge-
nicity coefficient of gene j. Rj is the difference in gene j
expression between HCC and hepatitis B. Gh is the number
of intersection genes in pathway i with genes in the HCC
pathway, and Gi is the number of genes in pathway i. wj is
the number of cancer pathways containing gene j, and Wj

is the number of KEGG pathways containing gene j.

2.5. Selection of Candidate Genes and Establishing Subtype
Model. Patients were classified into two subtypes according
to the TPs, including subtype 1 with TP53 cluster as a TP
and subtype 2 with no fixed biomarker cluster as TP. The
subtype model was constructed in two steps. Firstly,
subtype-related genes were the intersection of the following
three datasets: (1) DEGs of HCC in two subtypes (adj p value
< 0.05, jlog 2FCj > 1); (2) DEGs of hepatitis B in two sub-
types (adj p value < 0.05, jlog 2FCj > 1); and (3) receiver
operating characteristic (ROC) curves were plotted using
the R package “pROC,” and the area under the curve
(AUC) was calculated to assess the accuracy of the model
[27]; the ROC curves of two subtypes in HCC and hepatitis
B were plotted, respectively, the genes with both AUC
greater than 0.6. Secondly, the least absolute shrinkage and
selection operator (LASSO) logistic regression model was
used to extract the feature genes and their coefficient from
subtype-related genes. The formula of the subtype model is
as follows, and i is feature genes:

subtypemodel =〠
i
coefficient geneið Þ ∗ expression geneið Þ:

ð6Þ

To validate the accuracy of the subtype model, 68
advanced-stage patients from CHCC-HBV and 102 HBV-
HCC patients in TCGA were used. The TPs were identified
for each patient according to the HCC-PS, and the AUC
was calculated by plotting the ROC curve based on the sub-
type model.

2.6. Functional Enrichment Analysis Based on Multiomics
Data. The differences in biological processes between hepa-
titis B and HCC in subtype 1 patients were analyzed. The
“c2.cp.kegg.v7.4.entrez.gmt” gene set was downloaded from
the MSigDB database [28]. And the R package “clusterProfi-
ler” [29] was used for gene set enrichment analysis (GSEA)
(adj p value < 0.01). Gene set variance analysis (GSVA)
was performed using the R package “GSVA” [30]. The dif-
ference in the pathway between hepatitis B and HCC in
subtype 1 patients was identified by “limma” algorithm
(adj p value < 0.01). The results of transcriptome-based
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GSEA and proteome-based GSVA were intersected to obtain
the differential pathways between hepatitis B and HCC.

Single-sample gene set enrichment analysis (ssGSEA)
was implemented to analyze the enrichment level of 29
immune signatures via invoking the R package “GSVA”
[31, 32], combined with the “limma” for differential immune
signatures between hepatitis B and HCC in the patients of
subtype 1 (adj p value < 0.01).

2.7. Core Target Screening and Drug Identification. TP is
defined as the threshold for the transformation from hepa-
titis B to HCC. The genes before TP during the formation
of LCC can be used as drug targets to block cancer progres-
sion. A three-step analysis was performed to find candidate
drug targets in subtype 1 patients. Firstly, DEGs between
hepatitis B and HCC in subtype 1 patients were selected
(adj p value < 0.05, jlog 2FCj > 1). DEGs with AUC > 0:9
were used to construct a transformation model from hepa-
titis B to HCC. Secondly, the genes before TP were identi-
fied for 51 patients separately, and the shared genes were
defined as the intersection of the above 51 gene sets. The
Pearson correlation coefficients (PCC) of shared genes
expression with the transformation model were calculated
(jrj > 0:5, p < 0:05). In the third step, the PCC of the CERES
score and transformation model in HCC cell lines were cal-
culated to screen for the poor-prognosis genes associated

with HCC (jrj > 0:5, p < 0:05). The approved drugs of avail-
able drug targets in subtype 1 patients were obtained from
the DrugBank database [33].

We screened 16 HCC cell lines with 95 compounds, and
the drug response data and genomic markers of sensitivity
were obtained from the Genomics of Drug Sensitivity in
Cancer database [34], and the R package “oncoPredict”
[35] was used to predict drug sensitivity of HCC patients
in subtype 1.

