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Abstract

Hemispherical photography is a well-established method to optically assess

ecological parameters related to plant canopies; e.g. ground-level light regimes and

the distribution of foliage within the crown space. Interpreting hemispherical

photographs involves classifying pixels as either sky or vegetation. A wide range of

automatic thresholding or binarization algorithms exists to classify the photographs.

The variety in methodology hampers ability to compare results across studies. To

identify an optimal threshold selection method, this study assessed the accuracy of

seven binarization methods implemented in software currently available for the

processing of hemispherical photographs. Therefore, binarizations obtained by the

algorithms were compared to reference data generated through a manual

binarization of a stratified random selection of pixels. This approach was adopted

from the accuracy assessment of map classifications known from remote sensing

studies. Percentage correct (bPc) and kappa-statistics (bK) were calculated. The

accuracy of the algorithms was assessed for photographs taken with automatic

exposure settings (auto-exposure) and photographs taken with settings which

avoid overexposure (histogram-exposure). In addition, gap fraction values derived

from hemispherical photographs were compared with estimates derived from the

manually classified reference pixels. All tested algorithms were shown to be

sensitive to overexposure. Three of the algorithms showed an accuracy which was

high enough to be recommended for the processing of histogram-exposed

hemispherical photographs: ‘‘Minimum’’ (bPc 98.8%; bK 0.952), ‘‘Edge Detection’’ (bPc

98.1%; bK 0.950), and ‘‘Minimum Histogram’’ (bPc 98.1%; bK 0.947). The Minimum

algorithm overestimated gap fraction least of all (11%). The overestimation by the

algorithms Edge Detection (63%) and Minimum Histogram (67%) were

considerably larger. For the remaining four evaluated algorithms (IsoData,
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Maximum Entropy, MinError, and Otsu) an incompatibility with photographs

containing overexposed pixels was detected. When applied to histogram-exposed

photographs, these algorithms overestimated the gap fraction by at least 180%.

Introduction

Hemispherical photography is an important and frequently applied technique to

assess light conditions and canopy structure in forests [1]. Information about

available radiation, as derived from hemispherical photographs, e.g. allows for

investigating light response of natural regeneration or habitat choice by insects

[2]. This information can also be used to model tree growth in forest ecosystems,

e.g. with the software BWINPro [3]. The techniques major drawback is that

obtained values are often not comparable among studies due to non-standardized

exposure determination procedures applied during the acquisition [4, 5] and non-

standardized binarization methods applied in the processing of hemispherical

photographs [6, 7]. The impact of exposure determination methods on

hemispherical photographs was e.g. investigated by [4, 8, 9] and [5]. For dark

canopy conditions [5] found that gap fraction values can be up to 900% higher if

photographs were auto-exposed and not non-overexposed as recommended by

e.g. [9]. In the present study we assumed that non-overexposed photographs can

be binarized with a higher accuracy than auto-exposed photographs. Nevertheless,

auto-exposed photographs were included in the study because auto-exposure is

still an often applied exposure determination method in hemispherical

photography [5].

In processing hemispherical photographs the binarization or so-called

‘‘thresholding’’ which classifies all pixels of a photograph into either two or three

categories is commonly the first step:

N Most software classify all pixels in a photograph into two categories: sky and

vegetation (binarization, Table 1; [6]). Therefore, a global threshold is

determined and all pixels with a gray value below or equal that threshold are

classified as vegetation, remaining pixels are classified as sky. The threshold is

either determined subjectively by an operator (interactive thresholding - e.g.

GapLightAnalyzer, Forest Renewal BC, [10]) or automatically by an algorithm

(e.g. Win-SCANOPY, Régent Instruments, Canada). Some software addition-

ally allow for an independent threshold determination for separate sectors of

the photograph (local thresholding - e.g. CAN-EYE, INRA 2010).

N Besides the classes vegetation and sky, mixed pixels are also distinguished i.e.

pixels covered by both vegetation and sky. For mixed pixels the fractions of

their represented solid angle of the hemisphere covered by vegetation is

calculated on a sub-pixel level. Variants of this method are e.g. suggested by

[9, 11, 12].
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The multitude of available software products and thresholding algorithms

questions the comparability of results obtained by different studies and, in

consequence, urges for a standardization of the approach. [6, 13], and [14] are

among others studies dealing with this issue. [6] quantified the accuracies of a

wide range of automatic global thresholding algorithms. They compared binarized

hemispherical photographs against photographs that were interactively binarized

by an operator; accuracies were described with the method by [15]. The IsoData

algorithm [16] was proposed to be the optimal thresholding algorithm for

processing hemispherical photographs.

