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Abstract

To explore novel antitumor agents with high efficiency and low toxicity, riluzole alkyl 
derivatives (4a-4i) were synthesized. Their anti-proliferative activities against HeLa, HepG2, 
SP2/0, and MCF-7 cancer cell lines were assessed by the CCK-8 assay and compared with human 
normal liver (LO2) cells. Most of them showed potent cytotoxic effects against four human 
tumor cell lines and low toxic to LO2 cells. In particular, 2-(N-ethylamine)-6-trifluoromethoxy- 
benzothiazole (4a) showed a IC50 value of 7.76 μmol/L in HeLa cells and was found to be 
nontoxic to LO2 cells up to 65 μmol/L. Furthermore, flow cytometry indicated that 4a could 
induce remarkable early apoptosis and G2/M cell cycle arrest in HeLa cells. It also impaired the 
migration ability of HeLa cells in wound healing assays. Western blot results demonstrated that 
4a suppressed Bcl-2 protein expression but increased the level of Bax in HeLa cells, and elevated 
the Bax/Bcl-2 expression ratio. These new findings suggest that 4a exhibited beneficially anti-
cervical cancer effect on HeLa cells by inducing HeLa cell apoptosis. 
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Introduction

Cancer can be defined as a genomic disease 
that appears as a result of dynamic changes of 
the DNA of an organism’s cells during its life 
time. Cancer can develop in almost any organ 
or tissue. There are many kinds of cancer such 
as cervical cancer, breast cancer, prostate 
cancer, skin cancer, lung carcinoma, multiple 
myeloma, and T cell leukemia (1). Liver 
cancer is one of the common malignancies 
in many countries and an increasing cause of 
cancer death. Breast cancer is also a global 
concern, accounting for nearly a quarter of 
female cancer (2). According to the American 

Cancer Society, approximately one in eight 
women in the U.S. will develop invasive breast 
cancer at some point in their life (3). This 
toll will continue to increase as the number 
of women in age groups at risk for breast 
cancer increases. Cervical cancer (CC) is the 
second leading cause of cancer morbidity and 
mortality for women around the world. It is 
the term for a malignant, neoplasm arising 
from cells originating in the cervix uteri (4, 5).

The major treatments of cancer include 
surgery, radiation therapy, chemotherapy, 
immunotherapy, and vaccine therapy. The 
chemotherapy drug of cancer includes cisplatin, 
cyclophosphamide, sorafenib, ifosfamide, 
doxorubicin, and so on (6). However, these 
molecules display serious side effects in 
patients treated for a long time. Thus, it is 
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important to develop new medicines and 
novel approaches to increase the antitumor 
effects against cancer cells in order to increase 
the efficacy of cancer treatments. Riluzole 
(2-amino-6-trifuromethoxybenzothiazole, 
Compound 1) has an absolute bioavailability of 
approximate 60%, which is relatively high, 
and is also able to cross the blood-brain barrier. 
Riluzole has been approved and marketed 
for the treatment of ALS in many countries. 
In addition, it is also effective in animal 
models of Parkinson’s disease, Huntington’s 
disease and cerebral and retinal ischaemia 
(7). Riluzole exhibits strong anticonvulsant, 
neuroprotection and antidepressant effects, as 
well as sedative properties (8).

 Furthermore, increasing evidences have 
confirmed the anti-nociceptive and anti-
allodynic efficacy of riluzole in rat models 
of spinal cord injury (SCI) and in other pain 
models (9, 10).

Recently, preclinical studies also have 
demonstrated anti-tumor effects of riluzole 
in melanoma (11). Speyer and co-workers 
reported antitumor properties of riluzole in 
TNBC, which is an aggressive subtype of 
breast cancer with a high mortality rate (12). 
Seol et al. described that the riluzole can lead 
to a suppression of cell proliferation in liver 
primary cancer cells and cancer cell lines 
(13). Riluzole can also inhibit proliferation, 
induce apoptosis and prevent migration of 
osteosarcoma cells LM7 and glioblastoma 
cells U87 (14-16). Moreover, riluzole has been 
observed to reduce the growth of cancer cells 
in culture or in xenograft models for breast 
and prostate cancers.

We always focus on the riluzole and its 
alkyl derivatives for their lipid solubility and 
extensive physiological activities. Inspired 
by the antitumor effects of riluzole, we 
speculated that the alkyl derivatives of riluzole 
also have antitumor effects. Therefore, in this 
paper, antitumor properties of riluzole and its 
alkyl derivatives were evaluated against four 
cell lines: HeLa (human cervical cancer cell 
line), HepG2 (human liver cancer cell line), 
SP2/0 (mouse myeloma cell line), and MCF-7 
(human breast cancer cell line). 

Experimental

Characterization techniques
Melting points were measured on a X-4 

micro melting point apparatus. IR spectra were 
recorded on an Equiox-55 FTIR spectrometer. 
1H &13C spectra were recorded on a BRUKER 
AVANCE instrument. Elemental analyses 
for C, H, and N were obtained using a Vario 
EL-III analyzer. All the reagents and solvents 
used were of analytical grade and were used 
as supplied unless otherwise stated. TLC 
was performed on silica gel coated plates for 
monitoring the reactions.