3. Results

3.1. Unique ps-PPI. To explore the timing of transition point
(TP) onset more accurately, we only chose phase I HCC
patients. To simulate the accumulation of multiple somatic
mutations and the synergistic effects of dysregulated path-
ways affected by somatic mutation during the HCC tumori-
genesis, we constructed a ps-PPI for each HCC patient in
this study (Figure 1). The number of interactions in each
ps-PPI was counted (maximum 360830 and minimum
355666), and the number of genes in ps-PPIs was similar
(minimum 14742 and maximum 14801), but the genes are
different. Patients had a wide range of mutated genes from
30 to 610 and a few driver mutations from 1 to 20, while
the ps-PPI preserved at least 80% of the mutated genes for
each patient.
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Figure 1: The accumulation of multiple somatic mutations and the synergistic effects of dysregulated pathway affected by somatic mutation
in the HCC tumorigenesis.
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Figure 2: Continued.
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In short, the number of genes and interactions in ps-
PPIs was similar; however, mutated genes and gene expres-
sion values in each patient differed significantly. So ps-PPIs
were high specificity and reflected the necessity of personal-
ized treatment.

3.2. The Mutation Clusters as Research Units. In the ps-PPIs,
we found that the genes with mutation scattered in various
positions and were closely related to the nonmutated genes.
We set the mutation cluster as a research unit, which con-

sisted of a gene with mutation and its nonmutated neigh-
bors. RWR algorithm was used to find the mutation cluster
in the ps-PPIs; a score threshold of 0.001 was set to ensure
a high correlation between genes in each mutation cluster
while keeping the number of genes in each mutation cluster
from being 0. The average size of the mutation cluster was
324, with the largest mutation cluster having 1095 genes
and the smallest mutation cluster having 2 genes; it can be
seen that the influence of different mutations on the network
varies widely. At the same time, there are connections
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Figure 2: Analysis of LCCs. (a, b) The proportion of DEG/OS-associated genes in LCCs vs. that in LCCs (test), red dots represent LCCs and
black dots represent LCCs (test). (c) The size of LCCs and the size of LCCs (test) in each patient, red dots represent LCCs and black dots
represent LCCs (test). (d, e) In the biological processes of genes in LCCs and ps-PPIs, green indicates that the hallmark is activated, and pink
indicates that the hallmark is suppressed.

6 Oxidative Medicine and Cellular Longevity



0

200

400

600
FN

IP
2

C
A

D
M

3
ZN

F2
92

PX
D

N
W

D
R6

0
D

N
A

H
17

M
ST

1R
PC

LO
A

RI
D

1A
D

M
XL

2
M

U
C

17

K
IA

A
16

14
C

A
C

N
A

1B
TR

IM
8

PP
P1

R3
C

ST
X4

M
A

N
1C

1
YK

T6

C
O

BL
L1

U
BQ

LN
2

W
H

A
M

M
C

EN
PJ

C
C

D
C

18
1

G
M

PR
IN

TS
9

C
PS

1
H

LC
S

ET
FD

H
M

A
M

L1

H
N

F1
A

C
TU

1
C

18
or

f2
1

M
RP

S9
N

EM
F

TR
M

T6
1B

C
U

BN FG
A

RG
L4

ZN
F4

51
PP

P2
R1

A
D

D
X5

D
O

C
K

10
PC

SK
5

SF
XN

1
O

PR
D

1
RB

BP
6

TP
53

Mutated gene connected component (CC)

H
C

C
 p

ro
pe

ns
ity

 sc
or

e

T923 (TP53-CC)

A
D

A
M

TS
20

SC
LY

G
A

TA
1

RA
LY

LA
G

3

ST
A

T2

(a)