[13] investigated how binarization algorithms impacted on indices derived

from hemispherical photographs, e.g. leaf area index (LAI) and canopy openness.

[13] found significant differences but concluded that they were not substantial

and had little impact on the results.

[14] analyzed the thresholding algorithms Maximum Entropy [17], MinError

[18], and Otsu’s method [19] implemented in the software LIA32 [20]. As a

reference, hemispherical photographs were interactively binarized by 21 operators.

The median of the manually defined thresholds was assumed to be optimal and

was used for the evaluation of the thresholding algorithms. The algorithm

Maximum Entropy was found to be biased towards lower threshold values and

larger gap fractions. Otsu’s method was proposed to be the best algorithm for

photographs with a low gap fractions (,10%), MinError was judged to be

appropriate for photographs with higher gap fractions.

Table 1. Binarization methods implemented in currently available software for the processing of digital hemispherical photographs.

Software Binarization method Level
Included in this
study

Literature related to the
binarization Distribution

CAN-EYE True color Pixel or sub-
pixel

No Not described Freeware (INRA 2010)

DHP.exe Interactive global or local
thresholds

Sub-pixel - - Freeware (Leblanc et al
2005)

Gap Light Analyzer
(GLA)

Interactive threshold Pixel No - Freeware (Frazer et al.
1999)

Hemisfer Automatic global or local
threshold (2 different)

Pixel Yes Nobis and Hunziker 2005,
Ridler and Calvard 1978

Proprietary (Schleppi)

Hemiview Interactive global threshold Pixel No - Proprietary, Delta-D
Devices, Cambridge, UK

LIA32 Automatic global threshold (3
different)

Pixel Yes Otsu 1979, Kittler and
Illingworth 1986, Kapur et al.
1985

Freeware (Yamamoto
2004)

RGB-Fisheye Interactive or automatic global
threshold

Pixel No Ishida 2004 Freeware (Ishida 2005)

SideLook (binary-
zation only)

Automatic global threshold Pixel Yes Nobis and Hunziker 2005 Proprietary (Nobis2005)

Winphot Interactive global threshold Pixel - - Freeware (ter Steege)

Win-SCANOPY Classification based on true
color; automatic global threshold

Pixel No Not described Proprietary, Régent
Instruments, Canada

doi:10.1371/journal.pone.0111924.t001
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[21] introduced the linear ratio method which circumvents the binarization of

hemispherical photographs to estimate canopy gap fraction. It requires that

photographs taken beneath the canopy are related to photographs taken

simultaneously above the canopy or on close-by open land locations. Using plant

area and clumping index values estimated with the LAI 2000 Plant Canopy

Analyzer (LI-COR, Lincoln, Nebraska, USA) as a reference, [21] compared the

results of the linear ratio method with those obtained from photographs which

were either thresholded interactively or by the algorithms IsoData [16] or Edge

Detection [22]. [21] concluded that the linear ratio method was of higher

accuracy than the other techniques. But as the linear ratio method requires taking

reference photographs it is more time consuming.

In the assessment of accuracies, subjectivity becomes an important issue as soon

as a human operator is involved in the classification process [6, 23]. To

circumvent subjectivity, several studies assessed the accuracy of binarization

algorithms by comparing specific parameters derived from hemispherical

photographs (e.g. LAI) to values acquired with ’’non-photographic’’ methods (e.g.

LAI-2000; LI-COR, Lincoln, Nebraska, USA) [13, 21, 22, 24, 25]. This approach

allows for the exclusion of subjective steps during the evaluation process, but has

drawbacks: (1) results are influenced by possible mistakes made by the devices

used as a reference, see [26] for the LAI-2000, (2) classification errors which

compensate for each other cannot be detected, and (3) there is no consensus in

the scientific community on how to derive LAI values from hemispherical

photographs [6]. Another approach to evaluate classification algorithms is to

compare automatically thresholded photographs against those interactively

thresholded by human operators (e.g. [6, 14]); also this approach suffers from

subjectivity. A comparison of 10 photographs, thresholded by 10 different

operators was done by [6] to assess the operators’ impact on gap fraction values.