Synthesis of compound 2. 
6-Trifluoromethoxy-2-amino-benzothiazole 

(46.82 g, 0.20 mol), hydrazinium sulfate 
(NH2NH2• H2SO4, 39.04 g, 0.30 mol) and 
hydrazine hydrate (80% aqueous solution, 
160 mL) were added to ethylene glycol (500 
mL). The mixture was heated and stirred 
under nitrogen at 130 °C for 4 h. TLC (CH2Cl2 
/ MeOH = 20:1) was used to confirm the 
completion of the reaction. After cooling to 
room temperature, the mixture was poured 
into the ice-water. A lot of gray solid was 
precipitated. The precipitate was filtered and 
washed three times with water. The solid was 
dried in vacuum to constant weight.

Synthesis of compound 3. 
Compound 2 (24.90 g, 0.10 mol) was 

slowly added in portions to a solution of SOCl2 
(240 mL) which was pre-heated at 65 °C. The 
solution was stirred for 5 h at 60 °C. Thionyl 
chloride was evaporated, then the residue 
was dissolved in CH2Cl2 and solvent was 
evaporated again. This process was repeated at 
least three times in order to remove all SOCl2. 
The residue was dissolved in CH2Cl2 and 
washed three times with water, dried over 
anhydrous Na2SO4. The solvent was removed 
under reduced pressure. The crude product 
was purified by column chromatography on 
silica gel eluted with petroleum ether (60-90 
°C) to give compound 3 (21.42 g, Yield 85%) 
as a white solid.

General procedure for the preparation of 
compounds 4a-4i. 

According to our previous research (17), 
2-Chloro-6-trifluoromethoxy-benzothiazole 
(2.54g, 10 mmol) was dissolved in 10 mL 
ethylamine aqueous solution. The resultant 
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mixture was stirred at room temperature 
overnight. The solvent was removed 
under reduced pressure. The residue was 
dissolved in CH2Cl2 and washed three times 
with water, dried over anhydrous Na2SO4, 
filtered and the solvent was completely 
removed. The crude material was purified 
by column chromatography over silica used 
dichloromethane as eluent to give compound 
4a as a white amorphous powder (2.22 g, 
84.7%). Compounds 4b-4i were also prepared 
by the same procedure from compound 3 with 
n-butylamine, diaethylamin, cyclohexylamine, 
pyrrolidine, piperidine, morpholine, and 
4-methylpiperidine, respectively. 

Cell cultures
MCF-7 (breast cancer cell line) was cultured 

in RPMI-1640 medium. HeLa (human cervical 
cancer cell line), HepG2 (human liver cancer 
cell line), SP2/0 (mouse myeloma cell line), 
and LO2 (human normal liver cell line) were 
cultured in DMEM medium. Each medium 
was supplemented with 10% fetal bovine 
serum, 1% L-glutamine and 1% penicillin/
streptomycin solution. The cell lines were 
kept in the incubator at 37 ℃ in a humidified 
atmosphere (90% RH) containing 5% CO2. 
The optimal plating density of cell lines was 
determined to be 5×104. The cell lines SP2/0 
and MCF-7 were obtained from Laboratory 
Center of Shaanxi Province People’s Hospital.

In-vitro anti-proliferative activity assays
All of the synthesized compounds (1-3 

and 4a-4i) were assessed for their cytotoxic 
activity by Cell Counting Kit-8 (Beyotime, 
China) using the HeLa, HepG2, SP2/0, MCF-
7 and LO2 cell lines. 2×103 cells per well 
were planted into 96-well plates in 100 μL 
growth medium and incubated for 24 h. Then, 
the cells were exposed to each compound 
in growth medium (DMSO< 0.5%) at five 
different concentrations (1.23, 3.70, 11.11, 
33.33, and 100 μmol/L) for 48 h. The mixture 
was incubated at 37 ℃ under a humidified 
5% CO2 atmosphere. After incubation, 10 μL 
CCK-8 solution was added to each well and 
the cells were further incubated for 2 h at 37 
℃ according to the CCK-8 Technical Manual. 
Then, the OD value for each well was read 
at wavelength 450 nm to determine the cell 

viability on a microplate reader (Synergy HT, 
USA). The IC50 (50% cell viability inhibition) 
values were calculated by means of SPSS, 
GraphPad prism software. The independent 
experiment was repeated at least three times. 
The percentage of growth inhibition was 
calculated as follows according to reference 
(18),

% of growth inhibition = [1 - absorbance 
of treated cells/absorbance of untreated cells] 
× 100%

Measurement of anti-migration activity 
Effects of compound 2 and 4a on the cell 

migration were evaluated in monolayer of 
HeLa cells. Once the monolayer was formed, 
a small scratch was made in the plate using a 
10 μL pipette tip (0 h, day 1). The monolayer 
was once washed with PBS to remove debris 
or the detached cells from the monolayer. 
The compound 2 and 4a were treated at 25 
μmol/L concentration and observed the plates 
after 24 h (day 2). Images were taken using 
an inverted microscope (19). The experiments 
were performed in triplicate.