0

200

400

600

800

A
D

G
B

LI
M

D
2

PC
D

H
11

X
ZN

F1
42

CU
X2

A
N

KS
1B

PA
BP

C5
TR

PM
1

KI
A

A
03

19
L

D
M

W
D

D
IP

2B
M

A
RK

3
TP

6V
0D

2
SE

LE
N

BP
1

G
A

LN
T1

2
M

U
C1

6
M

U
C1

2
M

U
C5

B
CP

EB
1

TS
PO

2
A

LG
13

CO
L2

2A
1

CH
ST

15
CD

H
3

FL
G

TN
XB

TL
N

1
D

M
D

U
SH

2A
EP

H
A

10
H

CK
RA

SG
RF

1
CA

CN
A

2D
1

CA
CN

A
1F

RY
R1

M
EF

2C
M

ED
12

L
O

TO
G

N
CO

A
3

G
0S

2
A

BC
C8

A
Q

P1
0

CT
BP

2
N

LK
G

IM
A

P8
M

EC
O

M
SC

M
L2

SA
LL

3
ZS

CA
N

10
U

H
RF

2
SY

N
E1

SY
N

E2
BL

M
N

FA
TC

4
H

D
A

C4
SE

H
1L

H
SP

A
1L

IF
T1

22
CY

P1
9A

1
G

RI
K4

G
RI

A
1

PC
LO

CE
P6

3
CE

P1
64

PR
R1

4L
N

LR
P7

D
A

CT
1

CC
D

C8
8C

V
A

N
G

L2
IE

R3
A

XI
N

1
SG

PP
2

A
D

A
M

8
A

BC
A

13
SC

N
8A

SC
N

10
A

A
N

K3
KL

C3
KD

EL
R2

KI
F2

0B
PO

TE
E

TK
1

D
TY

M
K

M
O

N
2

FI
BP

PT
PN

14
O

SM
R

ST
RA

D
B

TP
G

S1
FA

SN
LP

CA
T4

D
D

X4
6

PR
PF

3
W

D
R4

4
SH

RO
O

M
2

A
BC

C1
2

SM
G

8
SY

N
G

R3
U

TP
20

W
D

R3
TA

S2
R5

0
TP

53
LT

N
1

ZN
F6

77

Mutated gene connected component (CC)

H
CC

 p
ro

pe
ns

ity
 sc

or
e

T385 (TP53-CC)

(b)

Figure 3: Continued.

7Oxidative Medicine and Cellular Longevity



0

200

400

600

U
SP

51
CS

M
D

3
CS

M
D

1
SH

RO
O

M
4

SL
C4

7A
2

TR
PM

6
ZN

F7
13

KR
TA

P5
−4

TR
IM

27
TF

A
P2

A
CN

TN
5

KC
TD

15
SI

RT
6

CI
R1

CR
B2

TJ
P2

SO
X3

0
TA

F1
EP

40
0

KM
T2

A
FO

XA
1

G
A

LN
T1

4
LA

TS
2

SP
G

11
N

KX
6−

1
ZD

H
H

C1
4

FZ
D

10
ZN

F4
54

ED
A

N
EK

11
TN

FR
SF

17
CD

70
O

R4
K2

RF
X5

M
X2

LI
LR

A
4

CD
KL

5
CA

CN
A

1D
CA

M
K2

B
PP

P1
R1

2A
IT

G
B7

PL
O

D
3

D
D

IT
4

TH
BS

3
RY

R3 D
SP

LR
RC

7
CA

N
T1

N
N

T
PT

PR
A

A
N

K1
TS

N
A

RE
1

PI
G

Q
A

RH
G

EF
17

TU
BB

4A
G

PR
68

CE
TP A
LB

N
PT

X2
LR

RK
1

ZF
R

EE
F2

SH
3B

P4
A

SB
6

H
U

W
E1

CU
L5

U
BR

1
CO

M
M

D
1

ZN
F3

31
ZN

F3
54

A

Mutated gene connected component (CC)

H
CC

 p
ro

pe
ns

ity
 sc

or
e

T191 (ALB-CC)

(c)