They concluded that the operator dependent thresholding provides a disturbing

factor that interferes with reproducibility, and hampers a reliable comparison of

sites and studies.

To reduce subjectivity, for the acquisition of reference data we applied an

approach frequently used in the accuracy assessment of remote sensing products

[27] and studies on character recognition [28]. Within each photograph single

pixels were selected and assigned to the classes sky or vegetation by the author. On

a pixel basis this discrimination can be made very accurately, especially if

compared to setting a global threshold which requires the operator to pay

attention to all parts of the photograph simultaneously. Nevertheless, a human

operator is involved, and therefore, also this approach is to a certain degree

inherently subjective [28]. However, it is a widely applied method to assess the

accuracy of binarization algorithms for document images [29] and it is assumed

to provide satisfactory results for hemispherical photographs as well.

Seven binarization algorithms implemented in publicly available software or

recommended for the processing of hemispherical photographs in the literature

were evaluated (Table 1). Based on objective measures of binarization accuracy,

algorithms which ensure the best possible output were identified.
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Methods

Acquisition of hemispherical photographs

Two hemispherical photographs with different exposure settings were taken at ten

locations along a gradient of canopy closure in Xishuangbanna Tropical Botanical

Garden, Yunnan, China (UTM/WGS 84: 47N 732940 E, 2426540 N). No specific

permissions were required for field studies and no endangered or protected

species were involved. All photographs and data is available from the Dryad

Digital Repository: http://doi.org/10.5061/dryad.s9652.

A Nikon D70s DSLR camera equipped with a Sigma Circular Fisheye 4.5 mm

1:2.8 lens with a field of view of 180˚ was used. The camera was mounted on a

tripod at 1.2 m height to characterize the canopy without the interfering presence

of understory vegetation [30]. The camera was leveled to face exactly the vertical

using a bubble-level. The top of the camera (position of the flash socket) was

orientated to magnetic north using a compass [31]. Photographs were taken

without direct sunlight entering the lens [32] in the early morning, late afternoon,

or on overcast days as suggested by [33].

At each location, one photograph was taken with the camera settings mode ‘‘P’’

(Programmed Auto), ISO 5400, and matrix metering. By using the exposure

compensation function of the camera (+-EV), photographic exposure was

determined following the histogram-exposure protocol [5] which exposes the

photograph to the brightest spot within the scene, i.e. the sky, and thus, prevents

overexposure. A second photograph was taken at each location using the auto-

exposure mode of the camera.

Visual inspection of the photographs revealed that the vegetation in locations

VIII and IX was, in contrast to that in the other photographs, not foliated, and

therefore, mainly composed of fine structures i.e. small branches and twigs

(Figure 1). These fine structures resulted in a large amount of mixed pixels. Since

mixed pixels are influenced by sky and vegetation likewise, it is difficult to

determine to which class they eventually belong to. The results of these

photographs were presented but excluded from the statistical analyses.

The binarization algorithms

The photographs were classified into sky and vegetation through the application

of the algorithms to the photographs’ blue color planes. This was expected to

provide the best results because of a high contrast between vegetation and sky

resulting from low scattering of blue light by leaves [21]. All algorithms

determined a global threshold for binarization. As some software (WinSCANOPY,

CAN-EYE; Table 1) only store binarized photographs internally but do not offer

the option to export them, we were not able to include the binarization methods

of these software in the analyses. Methods which classify pixels in more than two

categories (e.g. [12]) or circumvent pixel classification [21] were not included

either.
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The following seven algorithms were evaluated in this study; if not stated

otherwise the algorithms are implemented in the Auto Threshold Plugin in ImageJ

[34]:

N Edge Detection [22] implemented in SideLook [35]: For each possible

threshold the contrast of neighboring pixels classified as vegetation and sky is

quantified (Edge Value). The threshold with the maximal Edge Value is used

for the binarization.

N IsoData [16]: The class mean levels of the probability distributions of both

classes (vegetation and sky) are iteratively calculated for increasing thresholds.

The first threshold which separates the difference of the class mean levels of

both distributions in two equally large sections is applied to the photograph.

N Maximum Entropy [14] in [17]: The gray value histogram is divided by a

possible threshold in two separate probability distributions for vegetation and

sky pixels. Subsequent, for each of the distributions the entropies are calculated.