The relative scratch healing rate was 
calculated as follows according to reference 
(20),

Scratch healing rate = (scratch width at 0 h 
– the remaining scratch width at 24 h)/scratch 
width in 0 h×100%

Cell morphological assessment
The cell morphological assessment was 

carried out as described by Wang S (21). 
Morphological changes, such as chromosomal 
condensation and fragmentation in the nuclei 
of HeLa, were observed by Hoechst 33258 
staining. In brief, HeLa cells were seeded at 
a concentration of 1×106 cells/well in 6-well 
plate and treated with compound 4a (12.5, 25 
and 50 μmol/L) for 24 h. Subsequently, the 
cells were harvested and washed once with 
PBS and then fixed with 4% paraformaldehyde 
in PBS for 10 min. After staining with 10 
mg/L Hoechst 33258 for 5 min, the cells were 
visualized under a fluorescent microscope 
(Nikon, Japan). Viable cells displayed normal 
nuclear size and uniform fluorescence, 
whereas apoptotic cells showed condensed, 
fractured, or distorted nuclei (22).

http://www.chemicalbook.com/ChemicalProductProperty_EN_CB4124405.htm
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Flow cytometric analysis of the cell cycle
Cell cycle assay was performed using the 

cell cycle and apoptosis analysis kit (Beyotime, 
China) and following the manufacturer’s 
instructions. The HeLa cells were treated with 
the indicated concentrations of compound 4a 
(12.5, 25 and 50 μmol/L) for 24 h. Next, the 
cells were harvested and washed twice with 
PBS. The cells were fixed with cold 70% 
ethanol for 12 h at 4 ℃ and were harvested 
and centrifuged at 1000 g for 5 min. Then, 
the cell density was adjusted to 1×106 cells/
mL with PBS. Finally, the cells were stained 
with a propidium iodide (PI) solution (50 μg/
mL). The number of cells in each phase of the 
cell cycle was analyzed by flow cytometry 
(FACSCalibur; BD Bioscience, USA).

Flow cytometric analysis of cell apoptosis 
The cell apoptosis analysis was evaluated 

by using the annexin V-FITC apoptosis 
detection kit  (Beyotime, China). Briefly, the 
HeLa cells (1×106 cells/well) were seeded into 
6-well culture plates and incubated for 24 h. 
Then the cells were incubated for 24 h with the 
compound 4a (12.5, 25 and 50 μmol/L). The 
cells were then rinsed, resuspended in 60 μL 
binding buffer and incubated for 10 min with 
5 μL annexin V-FITC at room temperature, 
followed by an addition of 120 μL binding 
buffer and 10 μL PI. The solutions were gently 
mixed and analyzed with the FACScan flow 
cytometry. The cells that were not treated were 
used as the control (23).

Western blot assay
HeLa cells were seeded into 6-well plates at 

106 cells per well with different concentrations 
of compound 4a (12.5, 25 and 50 μmol/L) and 
incubated at 37 ℃ for 24 h in the presence 
of 10% FBS. The controls were treated with 
vehicle (0.5% DMSO). The cells were lysed 
into ice-cold cell lysis buffer for 30 min and 
centrifuged at 13000 g for 15 min at 4 ℃. The 
protein concentrations of the supernatant were 
determined by a BCA protein Assay Kit. Equal 
amounts of protein lysates were separated on 
10% SDS-PAGE (sodium dodecyl sulfate-
polyacrylamide gel electrophoresis) and 
transferred onto PVDF membranes. The 
membranes were blocked with 5% non-fat 
milk in TBST (0.1% Tween 20 in TBS) buffer 

for 2 h, incubated with primary antibodies 
at 1:1000 dilutions at 4 ℃, and washed by 
TBST four times. Then, the membrane was 
immunobloted with Bax, Bcl-2, Caspase-3, 
Cleaved caspase-3, PI3K, and β-actin primary 
antibodies at 1:1000 dilutions at 4 °C for 12 
h. After secondary incubation in horseradish 
peroxidase-conjugated secondary antibodies 
at 1:3000 at room temperature for 2 h, protein 
bands were visualized on X-ray film (Kodak, 
Japan) using ECL (Beyotime, China). The 
immunoblots were detected by densitometric 
analysis. Equal loading of protein in each 
lane was confirmed by probing with β-actin 
antibody (24). 

Result and Discussion

In order to obtain new compounds, nine 
N-alkylated derivatives of riluzole were 
synthesized according to the synthetic 
procedure shown in Scheme 1. Riluzole was 
firstly transformed into (6-trifluoromethoxy-
benzothiazol-2-yl)-hydrazine, then it was 
chlorinated by SOCl2 to obtain 2-chloro-
6-trifluoromethoxy-benzothiazole. This 
intermediate product was treated with nine 
alkylamines to give N-alkylated derivatives 
of riluzole respectively. The structures of 
compounds were confirmed by means of 
elemental analysis, IR, 1HNMR and 13CNMR. 
The purity of each compound was determined 
by HPLC analysis. The values of purity were 
from 98.06% to 100%, which could meet 
the requirements of biological experiments. 
The data of these compounds were given as 
follows.

Trifluoromethoxy-benzothiazol-2-yl)-
hydrazine (Compound 2)

Gray schistose; mp 205-206 °C; IR (KBr) 
υmax 3362, 3205, 3124, 2963, 2880, 2361, 
1660, 1564, 1464, 1261, 1123 cm-1; 1H NMR 
(DMSO-d6, 500 MHz): δ= 9.22 (1H, s, -NH-), 
7.79 (1H, s, Ar-H), 7.35 (1H, d, J = 8.7 Hz, 
Ar-H), 7.17 (1H, d, J = 8.7 Hz, Ar-H), 5.12 
(2H, s, -NH2); ESI-MS m/z 248.39[M-H]-; 
C8H6F3N3OS (calcd. 249.21) Anal. Calcd. for 
C8H6F3N3OS: C, 38.56; H, 2.43; N, 16.86. 
Found: C, 38.44; H, 2.34; N, 16.75. Its purity 
by HPLC was 100%.
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Chloro-6-trifluoromethoxy benzothiazole 
(Compound 3) 

White solid; mp 38-39 °C; IR (KBr) υmax 
3099, 3078, 2361, 1480, 1452, 1262, 1164, 
1016, 865 cm-1;  1H NMR (CDCl3, 500 MHz) 
: δ= 7.96 (1H, d, J = 8.9 Hz, Ar-H), 7.66 (1H, 
s, Ar-H), 7.37 (1H, d, J = 8.9 Hz, Ar-H); 
ESI-MS: m/z 251.91 [M-H]-; C8H3ClF3NOS 
(calcd.252.96); Anal. Calcd for C8H3ClF3NOS: 
C, 37.88; H, 1.19; N, 5.52. Found: C, 37.95; H, 
1.13; N, 5.59. Its purity by HPLC was 98.06%.