0

200

400

600

A
RI

D
5A

RU
FY

4
IG

SF
9

M
A

A
TS

1
LA

RP
4

FS
IP

1
M

U
C1

2
CD

H
15

C1
7o

rf8
0

M
A

TN
1

TL
L1

FO
XA

2
D

LL
4

PL
CL

1
IV

N
S1

A
BP

D
O

CK
1

D
O

CK
7

D
O

K1
CD

H
23

N
BR

1
O

BS
CN IR
F2

KI
R3

D
L2

O
R4

M
1

G
G

T1
M

CC
C2

PR
SS

1
BA

RX
1

N
XF

5
N

U
P9

8
PL

IN
3

CL
V

S1
PO

R
A

CT
R5

CL
PT

M
1L

SN
PH

A
XI

N
1

CC
L2

0
KB

TB
D

13

Mutated gene connected component (CC)

H
CC

 p
ro

pe
ns

ity
 sc

or
e

T1031 (AXIN1-CC)

(d)

Figure 3: Continued.
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between clusters to form CCs in the ps-PPIs, and the largest
CC is called LCC (Figure 1).

The number of genes in each patient’s LCC was deter-
mined by the overlap and synergistic effect of CCs. Although
there were only 106 somatic mutations in ps-PPIs on aver-
age (1% genes of the ps-PPIs), the size of LCCs affected by
somatic mutations covered 50% of the ps-PPIs. The number
of driver mutations in LCCs ranged from 1 to 16, but the
number of nonmutated driver genes affected by passenger
mutations in LCCs ranged from 68 to 162, which means a
few mutations could have a greater impact. Moreover,
3573 DEGs between HCC and hepatitis B were identified,
including 1533 upregulated and 2040 downregulated. The
univariate Cox proportional hazard regression model was
performed, and 2275 OS-associated genes of HCC patients
were identified. The proportion of DEG/OS-associated genes
in LCCs showed significant differences because of strong
individualization. The proportion of DEG/OS-associated
genes in LCCs with that in LCCs (test) was compared; LCCs
contained more DEGs (p = 4:8e − 5, Figure 2(a)) and more
OS-associated genes (p = 0:0042, Figure 2(b)). The result
showed that there was not only an overlapping effect but also
a synergistic effect between CCs. The size of LCCs composed
of intrinsic mutations was significantly larger than the size of
LCCs (test) (p < 2:2e − 16, Figure 2(c)). Thus, the synergistic

cooperation between somatic mutations in cancer cannot be
attributed to random selection; it could be determined by the
topological properties of somatic mutations in the ps-PPIs.

To assess whether LCCs can represent ps-PPIs, we com-
pared the differences in the biological processes of genes
involved in ps-PPIs and LCCs; the gene set “h.all.v7.4.sym-
bols.gmt” from MSigDB database was used for GSVA. The
result showed that the genes in LCCs and the genes in ps-
PPIs activated the same biological processes, such as E2F tar-
gets, G2M checkpoint, mitotic spindle, and MYC target pro-
liferation processes while suppressing the xenobiotic
metabolism, allograft rejection, bile acid metabolism, and
inflammatory response, which were highly correlated with
HCC tumorigenesis. LCCs could represent the patient’s bio-
logical function while more fully presenting personalized
information (Figures 2(d) and 2(e)).

3.3. TP Identified for Each HCC Patient. From the above
results, the formation of LCCs resulted from the collabora-
tive effect of CCs and the genes in LCCs were closely related
to the cancer-related function. Then, identifying the CC
development sequence in LCCs was important for cancer
prevention, early diagnosis, and treatment. According to
the mutation-select-rule [26], a sequence of mutation clus-
ters was obtained for each patient, and most driver
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Figure 3: HCC-PS curve and patient subtypes. (a–d) Examples of HCC-PS curve. The horizontal axis is the order of mutations which means
the cluster sequence, and the vertical axis is the HCC-PS. The red indicates the driver gene. (e) Kaplan-Meier plot showing different
prognoses of CACNA1B-mutated patients vs. CACNA1B-WT patients. (f, g) Kaplan-Meier plot showing different prognoses of subtype
1 vs. subtype 2 in stage I CHCC-HBV patients and advanced-stage CHCC-HBV patients.
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mutations observed in HCC have been optimized to maxi-
mize the transition from hepatitis B to HCC after some pas-
senger mutations.