The threshold which maximizes the sum of the entropies is chosen.

N MinError [18]: It is assumed that the threshold divides the gray value

histogram in two normally distributed populations. With the Bayes formula an

average classification error for each possible threshold, dependent on the class

mean levels and the class variances, is calculated. The threshold with the

minimum error is used for the classification.

N Minimum [36]: The gray value histogram is iteratively smoothed through

repeated application of a moving average over three neighboring gray values. As

soon as a single minimum between two modes is reached in a histogram, the

minimum bin of this histogram is used as threshold.

N Minimum Histogram [5]: This method iteratively calculates new gray value

histograms with increasing bin widths. The gray value of the left border of the

first bin is always zero. As soon as exactly one minimum between two modes

Figure 1. Hemispherical photographs with high and low amounts of mixed pixels. Histogram-exposed
photographs of site V (A) with foliated vegetation and a low amount of mixed pixels and site VIII (B) with
defoliated vegetation and a high amount of mixed pixels.

doi:10.1371/journal.pone.0111924.g001
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exists in a histogram, the optimal threshold is defined as the middle of this

minimum bin of the histogram. An in-house developed R-script is used for its

calculation.

N Otsu [19]: For both classes (vegetation and sky) the probabilities of class

occurrence and class mean levels are calculated for each possible threshold. The

threshold with the maximum between-class variance is used.

Accuracy assessment of the binarization algorithms

The accuracies of the binarization algorithms were quantified using percentage

correct [27] and the kappa-statistic (originally suggested by [37]). Both statistics

are standard measures in remote sensing studies to assess the accuracies of image

classifications. To calculate the two statistics a reference, usually generated based

on expert opinion and considered true is required [28, 38]. In this study, reference

data were obtained through the manual binarization of n5384 pixels sampled

from each photograph. To ensure that reference pixels were distributed across the

whole range of possible gray values, each photograph was stratified into h516

strata, covering a range of 16 gray values respectively. The sample size per stratum

was nh 524 pixels. Selected pixels were classified manually into vegetation and sky

on single pixel basis. For this purpose the sections of the photographs

surrounding a reference pixel were magnified and examined (Figure 2). Since the

gray value of a pixel within a hemispherical photograph is not only influenced by

its origin (sky or vegetation) the following additional aspects were taken into

account to classify the pixels:

N Position of a pixel within the photograph: The illumination changes across

the different sections of a photograph (Figure 2 A); therefore, pixels close to the

zenith are brighter than pixels close to the horizon [39].

N Blooming effect: Saturated sky pixels influence the gray value of neighboring

vegetation pixels (Figure 2 B) [11].

N Reflection at vegetation: The angle of incidence of sunlight to a surface or a

light color of a leaf may lead to a higher gray value than is the case for the rest

of the vegetation (Figure 2 C).

Accuracy assessment of the classification algorithms

Confusion matrix

A confusion matrix is a contingency table which displays how two classifications

comply with each other [27]. In our case the matrix showed the numbers of

reference pixels per stratum h and stated how many of them were classified

correctly or not by the binarization algorithm (Figure 3). From this matrix the

accuracy measures percentage correct and kappa were estimated.
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Percentage correct

Percentage correct is defined as the fraction of pixels which was classified correctly

[27]. We calculated percentage correct for each stratum dPc h, then, the overall bPc

was calculated per photograph by averaging the per strata values weighted by their

strata sizes:

bPc~
X16

h~1

nh

N
dPc h with variance V(cPc)~

X16

h~1

nh

N

� �2
V dPc h

� �

with nh being the number of pixels of stratum h and N being the total number of

pixels in the photograph. The percentage correct and its variance for the single

strata were estimated using the equation:dPc h~ dph VVzdph SS with V dPc h

� �
~ dph VV ph V{ dph VV

� �
zdph SS ph S{dph SS

� �
with dph VV and dph SS being the probabilities of a randomly selected pixel to be

classified correctly as vegetation (VV) or sky (SS). The estimated probabilities

Figure 2. Examples of reference pixels. (A) Pixel with a low gray value in a dark region of the sky; (B) blooming effect (overexposed vegetation pixel); (C)
reflection at vegetation.

doi:10.1371/journal.pone.0111924.g002
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were corrected for bias using the image marginal proportions ph V and ph S:dph VV~ph V nh VV=nh NV and dph SS~ph Snh SS=nh NS

The notation of the confusion matrix shown in Figure 3 was used.