(N-Ethylamine)-6-trifluoromethoxy-
benzothiazole (Compound 4a) 

White solid; mp 133-134 °C; IR (KBr) υmax 
3210, 2987, 2922, 2361, 1622, 1584, 1461, 
1250, 1214, 1152, 807 cm−1; 1H NMR (CDCl3, 
500 MHz): δ = 7.48 (1H, d, J = 8.8 Hz, Ar-H), 
7.46 (1H, s, Ar-H), 7.16 (1H, d, J = 8.8 Hz, 
Ar-H), 5.69 (1H, s, -NH-), 3.47 (2H, q, J = 
7.2 Hz, -CH2-), 1.34 (3H, t, J = 7.2 Hz, -CH3); 
13C NMR(CDCl3, 125 MHz): δ = 167.95 (C, 
S-C-N), 150.94 (C, Ar-O), 143.57 (C, Ar-N), 
130.86 (C, Ar-S), 121.65(C, -CF3), 119.68 
(C, Ar-4), 118.92 (C, Ar-5), 114.07 (C, Ar-
7), 40.43 (C, N-C-C), 14.83(C, -CH3); Anal. 
Calcd for C10H9F3N2OS: C, 45.80; H, 3.46; N, 
10.68. Found: C, 45.93; H, 3.40; N, 10.76. Its 
purity by HPLC was 100%.

(N-Propylamine)-6-trifluoromethoxy-
benzothiazole (4b)

White solid; mp 88-89 °C; IR (KBr) υmax 
3150, 2978, 2861, 2361, 1614, 1556, 1463, 
1281, 1214, 1162, 808 cm−1; 1H NMR (CDCl3, 
500 MHz): δ = 7.47 (1H, d, J = 8.8 Hz, Ar-H), 
7.45 (1H, s, Ar-H), 7.16 (1H, d, J = 8.8 Hz, Ar-

H), 5.75 (1H, s, -NH-), 3.39 (2H, t, J = 7.1 Hz, 
NH-CH2), 1.75-1.69 (2H, m, -CH2CH2CH3), 
1.02 (3H, t, J = 7.4 Hz, -CH3); 

13C NMR 
(CDCl3, 125 MHz): δ = 168.23 (C, S-C-N), 
150.98 (C, Ar-O), 143.54 (C, Ar-N), 130.84 
(C, Ar-S), 121.65(C, -CF3), 119.68 (C, Ar-4), 
118.87 (C, Ar-5), 114.06 (C, Ar-7), 47.44 (C, 
NH-C-C), 22.79 (C, C-C-C),11.34 (C, -CH3); 
Anal. Calcd for C11H11F3N2OS: C, 47.82; H, 
4.01; N, 10.14. Found: C, 47.69; H, 4.20; N, 
10.03. Its purity by HPLC was 100%.

 (N-n-butylamine)-6-trifluoromethoxy-
benzothiazole (4c) 

White solid; mp 76-78 °C; IR (KBr) υmax 
3211, 2923, 2859, 2361, 1626, 1566, 1462, 
1264, 1166, 815 cm−1; 1H NMR (CDCl3, 500 
MHz): δ = 7.47 (1H, d, J = 8.8 Hz, Ar-H), 
7.45 (1H, s, Ar-H), 7.15 (1H, d, J = 8.7Hz, Ar-
H), 5.74 (1H, s, -NH-), 3.41 (2H, t, J = 7.1 
Hz, NHCH2), 1.71-1.65(2H, m, NHCH2CH2), 
1.48-1.41 (2H, m, -CH2CH3), 0.96 (3H, t, J = 
7.4 Hz, CH3); Anal. Calcd for C12H13F3N2OS: 
C, 49.65; H, 4.51; N, 9.65. Found: C, 49.54; H, 
4.46; N, 9.69. Its purity by HPLC was 100%.

 (N-diaethylamine)-6-trifluoromethoxy-
benzothiazole (4d) 

White solid; mp 38-39 °C; IR (KBr) υmax 
3090, 2981, 2938, 2857, 2361, 1607, 1550, 
1460, 1359, 1294, 1215, 1151 cm−1; 1H NMR 
(Acetone-d6, 500 MHz): δ = 7.72 (1H, s, Ar-
H), 7.46 (1H, d, J = 8.8 Hz, Ar-H), 7.21 (1H, 
d, J = 8.8Hz, Ar-H), 3.62 (4H, q, J = 7.1 Hz, 
2×-CH2-), 1.27 (6H, t, J = 7.1 Hz, 2×-CH3); 
13C NMR (CDCl3, 100 MHz): δ = 167.81 (C, 
S-C-N), 152.15 (C, Ar-O), 142.94 (C, Ar-N), 
131.27 (C, Ar-S), 121.94(C, -CF3), 119.50 
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(C, Ar-4), 118.64 (C, Ar-5), 113.76 (C, Ar-
7), 45.52 (C, N-C-C), 12.80 (C, -CH3); Anal. 
Calcd for C12H13F3N2OS: C, 49.65; H, 4.51; N, 
9.65. Found: C, 49.54; H, 4.62; N, 9.77. Its 
purity by HPLC was 98.45%.