To identify the TP in the transformation from hepatitis
B to HCC, the biological function of genes in the subnet at
the time cluster joined in following the sequence of the clus-
ters was assessed according to the HCC-PS, and the HCC-PS
curve was plotted (Figures 3(a)–3(d)). The results showed
that the HCC-PS increased slowly with the addition of the
clusters of the passenger mutations; the HCC-PS underwent
a sudden increase abruptly when a cluster of the driver
mutation was added. And after that, the HCC-PS reverted
to steady again until the next driver mutation and its CC
were added. The HCC-PS reached the highest point, which
was defined as TP, and the patient completed the transfor-
mation from hepatitis B to HCC.

Taking patient T923 as an example (Figure 3(a)), the
patient has 55 genes with mutation, including 8 driver muta-
tions. The LCC of patient T923 consisting of 5593 genes was
obtained from ps-PPI; there were 53 mutations including 8
driver mutations (8 driver mutations were ARID1A, CAC-
NA1B, CPS, HNF1A, CUBN, FGA, ZNF451, and TP53).
The 53 HCC-PSs were calculated during the gradual joining
of the 53 mutation clusters. It was found that the clusters of
driver mutations ARID1A, HNF1A, and TP53 led to HCC-
PS dramatic increase; the clusters of passenger mutations
kept the HCC-PS stable due to the homeostasis. ARID1A
was an important tumor suppressor gene, and it played a
key role in the proliferation, differentiation, and apoptosis
processes [36]. CACNA1B mutation type led to a lower sur-

vival rate compared with wild type in HBV-HCC patients
(p < 0:05, Figure 3(e)). HNF1A was a novel oncogene that
regulates the stem cell properties of human pancreatic can-
cer [37], and the key role of HNF1A in HCC was yet to be
discovered. Under the synergistic influence of preceding
mutations and their clusters, the HCC-PS of the subnet
became progressively larger and reached its maximum until
the TP53 cluster joined into the LCC, and the patient com-
pleted the transformation from hepatitis B to HCC.

The TPs of patients were counted; the TP53 cluster
appeared as the TP in 51 patients, while 38 patients had
other driver mutations as TPs, including AXIN1 cluster,
CTNNB1 cluster, and other low-frequency genes. Therefore,
patients were divided into two subtypes, subtype 1 com-
posed of 51 patients with TP53 cluster as TPs and subtype
2 of 38 patients with no fixed gene as TPs. The survival time
of patients in subtype 1 was significantly shorter (p = 0:019,
Figure 3(f)), and the patients with advanced stages of
CHCC-HBV in subtype 1 had a shorter survival time than
patients in subtype 2 (p = 0:023, Figure 3(g)).

3.4. Validation of Patient Subtype Model. A three-step analy-
sis was performed, 39 subtype-related genes were selected in
subtype 1 patients (Figure 4(a)), and 9 signature genes and
their coefficients were obtained using the LASSO regression
(EVA1C: 0.065, LMAN2L: 0.184, MTF1: 0.051, NDUFV3:
0.237, NUP98: 0.054, RPAIN: 0.168, TFDP2: -0.067, YWHAE:
0.183, and ZNF530: -0.122). The semantic similarity among
GO terms between 9 genes was less than 0.5 calculated by
the R package “GOSemSim” [38] (Figure 4(b)). The PCCs
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Figure 4: Construction and validation of patient subtype model. (a) Venn diagram of subtype-associated genes. (b) Semantic similarity of
subtype-associated genes. (c, d) The PCCs for gene expression levels of the 9 signature genes in HCC and hepatitis B. (e, f) The ROC curve of
patient subtype model in HCC and hepatitis B. The ROC curve of the subtype model in HCC of CHCC-HBV patients with advanced stages
(g), hepatitis B of CHCC-HBV patients with advanced stages (h), and HCC of TCGA-HBV patients (i).
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for gene expression levels of the 9 signature genes also showed
a weak correlation in HCC and hepatitis B; the highest PCC
was 0.48 in HCC and 0.31 in hepatitis B separately
(Figures 4(c) and 4(d)); the results showed that 9 signature
genes had a wide range of biological function.