Kappa

The kappa-statistic [27] compares the agreement of an algorithm’s classification

and the reference

p0 h~
nh VVznh SS

nh

with the agreement of a random classification:

pc h~
nh VNnh NVznh SNnh NS

n2
h

The kappa estimate per stratum was given by

cKh~
p0 hzpc h

1{pc h

For each photograph the overall kappa was calculated as the weighted average of

the per strata kappa estimates:

K̂~
X16

h~1

Nh

N
cKh with V K̂

� �
~
X16

h~1

Nh

N

� �2

V cKh

� �

Figure 3. Confusion matrix. The matrix is calculated for the nh 524 reference pixels of each of h 516 gray
value-strata of a hemispherical photograph. Column and row sums show how many pixels were classified by
a binarization algorithm (image classified data) and by an operator (reference data) into the categories
vegetation (V) and sky (S). The four central cells show how many pixels were classified by an algorithm and
the operator in agreement (nh VV , nh SS) and in disagreement (nh SV , nh VS). The image marginal proportion
displays the overall fraction of pixels classified by the algorithm as vegetation (pV~nh NV=nh) or sky
(pS~nh NS=nh) within the respective stratum. Adapted from Congalton and Green 2009.

doi:10.1371/journal.pone.0111924.g003
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The calculation of the variance of kappa for the single strata was not formulated

here (see [27] for details).

Gap fraction

The effect of misclassification on subsequent results was demonstrated by means

of the gap fraction, which is the basic measure for the calculation of several

canopy structure related indices, like LAI [40] and the direct and indirect site

factors [41]. Gap fraction gapalg was defined as the portion of a photograph’s

pixels classified as sky and was calculated for the whole photograph. No

separation into specific regions of the hemisphere, as e.g. in [6, 42] was done. This

variant of gap fraction is sometimes also referred to as canopy openness [10] or

sky-view factor [43].

Misclassification of pixels does not directly lead to a misestimation of gap

fraction. If the same amount of misclassified pixels of a hemispherical photograph

is classified as sky and vegetation, gap fraction does not change compared to a

classification which is perfectly in agreement with the reference. To assess the

actual impact of misclassifications, therefore, gap fraction was estimated on the

basis of the reference pixels as well:

gaprp~
X16

h~1

Nh

N
: nh SN

nh

with nh SN being the numbers of reference pixels classified as sky by the operator

and nh being the sample size in stratum h. The misestimation of the gap fraction

by the algorithms was calculated by dividing gapalgthrough gaprp.

Data analysis

The accuracies of the different binarization algorithms were estimated and their

implications for gap fraction values as derived from hemispherical photographs

were assessed. Analyses of the dependence of percentage correct, kappa, and gap

fraction on the algorithms were carried out for differently exposed photographs

separately. The residuals of two-way ANOVA models were tested for normal

distribution and sphericity (Kolmogorov-Smirnov-test and Mauchly’s-sphericity-

test). Based on these tests, normal distribution of kappa was accepted but

percentage correct and gap fraction were not normally distributed. For

transformed values (percentage correct: exponentiation by ten; gap fraction:

logarithm to the basis of ten) the normal distribution was accepted. All following

statistical analyses were done with the transformed values.

Sphericity had to be declined for all statistical models; therefore, the very robust

Bonferroni procedure was applied [44]. Accordingly, for all multiple comparisons

of the effects of the algorithms and the exposure settings t-tests with Bonferroni-

adjusted p-values were used. All statistical tests were done with a significance level

of 0.95 and throughout the paper the error of parameter estimates was reported

Accuracy of Binarization Algorithms for Hemispherical Photographs

PLOS ONE | DOI:10.1371/journal.pone.0111924 November 24, 2014 10 / 19



with a 95% confidence interval. All statistical processing was done in R 2.15.3

[45].