 (N-cyclohexylamine)-6-trifluoromethoxy-
benzothiazole (4e) 

White solid; mp 96-97 °C; IR (KBr) υmax 
3427, 3231, 2933, 2858, 1616, 1548, 1456, 
1249, 1220, 1162 cm−1; 1H NMR (CDCl3, 500 
MHz): δ = 7.46 (1H, d, J=8.8 Hz, Ar-H), 7.44 
(1H, s, Ar-H), 7.15 (1H, d, J = 8.7Hz, Ar-H), 
5.53 (s, 1H, -NH-), 3.56 (1H, t, J = 9.6 Hz, 
-CH-), 2.14-2.10(2H, m, -CH2-), 1.80-1.76 
(2H, m, -CH2-), 1.52-1.14 (6H, m, 3×-CH2-); 
13C NMR(CDCl3, 100 MHz): δ = 167.12 (C, 
S-C-N), 151.26 (C, Ar-O), 143.45 (C, Ar-N), 
130.98 (C, Ar-S), 121.94(C, -CF3), 119.62 
(C, Ar-4), 118.85 (C, Ar-5), 113.98 (C, Ar-7), 
54.64 (C, N-C-C), 33.20 (C, -CH2-), 25.42 
(C, -CH2-), 24.68 (C, -CH2-); Anal. Calcd for 
C14H15F3N2OS: C, 53.15; H, 4.78; N, 8.86. 
Found: C, 53.33; H, 4.68; N, 8.67. Its purity 
by HPLC was 99.28%.

 (N-pyrrolidine)-6-trifluoromethoxy-
benzothiazole (4f) 

White solid; mp 129-130 °C; IR (KBr) 
υmax 3418, 2969, 2870, 2361, 1614, 1554, 
1452, 1365, 1243, 1214, 1184 cm−1; 1H NMR 
(CDCl3, 500 MHz): δ = 7.53 (1H, d, J = 8.8 
Hz, Ar-H), 7.46 (1H, s, Ar-H), 7.15 (1H, d, J 
= 8.8 Hz, Ar-H), 3.58 (4H, t, J=6.3Hz, CH2-N-
CH2), 2.11-2.06 (4H, m, -CH2CH2-); 

13C NMR 
(CDCl3, 100 MHz): δ = 165.79 (C, S-C-N), 
152.15 (C, Ar-O), 142.91 C, Ar-N), 131.35 
(C, Ar-S), 121.94(C, -CF3), 119.49 (C, Ar-4), 
118.74 (C, Ar-5), 113.89 (C, Ar-7), 49.52 (C, 
N-C-C), 25.61 (C, -CH2-); Anal. Calcd for 
C12H11F3N2OS: C, 49.99; H, 3.85; N, 9.72. 
Found: C, 49.87; H, 3.75; N, 9.61. Its purity 
by HPLC was 100%.

2-(N-piperidine)-6-trifluoromethoxy-
benzothiazole (4g) 

White solid; mp 74-75 °C; IR (KBr) υmax 
3423, 2940, 2859, 2361, 1608, 1549, 1461, 
1246, 1158 cm−1; 1H NMR (CDCl3, 500 MHz): 
δ = 7.49 (1H, d, J=8.8 Hz, Ar-H), 7.45 (1H, s, 
Ar-H), 7.14 (1H, d, J = 8.8 Hz, Ar-H), 3.61-
3.60 (4H, m, -CH2-N-CH2-), 1.72-1.71 (6H, m, 
-CH2CH2CH2-); 

13C NMR (CDCl3, 125 MHz): 

δ = 169.27 (C, S-C-N), 151.78 (C, Ar-O), 
143.17 (C, Ar-N), 131.32 (C, Ar-S), 121.69(C, 
-CF3), 119.56 (C, Ar-4), 118.92 (C, Ar-5), 
113.80 (C, Ar-7), 49.68 (C, N-C-C), 25.27 
(C, -CH2-), 24.17 (C, -CH2-); Anal. Calcd for 
C13H13F3N2OS: C, 51.65; H, 4.33; N, 9.27. 
Found: C, 51.46; H, 4.42; N, 9.16. Its purity 
by HPLC was 100%.

 (N-morpholine)-6-trifluoromethoxy-
benzothiazole (4h) 

White solid; mp 103-105 °C; IR (KBr) υmax 
3447, 2974, 2907, 2866, 1608, 1549, 1459, 
1380, 1339, 1267, 1112, 1026 cm−1; 1H NMR 
(CDCl3, 500 MHz): δ = 7.52 (1H, d, J=8.8 Hz, 
Ar-H), 7.49 (1H, s, Ar-H), 7.17 (1H, d, J = 8.8 
Hz, Ar-H), 3.84-3.82 (4H, m, -CH2-O-CH2-), 
3.63-3.61 (4H, m, -CH2-N-CH2-); 

13C NMR 
(CDCl3, 125 MHz): δ = 169.45 (C, S-C-N), 
151.22 (C, Ar-O), 143.64 (C, Ar-N), 131.19 
(C, Ar-S), 121.65(C, -CF3), 119.86 (C, Ar-4), 
119.57 (C, Ar-5), 113.98 (C, Ar-7), 66.18 (C, 
N-C-C), 48.51 (C, -CH2-); Anal. Calcd for 
C12H11F3N2O2S: C, 47.37; H, 3.64; N, 9.21. 
Found: C, 47.49; H, 3.54; N, 9.30. Its purity 
by HPLC was 100%.