The subtype model showed an AUC of 0.861 in HCC
(Figure 4(e)) and 0.732 in hepatitis B (Figure 4(f)). So, the
patient subtype model showed good classification efficacy
in both HCC and hepatitis B. Validation of the subtype
model using the CHCC-HBV patients with advanced stages
showed an AUC value of 0.650 in HCC (Figure 4(g)) and
0.700 in hepatitis B (Figure 4(h)). The subtype model was
also further validated in TCGA dataset with an AUC of
0.799 (Figure 4(i)). The above results indicated that the sub-
type model could well identify the patient with TP53 cluster
as the TP.

3.5. Characteristic Changes between Hepatitis B and HCC in
Subtype 1 Patients. To investigate the biological processes
altered between hepatitis B and HCC in subtype 1 patients,
we conducted transcriptome-based GSEA and proteome-
based GSVA. The GSEA results showed that 21 KEGG path-
ways were activated and 48 KEGG pathways were suppressed
in HCC (Figure 5(a)). The GSVA results showed that 13
KEGG pathways were promoted and 41 KEGG pathways
were inhibited in HCC compared to HBV (Figure 5(b)). It
is consistent with previous studies that cell-cycle, DNA dam-
age repair pathways are activated in GSEA and GSVA results
(Figure 5(c)) [14]. HBV infection can produce immune-
mediated inflammation, which causes DNA damage in hepa-
tocytes, and the DNA of HBV can randomly integrate into
the chromosomal DNA of hepatocytes to further cause
DNA damage, which plays a role in the development of
HCC [39]. Taking the intersection of GSEA result and GSVA
result yielded 28 metabolism-related and immunity-related
KEGG pathways that were suppressed (Figure 5(d)). Some
studies have shown that metabolism and immunity-related
pathways play an important role in the development of
HCC [40]. This suggests that patients in subtype 1 with
HBV-HCC are more likely to have DNA damage as well as
metabolic disturbances.

Emerging immunotherapeutic approaches are helpful
in the treatment of HCC [41]. In this study, immune cell
infiltration was analyzed in subtype 1 patients. 21 immune
cells had a lower infiltration score in HCC (p < 0:01,
Figure 5(e)). It was suggested that the HCC of subtype 1
was a “cold tumor,” and the effect of single immunother-
apy might not be significant [42]. The correlation between
immune cells in HCC was significantly weaker than that
in hepatitis B (p < 0:05, Figures 5(f) and 5(g)). The result
revealed that combined treatment was essential for HCC
patients in subtype 1.

3.6. Potential Drugs for the Patients of Subtype 1. To find the
warning biomarkers for early detection and potential drug to
prevent the transformation of patients in subtype 1 from
hepatitis B to hepatocellular carcinoma, we constructed a
translational model from hepatitis B to HCC, combining
the model with TP can more accurately identify precancer-

ous states. And it had the AUC value of 0.989 in the training
dataset of stage I patients in CHCC-HBV (Figure 6(a)), the
AUC value of 0.858 in the test dataset of advanced-stage
patients in CHCC-HBV (Figure 6(b)), and the AUC value
of 0.935 in the test dataset of patients in TCGA-LIHC
(Figure 6(c)). Genes that were highly correlated with the
transformation model may have potential therapeutic impli-
cations for the patients in subtype 1. 4112 genes highly asso-
ciated with the HBV-HCC transformation model were
identified (jrj > 0:5, p < 0:05), and 293 genes whose CERES
scores closely associated with the HBV-HCC transformation
model were identified (r < −0:5, p < 0:05), and 907 shared
genes before TP53 cluster during the formation of LCC in
subtype 1 patients were identified. Finally, 10 potential drug
targets were obtained by taking intersections of shared genes
before TPs and transformation model-related genes, named
SNRPE, AURKB, RHOT1, NRAS, CDK2, CDC5L, TRIM28,
RFC2, TAF6, and HAMP (Figure 6(d)). The correlation of
10 genes with the transformation model was found to be
greater than 0.5 (Figure 6(e)). The CERES scores of 10 genes
were less than 0, which indicated that 10 genes were essential
for the survival of HCC CCLs (Figure 6(f)). Kaplan-Meier
plot showed that the gene expression levels of 7 genes were
significantly associated with patient prognosis in subtype 1
patients (Figures 6(g) and 6(h)). Therefore, we think these
genes can be used as potential drug targets to block the
transformation from hepatitis B to HCC, inhibiting the
function of these genes in subtype 1 patients may have great
preventative efficiency.