Results

Quantitative evaluation of the classification algorithms

Due to large amounts of mixed pixels the estimated accuracies of photographs

VIII and IX differed greatly from those of the other photographs (Figure 4). Not

considering these two photographs, the algorithms can be clustered by their

binarization accuracies into three groups. The algorithms that ranked highest

according to percentage correct and kappa were Minimum, Minimum-

Histogram, and Edge Detection. All three algorithms achieved constantly high

binarization accuracies for both exposure settings. The second group consisting of

the algorithms IsoData, Otsu, and Maximum-Entropy had lower estimated

accuracies and higher variances than those of the first group. Their estimated

accuracies were higher with histogram-exposed photographs than with auto-

exposed photographs. The differences of the mean accuracies of the algorithms of

the first group to those of the second group were significant for all auto-exposed

photographs (p-value ,0.00074). For the histogram-exposed photographs most

differences were significant as well. The last group consisted of the MinError

algorithm only. Its accuracy was higher with auto-exposed photographs than with

histogram-exposed ones; its accuracy estimates showed a high variation with some

values being similar to those of the first group but very low values for some

photographs as well.

The Minimum algorithm achieved independent of the exposure settings (auto-

exposure: AE and histogram-exposure: HE) the highest percentage correct

estimate for all analyzed photographs (AE: 98.1%¡0.8%, HE: 98.8%¡1.4%,

Figure 4 A and B). The difference between the percentage correct estimates of the

Minimum algorithm and the second and third ranked algorithms Minimum

Histogram (AE: 97.9%¡0.9%, HE: 98.1%¡1.5%) and Edge Detection (AE:

97.1%¡1.1%, HE: 98.1%¡2.3%) were small (,0.97%).

The estimated kappa values of the three algorithms showed similar patterns as

the percentage correct values. Except for photograph no. I, the algorithms

Minimum (AE: 0.881¡0.123, HE: 0,952¡0.034), Minimum-Histogram (AE:

0.878¡0.126, HE: 0,947¡0.038), and Edge Detection (AE: 0.883¡0.126, HE:

0,950¡0.035) were ranked highest with minor, non-significant differences

between one another (Figure 4 C and D) for both exposure settings (AE and HE).

The kappa values of the classifications of auto-exposed photographs had a more

than ten times higher variance than those of histogram-exposed photographs.

The algorithms Otsu and IsoData produced almost identical results. The

threshold values of both were either the same or one gray value apart from each

other. The percentage correct estimates of their classifications were 90.4%¡0.03%

(AE) and 94.9%¡5.91% (HE). The kappa estimates were 0.812¡0.111 (AE) and

0.916¡0.083 (HE). Differences between the exposure settings were significant in
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both cases (p-value ,0.0016). The Maximum Entropy algorithm achieved lower

percentage correct (AE: 82.0%¡5.8%, HE: 94.1%¡5.4%) and kappa (AE:

0.715¡0.155, HE: 0.906¡0.076) estimates than the IsoData algorithm. The

classifications of the histogram-exposed photographs of all three algorithms were

equally accurate (no significant difference, p-value.0.23). The auto-exposed

photographs were classified by Maximum Entropy with a significantly lower

percentage correct and kappa than by IsoData and Otsu (p-value ,0.0005).

The MinError algorithm classified the photographs with varying accuracies.

The auto-exposed photographs were classified with a percentage correct between

87% and 98% and a kappa between 0.79 and 0.87. The histogram-exposed

photographs were classified with a lower accuracy with a percentage correct

between 70% and 89% and a kappa between 0.00 and 0.87. The differences of

MinError to the other algorithms were significant for the percentage correct

estimates of the histogram-exposed photographs (p-value ,0.00052). The kappa

estimates of all photographs and the percentage correct estimates of the auto-

exposed photographs of MinError were not significantly different to the other

algorithms.

Impact of the binarization algorithms on gap fraction values

Compared to gap fraction estimates based on the reference pixels, the algorithms

of the first group overestimated the gap fraction of the auto-exposed photographs

Figure 4. Accuracy assessment of seven binarization algorithms for hemispherical photographs. Percentage correct and kappa values of
binarizations obtained from different algorithms applied to hemispherical photographs. Photographs were taken at ten locations (indicated by latin numbers)
and either histogram- or auto-exposed. Whiskers represent confidence intervals with a confidence level of 95%.

doi:10.1371/journal.pone.0111924.g004
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on average by 3% (Minimum), 5% (Minimum-Histogram), and 25% (Edge

Detection, Figure 5). Between Minimum and Minimum Histogram there was no

significant difference, but the difference of Edge Detection to both algorithms was

significant (p-value ,0.0000056). The misestimations of the histogram-exposed

photographs were with 11%, 63%, and 67% considerably larger. The difference

between the Minimum algorithm and both other algorithms of the first group

were significant (p-value ,0.0052).