2 - ( N - 4 - m e t h y l - 1 - p i p e r i d i n y l ) - 6 -
trifluoromethoxy-benzothiazole (4i)

White solid; mp 77-78 °C; IR (KBr) υmax 
3419, 2940, 2805, 2727, 1614, 1470, 1358, 
1271, 1184, 772 cm−1; 1H NMR (CDCl3, 500 
MHz): δ = 7.47 (1H, d, J = 8.7 Hz, Ar-H), 
7.44 (1H, s, Ar-H), 7.13 (1H, d, J = 8.2 Hz, 
Ar-H), 4.09 (2H, d, J = 12.7 Hz, N-CH2-), 3.12 
(2H, t, J = 12.7 Hz, -CH2-N), 1.77 (2H, d, J 
= 12.7 Hz, -CH2-), 1.68–1.63 (1H, m, -CH-), 
1.36-1.26 (2H, m, -CH2-), 1.00 (3H, d, J = 6.5 
Hz, -CH3); 

13C NMR (CDCl3, 100 MHz): δ = 
169.20 (C, S-C-N), 151.80 (C, Ar-O), 143.18 
(C, Ar-N), 131.36 (C, Ar-S), 121.93 (C, -CF3), 
119.60 (C, Ar-4), 118.94 (C, Ar-5), 113.83 (C, 
Ar-7), 49.07 (C, N-C-C), 33.43 (C, -CH2-), 
30.79 (C, -CH-), 21.71 (C, -CH3); Anal. Calcd 
for C14H15F3N2OS: C, 53.15; H, 4.78; N, 8.86. 
Found: C, 53.76; H, 4.60; N, 8.70. Its purity 
by HPLC was 100%.

We optimized the synthetic condition and 
processing method of compound 3 based on a 
reference (25). For example, in the preparation 
process of compound 2, the precipitate was 
vacuum filtered and triturated in a mixture of 
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water-diethyl ether according to the reference 
(26). Because precipitate was not complete, the 
yield was very low. Therefore, our method was 
that the reaction mixture was poured into ice 
water. In the process of preparing compound 
3, it was not an appropriate method to destroy 
the residue SOCl2 by water. The SOCl2 should 
be evaporated, then the residue was dissolved 
in CH2Cl2. The CH2Cl2 which contains residual 
SOCl2 was evaporated again. It can be used 
repeatedly. In the second step reaction, tail 
gas absorption equipment was needed. As we 
can see from scheme 1, compound 3 was an 
important intermediate. The chlorine atom in 
compound 3 had high reactivity, so it was very 
easy to be substituted by the alkylamine. In 
the third step reaction, the alkylamine was not 
only a substrate but also a solvent. The excess 
alkylamine could be recycled under reduced 
pressure after the completion of the reaction. 
Therefore, the solvent was economized owing 
to its reused characteristics and the reduction 
of environmental pollution.

These compounds were screened for their 
anti-proliferative activities in four tumor cell 
lines (HeLa, HepG2, SP2/0 and MCF-7) using 

CCK-8 assay. The resulting cytotoxic activity 
data of riluzole and its derivatives were 
presented in Table 1.

Regarding the series of riluzole derivatives, 
the highest activity was displayed by 
compound 4a in HeLa and MCF-7 cancer cells 
(IC50 = 7.76 and 7.72 μmol/L, respectively). It 
is very close to the reference drug Sorafenib. 
Compound 4b obviously reduced HepG2 cell 
proliferation and IC50 value was found to be 
17.97 μmol/L. Compound 4b was the best 
one among all compounds for HepG2 cell. 
In the SP2/0 cancer cells, the highest activity 
was observed for compound 2 (IC50 = 7.45 
μmol/L). Interestingly, compound 2 with 
hydrazine substituent had good activity (IC50 
in the range of 7.45–28.58 μmol/L) in all the 
examined cancer cell lines whereas compound 
4i with N-4-methyl-1-piperidinyl substituent 
was found potent (IC50 = 11.52 μmol/L) only 
in MCF-7 cancer cell line. Riluzole had some 
activities in all the examined cancer cell 
lines; however, the IC50 values (the range of 
29.14 – 48.38 μmol/L) were higher than some 
derivatives.

Anti-proliferative activities of compounds 
Table 1. In-vitro cytotoxic activity of all compounds in HeLa, HepG2, SP2/0, MCF-7 and LO2 cell lines. 

 
 

Compounds Cytotoxicity (IC50, μM）） 
HeLa HepG2 SP2/0 MCF-7 L02 

1 48.38±1.89 43.49±1.72 30.94±1.83 29.14±1.70 84.6±4.70 
2 10.36±0.77 28.54±0.91 7.45±0.71 10.52±0.66 100±5.16 
3 >100 >100 >100 >100 100±6.07 
4a 7.76±0.45 33.69±1.04 51.15±2.73 7.72±0.53 65±4.38 
4b 30.13±1.28 17.97±0.88 46.44±3.62 12.9±0.69 32.2±3.03 
4c 16.71±0.94 >100 58.96±3.32 21.94±0.97 25.6±3.12 
4d >100 >100 48.46±3.41 46.6±2.77 227±7.82 
4e 20.94±0.98 20.21±0.93 17.73±0.81 20.49±1.09 33.8±2.40 
4f >100 >100 >100 >100 65.2±3.53 
4g >100 >100 32.58±1.44 25.8±1.21 134±5.18 
4h >100 >100 98.74±3.28 >100 137±5.28 
4i >100 >100 11.52±0.85 >100 112±5.62 
Sorafenib 5.16±0.62 12.04±2.12 4.25±0.75 7.66±0.73 11.91±0.32 

 
 
Note: IC50 is the compound concentration required to inhibit cell growth by 50%. Sorafenib was used as a positive control and reference drug (27). 
 