Next, drugs corresponding to the potential drug targets
were screened in the DrugBank database. There were 8
approved drugs for AURKB, CDK2, and HAMP. For exam-
ple, hesperidin, which targeted AURKB, has the function of
hepatoprotective, therapeutic drug-related liver injury,
improving inflammatory response, and preventing HCC for-
mation in rats [43, 44]; it could illustrate the accuracy of the
drug targets identified in our study. The study also provided
a more accurate population classification for hesperidin to
prevent and treat HCC. Higher gene expression of AURKB
and CDK2 led to a poorer prognosis for HCC patients.
Bosutinib is an inhibitor of CDK2 for chronic granuloma-
tous leukemia treatment [45], and fostamatinib is an inhibi-
tor of AURKB for persistent/chronic adult immune
thrombocytopenia treatment [46]. So, inhibiting the expres-
sion of AURKB and CDK2 may prolong HCC patients’ sur-
vival time.

“Cold tumors” were often associated with a poor prog-
nosis. Targeted activation of specific kinases can promote
the content of immune cells to form an inflammatory tumor
environment and then convert “cold tumors” to “hot
tumors,” thereby enhancing the efficacy of immune check-
point inhibitors [47]. To analyze whether potential targeted
drugs have this effect, we studied the correlation between
10 genes and immune cells. The results showed that the
HAMP gene expression level in HCC was positively corre-
lated with multiple immune cells (p < 0:01, Figure 7(a)),
whereas it was negatively correlated with multiple immune
cells in hepatitis B (p < 0:01, Figure 7(b)). Meanwhile, the
lower expression level of HAMP leads to a poorer prognosis
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Figure 5: Enrichment analysis and immune infiltration analysis in subtype 1 patients. (a) Transcriptome-based GSEA, node size indicates
the number of genes in the current pathway and node color indicates the significance of the results. (b) Proteome-based GSVA, purple
represents HCC and green represents hepatitis B, red indicates that the pathway is activated, and blue indicates that it is suppressed. The
Venn plot of (c) activated and (d) suppressed KEGG pathways in GSEA and GSVA. (e) Immune cell infiltration in HCC and hepatitis B,
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analysis of immune cells in (f) HCC and (g) hepatitis B.
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Figure 6: Identification of potential drugs in subtype 1 patients. (a–c) The ROC curve of the transformation model in the training set of
stage I patients in CHCC-HBV, advanced-stage patients in CHCC-HBV, and patients in TCGA-LIHC. (d) Venn for potential drug
targets. (e) The correlation between the expression level of 10 potential drug targets and the transformation model and CERES score. (f)
The correlation between the CERES score of 10 potential drug targets and the transformation model. (g, h) Kaplan-Meier plot of 7
potential drug targets.
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in HCC patients, so HAMP may be a key target for immu-
notherapy in HCC patients of subtype 1. This study suggests
that HAMP as a kinase may have the function to activate
immune cells and prevent the transformation from hepatitis
B to HCC.

We identified the potential drugs for personalized pre-
vention from hepatitis B to HCC. And for HCC patients
in subtype 1 who have completed the transformation from
hepatitis B to HCC, we screened more sensitive drugs for
these patients compared to patients in subtype 2; the
results show that podophyllotoxin, bromide, docetaxel, vin-
cristine, topotecan, CDK9_5576, and camptothecin may
have a better therapeutic effect for patients in subtype 1
(Figure 7(c)).