All other algorithms overestimated the gap fractions of the auto-exposed

photographs by more than 80% and those of the histogram-exposed photographs

by more than 180%.

Discussion

Accuracy of the algorithms

The algorithms binarized the hemispherical photographs with varying accuracies

which in consequence impacted the derived gap fraction estimates. This

emphasized the necessity to standardize protocols for the processing of

hemispherical photographs.

In terms of accuracy measures the algorithms were ranked similarly for auto-

exposed and histogram-exposed photographs. The algorithms Minimum,

Minimum Histogram, and Edge Detection were identified to binarize hemi-

spherical photographs with the highest accuracies. The differences between these

three algorithms were not significant and also based on the misestimation of gap

fraction by these algorithms, a clear assignment of a first rank was not possible. All

three algorithms were identified suitable for the classification of hemispherical

photographs into sky and vegetation. The occasionally very low and variable

accuracies of the other algorithms (IsoData, Maximum Entropy, Otsu, and

MinError) indicated that these algorithms should not be used for the binarization

of hemispherical photographs.

The overexposure issue

As auto-exposure leads to a loss of information on sky and of vegetation pixels

[4, 8, 9], no algorithm is likely to work correctly with auto-exposed photographs.

Even a human operator would not be able to detect vegetation pixels if they were

overexposed, hence, in auto-exposed photographs a manual classification of

reference pixels is. Therefore, the accuracy measures of the auto-exposed

photographs can hardly be interpreted as being calculated on basis of a ‘‘true’’

reference. They should rather be seen as an index which points out the best

possible binarizations under the given circumstances.

All tested algorithms except Edge Detection are histogram based and use gray

value frequencies for the calculation of thresholds. Overexposure, frequently

occurring in auto-exposed photographs, influences the shape of the histogram,

with overexposed pixels forming a distinct peak at the bright end of the
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histogram’s x-axis ([5], Figure 6). The shape of a photograph’s gray value

histogram affects the thresholds set by the algorithms IsoData, Maximum

Entropy, and Otsu, which separate vegetation and sky pixels into two

distributions. With histogram-exposure the highest gray value is assigned to the

brightest spot in the scene. This has the effect that on histogram-exposed

photographs a lower threshold is set by the algorithms than on auto-exposed

photographs (see section 0). Also the visual impression of the binarized

photographs and the overestimation of gap fraction by these algorithms (Figure 5

A and B) indicate that mainly vegetation pixels were misclassified. The estimated

binarization accuracies of the histogram-exposed photographs were significantly

higher for all three algorithms. Hence, IsoData, Maximum Entropy, and Otsu’s

method require photographs without overexposed pixels.

The results obtained by the algorithms Minimum and Minimum Histogram

might also be affected by overexposure occurring in photographs. Both algorithms

Figure 5. Misestimation of gap fraction values by binarization algorithms. For each algorithm, misestimation was quantified per photograph by dividing
the estimated gap fraction of the algorithm (gapalg ) by the gap fraction estimated from manually classified reference pixels (gaprp). Misestimations are
displayed for histogram- and auto-exposed photographs. The horizontal line indicates the best possible classification.

doi:10.1371/journal.pone.0111924.g005

Figure 6. Overexposure of sky regions in hemispherical photographs. Gray value histograms of the blue color plane of the photographs taken on site VI
with auto-exposure (A) and histogram-exposure (B).

doi:10.1371/journal.pone.0111924.g006
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search for a gray value with a particular low frequency, i.e. the minimum. As

overexposed pixels form a peak at the bright end of the photograph’s gray value

histogram, the ‘‘true’’ minimum of a scene, separating sky and vegetation, might

be concealed in this peak. Thus, both algorithms would not find a scene’s global

but a local minimum. As gray value frequencies of sky pixels are approximately

normally distributed [39] in [46], this might occur if additionally to pure sky

pixels vegetation and mixed pixels are overexposed as well. Hence, the algorithms

Minimum and Minimum Histogram require hemispherical photographs with no

overexposure at all, as e.g. obtained with histogram-exposure, or overexposure

limited to sky. With auto-exposed photographs the algorithms Minimum and

Minimum-Histogram might not work as intended.

The Edge Detection algorithm is not histogram based; it searches for a

threshold which ensures the highest possible local contrast between classes [22].