  

Table 1. In-vitro cytotoxic activity of all compounds in HeLa, HepG2, SP2/0, MCF-7 and LO2 cell lines.

Note: IC50 is the compound concentration required to inhibit cell growth by 50%. Sorafenib was used as a positive control and 
reference drug (27).

was found, such as 4a vs HeLa and MCF-7, 
4b vs HepG2, compound 2 vs SP2/0. 

The relationship between growth inhibition 
and concentration of some compounds (1, 2, 
4a-4c) were investigated. Results depicted in 
Figure 1. indicated that these five compounds 
reduced HeLa cell proliferation in a dose-
depended manner. As we can see from the 
Figure 1, the percentage of growth inhibition 

3, 4f, and 4h were negligible because their 
IC50 values were more than 100 μmol/L, 
which were above the highest clinically 
attainable concentration. The structure 
activity relationship (SAR) couldn’t be 
concluded, because different activities for 
these compounds were shown for different 
cancer cells. For these four cancer cell lines, 
the highest activity compound for each one 
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of 4a increased rapidly as the concentration 
increase. However, other compounds 
especially riluzole increased slowly. These 
results also suggested that compound 4a had 
conspicuously anti-proliferative activity.

The cytotoxic effects were also researched 
in the normal human liver (LO2) cells to assess 
the toxicity of these compounds (Table 2). The 
selectivity index (SI) was calculated as the 
ratio of the IC50 for the normal cell line (LO2) 
to the IC50 for a respective cancerous cell line. 
Higher values of SI indicate greater anticancer 

specificity and the compounds displaying 
SI values higher than 3 were considered to 
be highly selective (28). Some of riluzole 
derivatives not only had high cytotoxic 
activity against cancer cells but also displayed 
low toxicity against normal human liver (LO2) 
cells and their SI values were higher than 
3.5. The SI values of compound 4a in HeLa 
and MCF-7 cancer cells were 8.37 and 8.41, 
respectively. The SI value of compound 2 in 
SP2/0 cancer cells was as high as 13.42, which 
had shown greater anticancer specificity. In 
this paper, compound 4a was investigated in 
further research for its excellent anticancer 
activity.

Cancer cell migration and invasion is 
the main feature responsible for malignant 
tumor progression and metastasis (29). 
Cellular migration, the major process in 
cancer metastasis starts with the loss of cell-
cell adhesion (helps in the detachment of 
cells from primary tumor) followed by loss 
of cell-matrix interaction (drives the cells to 
invade to the surrounding stroma) (30). To 
investigate the effect of compound 2 and 4a 
on the cell migration ability, we performed the 
vitro scratch wound healing assay by using 
HeLa cancer cells. As shown in Figure 2, the 
wound gap of control group (vehicle) almost 
closed after 24 h without treatment. However, 
the gap width of 4a group didn’t change after 
treatment with compound 4a for 24 h. HeLa 

 
Figure 1. The relationship between growth inhibition and concentration of compounds 1, 2, 4a-4c on HeLa cells. 

  

Figure 1. The relationship between growth inhibition and concentration of compounds 1, 2, 4a-4c on HeLa cells.

 
 

Table 2. The calculated values of the selectivity index (SI) of some compounds. 
 
 

Compounds 
SI 

HeLa HepG2 SP2/0 MCF-7 

1 1.75 1.95 2.73 2.90 

2 9.65 3.50 13.42 9.51 

4a 8.37 1.93 1.27 8.41 

4b 1.07 1.79 0.69 2.50 

4c 1.53 0.26 0.43 1.17 

4e 1.62 1.67 1.91 1.65 

4g 1.34 1.34 4.12 5.20 

4i 1.12 1.12 9.68 1.12 
 
 
Note: The selectivity index (SI) was calculated for each compound using the formula: SI = IC50 for normal cell line LO2/IC50 for respective 
cancerous cell line. A beneficial SI > 1.0 indicates a compound with efficacy against tumor cells greater than the toxicity against normal cells. 

 

 

Table 2. The calculated values of the selectivity index (SI) of 
some compounds.

Note: The selectivity index (SI) was calculated for each 
compound using the formula: SI = IC50 for normal cell line 
LO2/IC50 for respective cancerous cell line. A beneficial SI 
> 1.0 indicates a compound with efficacy against tumor cells 
greater than the toxicity against normal cells.
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cell migration was significantly slower in the 
4a group than in the control group. 

As shown in Figure 3, the relative scratch 
healing rate of compound 4a was less than 
20%, the scratch healing rate of compound 
2 was less than 40%, and the wound healing 
rate of blank group was as high as 70%. So 
compound 4a had significant anti-migration 
effect which indicates that it has the potential 
to inhibit HeLa cell metastasis in-vivo. The 
data from the scratch assay demonstrated that 
compound 2 could also prevented migration of 
HeLa cells.

The concentration was an important factor. 
If the concentration was too high, the toxicity 
was so strong that the monolayer of cell will 
disappear. However, the effect on the migration 
can’t be observed in low concentration. Three 
drug concentrations (12.5, 25 and 50 μmol/L) 
were chosen in our experiment and the 25 
μmol/L was the best one.