4. Discussion

The transition from normal cells to cancerous cells results
from the accumulation of somatic mutations [48]. During
this process, the TP can lead to the inflammatory cellular
transition toward cancer cells. We used percolation theory
to model this transition and propose a research flow based
on the accumulation mechanism of signaling pathway
affected by mutant genes in the PPI network to identify tran-
sition points and to type HCC. First, we defined a new study
unit, cluster, which is centered on a mutant gene and the
nonmutated gene neighbors affected by it in a patient-
specific protein-protein interaction (ps-PPI) network. Then,
the HCC propensity score was created to describe the
dynamical properties of signaling pathway accumulation

during the growing process of the ps-PPI; the HCC patients
with different transition points and their corresponding bio-
logical and clinical characteristics were identified and ana-
lyzed. Finally, we proposed a novel subtype model based
on the TPs; the patients in subtype 1 had metabolic dysreg-
ulation and low immune levels and had a worse prognosis.
Different therapeutic strategies for hepatitis B patients and
HCC patients of subtype 1 were absent. For hepatitis B
patients, we found the therapeutic targets and their drugs
to block the further progression from hepatitis B to HCC.
And for HCC patients, we demonstrated more sensitive anti-
oncology drugs relative to HCC patients of subtype 2.

In previous research, using data from REVEAL-HBV, 17
risk genes were developed to predict the development of
HBV-HCC [49]. Nevertheless, most prognostic markers
have been developed for all HCC patients without focusing
on individualized management and treatment, which
exhibits a deficiency in precision treatment and preemptive
prevention before HCC. In this study, 89 ps-PPIs were con-
structed, and the unique somatic mutations and gene
expression levels of each patient make the ps-PPI an accu-
rate and highly personalized basis for subsequent studies.
The ps-PPI provides more personalized medical guidance
for patients with the same cancer type and stage. Our
approach identified predisease states and biomarkers to
diagnose and interfere with disease onset early. 10 potential
drug targets and their 8 approved drugs for patients in sub-
type 1 were also further identified. The majority of the 8
approved drugs we identified were related to oncology treat-
ment, demonstrating the potential for drug repositioning.
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Figure 7: Identification of immunotherapy targets. (a, b) Correlation of 10 potential drug targets with immune cells in HCC and HBV.
Node size indicates the significance, and node color indicates the PCCs. (c) Drugs for patients in subtype 1 who have completed the
transformation from hepatitis B to HCC. (d, e) ROC curve of the transformation model in GSE121248.
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These results are important for reducing the incidence and
mortality of HBV-induced HCC, which provide important
value for the early diagnosis and preventive treatment of
HBV-HCC especially. As for patients in subtype 1 who have
completed the transformation from hepatitis B to HCC, we
also provide more sensitive drugs which may have a better
therapeutic effect.

Mutated TP53 is one of the most common genomic
alterations in human tumors. TP53 encodes p53, a tran-
scription factor that regulates many gene expressions
involved in numerous cellular processes [50]. HBV can bind
and inactivate p53 in vitro [51]. And recombinant adenovi-
rus human p53 (rAd-p53, gendicine), approved by CFDA in
2013, was used to repair the mutated P53 gene in head and
neck squamous cell carcinoma (HNSCC) [52]. In this study,
we found TP53 mutated and formed TP53 cluster in the
precancerous state in some patients, guiding the transition
from hepatitis B to HCC. The AUC of the transformation
model for all HBV-HCC patients in an independent test
dataset GSE121248 is 0.756 (Figure 7(d)), and the AUC for
patients in subtype 1 is 0.855 (Figure 7(e)). The result shows
that the translational model is more accurate in diagnosis
for patients in subtype 1.

5. Conclusion

In conclusion, this study showed the sequence of multiple
somatic mutations and their cooperative effect. And it fully
identified the warning transition point in HCC tumorigene-
sis for each patient, which reflects the individualized analy-
sis. However, there are a few patients who have gene
expression profiles, gene mutation profiles, and clinical data
of both hepatitis B and HCC at the same time. Therefore, the
constructed model may not broadly represent the transfor-
mation process of HBV-HCC, but the idea and method
may provide a reference for others to conduct in-depth stud-
ies. And we will collect more data to expand the sample of
our study for improving the reliability.
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