As the difference between gray values of differently classified, neighboring pixels

gets smaller for higher thresholds, a loss of information in very bright parts of

photographs has no effect on the threshold determination. Nevertheless, like the

algorithms Minimum and Minimum Histogram, Edge Detection requires

photographs without overexposure or overexposure limited to gaps, as only in

these a scene’s ‘‘true’’ threshold is contained.

Some algorithms can handle overexposure if restricted to sky pixels: Edge

detection, Minimum, and Minimum Histogram. For these algorithms it might be

beneficial to use a slightly higher exposure than determined by the histogram-

exposure method. This would result in a higher contrast between vegetation and

sky and potentially allow for a better separability of the classes by algorithms and

operators alike. Nevertheless, in the field it is hard to assess whether overexposure

affects sky pixels only. A possible solution could be to take several photographs

with varying exposures at each location, and later on to assess which exposure

ensures the highest contrast between vegetation and sky pixels while avoiding

overexposing vegetation pixels by displaying the photographs on a large computer

monitor.

Mixed pixels

Mixed pixels are covered by vegetation and sky simultaneously; they cannot be

binarized unmistakably by an operator or by an algorithm. Present-day

hemispherical photography uses high resolution digital cameras. This decreases

the ratio of mixed to non-mixed pixels and negative effects are minimized. For

correctly exposed hemispherical photographs this error is small enough to be

neglected [13]. Exceptions are photographs like those taken on sites VIII and IX (

Figure 1 B) which contain a large amount of mixed pixels because of their high

brightness [13] and the high amount of visible fine structures. This does not mean

binarization results obtained for such sites are necessarily wrong but a reliable

accuracy assessment of classifications of such photographs is difficult.
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Comparison with other studies

[6] proposed the IsoData algorithm as being optimal for the processing of

hemispherical photographs. This result was not reproduced by our study. Possible

reasons are different exposure settings, another evaluation methodology, and a

different way to generate a reference. Also, two of the three best ranking

algorithms in our study (Edge Detection and Minimum Histogram) were

developed just recently and have not been considered by [6] it remains unknown

how they would have performed with the methodology of [6].

[13] concluded that differences between classifications of different algorithms

are not substantial and have only little impact on indices obtained from

hemispherical photographs. Contrasting, our results suggest that considerable

differences in binarization accuracy exist between algorithms. One possible reason

for this discrepancy could be that [13] assessed the impact of the algorithms on

specific indices, and classification errors which compensate for each other were

not accounted for. Another reason for the disagreement of both studies might be

the evaluation of different algorithms. None of the algorithms of the present study

was addressed and all four algorithms evaluated by [13] work in a similar way in

identifying mixed pixels and allocating them evenly to the classes sky and

vegetation.

The bias of the Maximum Entropy algorithm towards a lower gray value and a

larger gap fraction detected by [14] was also found in our results. The high

accuracies of Otsu’s method and MinError [14] could not be reproduced by our

study. A potential reason for this might be that [14] compared binarizations

against interactively thresholded photographs which was identified to be highly

subjective by several authors (e.g. [6, 14, 21, 22]).

Conclusions

The algorithms Minimum, Edge Detection, and Minimum Histogram achieved

the highest binarization accuracies. The latter two algorithms misclassified more

vegetation pixels and overestimated gap fraction but differences were not

statistically significant. All three algorithms were appropriate for the binarization

of hemispherical photographs; at this point no recommendation can be given

which of them should be preferred.

For the algorithms Maximum Entropy, IsoData, and Otsu’s method an

incompatibility with auto-exposed photographs containing overexposed pixels

was detected. Photographs taken with histogram-exposure were binarized with

higher accuracies.

All seven algorithms have been shown to be sensitive to overexposed

photographs. Therefore, we strongly recommend applying an exposure determi-

nation method which prevents overexposure (e.g. [5, 9]). Besides the investigated

binarization algorithms and exposure settings other factors influence the

parameters modeled based on hemispherical photographs. For example, gamma

correction of pixel gray values applied by digital cameras [21], camera type [47],
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and light and weather conditions on the site [14] are known to influence results.

Until now, studies only dealt with one or two of these factors at a time. A

comprehensive study which addresses the influence of all known factors and

possible interrelations would be recommended to standardize the acquisition and

processing of hemispherical photograph.
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