The changes of morphological 
features, such as cell shrinkage, chromatin 
condensation, and nuclear membrane blebbing 
were the characteristics of apoptotic cells 
(31). The morphological assay of cell death 
was investigated by Hoechst 33258 staining. 
Hoechst 33258, which stains the cell nuclei and 
emits fluorescence allowing the visualization 

of nuclear morphological changes, was a 
membrane permeable dye. We had observed 
the morphological changes associated with 
the cells upon the treatment with compound 
4a using fluorescence microscopy. The 
results were given in Figure 4. The results 
showed that the control cells were normal 
and the nuclei were round and homogeneous. 
However, the nuclei treated with compound 
4a for 24 h exhibited nuclear condensation 
and fragmentation which is the typical 
characteristics of apoptosis. This phenomenon 
was observed in a dose-dependent manner as 
we can see from the Figure 4.

To further investigate the mechanism of 

 
Figure 2. Effects of compounds 2 and 4a on cell migration by wound healing assay (25μmol/L). Upper panel: Vehicle, 4a and 2 

groups at 0-h time point. Bottom panel: Vehicle, 4a and 2 groups at 24-h time point. 

  

Figure 2. Effects of compounds 2 and 4a on cell migration by wound healing assay (25μmol/L). Upper panel: Vehicle, 4a and 2 
groups at 0-h time point. Bottom panel: Vehicle, 4a and 2 groups at 24-h time point.

 
Figure 3. Anti-migration scratch healing rate of compounds 2, 4a on HeLa cells (N = 3, ***p < 0.01). 

  
Figure 3. Anti-migration scratch healing rate of compounds 2, 
4a on HeLa cells (N = 3, ***p < 0.01).
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compound 4a on HeLa, we examined the 
effect of 4a on cell cycle distribution by flow 
cytometry. As shown in Figure 5, the cells 
in the G2/M phase increased from 3.66% in 
control group to 3.85%, 6.63%, and 8.00% in a 
concentration-dependent manner in HeLa cell 
lines. These results revealed that compound 4a 
dose-dependently arrested the cell cycle at the 

inhibitory effect of 4a was associated with cell 
apoptosis, we performed annexin V-FITC/PI 
double-staining and flow cytometry of HeLa 
cells. The early apoptotic rates were 4.76 %, 
9.63 %, and 19.81% at 4a concentrations of 
12.5, 25 and 50 μmol/L, respectively (Figure 
6). Compound 4a could induce remarkable 
early apoptosis of HeLa in a dose-dependent 
manner (Figure 7). These results suggested 
that the inhibition of cell growth was caused 
by the induction of early apoptosis.

The Bcl-2 family proteins can either 
positively or negatively regulate apoptosis. 
The pro-apoptotic family members include 
Bax, Bad and Bok, while the anti-apoptotic 
members of this family include Bcl-2, Bcl-
XL, and Bcl-w (32, 33). We examined the 
effects of 4a on the expression of Bax, Bcl-
2, Caspase-3, Cleaved caspase-3, and PI3K 
by western blot analysis (Figure 8). As shown 
in Figure 9, western blot results demonstrated 
that 4a reduced the expression of Bcl-2, but 
increased the levels of Bax and Cleaved 
caspase-3 in HeLa cells. There were not 
remarkably concentration-dependent change 
in the expression levels of PI3K and Caspase-3 
in HeLa cells. As we can see from Figure 8 

 
Figure 4. Hoechest 33258 staining of compound 4a in HeLa cell line. (A)Control; (B) 12.5 μmol/L 4a for 24 h; (C) 25 μmol/L 

4a for 24 h; (D) 50 μmol/L 4a for 24 h. 

  

Figure 4. Hoechest 33258 staining of compound 4a in HeLa cell line. (A)Control; (B) 12.5 μmol/L 4a for 24 h; (C) 25 μmol/L 4a for 
24 h; (D) 50 μmol/L 4a for 24 h.

 
Figure 5. Effect of compound 4a on cell cycle. The distribution of HeLa cells in the three phases of the cell cycle following 

treatment with compound 4a is depicted in representative plots. 

  

Figure 5. Effect of compound 4a on cell cycle. The distribution 
of HeLa cells in the three phases of the cell cycle following 
treatment with compound 4a is depicted in representative plots.

G2/M phase, thereby reducing the proportion 
of cells in the S and G1 phase.

To determine whether the growth 
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and Figure 9, Cleaved caspase-3 which is an 
apoptotic marker was clearly increased in the 
HeLa cells.

The release of cytochrome c from 
mitochondria to cytosol is one of the early 
events prior to apoptosis. And it is widely 
accepted that the release of cytochrome c 
into cytosol is tightly regulated by the ratio 

between the Bcl-2 family proteins, especially 
the anti-apoptotic protein (Bcl-2) and pro-
apoptotic protein (Bax) protein, all of which 
have been demonstrated to be responsible for 
the regulation of the apoptotic process (34). 
As we can see from Figure 9, compound 4a 
could inhibit Bcl-2 and induce Bax expression. 
Furthermore, the increase of the Bax/Bcl-2 

 
Figure 6. Flow cytometric analysis of HeLa cells treated with compound 4a. The percentages of apoptotic cells are shown in 

representative plots. (a) Control (b)12.5 μmol/L (c) 25 μmol/L (d) 50 μmol/L. 

  

Figure 6. Flow cytometric analysis of HeLa cells treated with compound 4a. The percentages of apoptotic cells are shown in repre-
sentative plots. (a) Control (b)12.5 μmol/L (c) 25 μmol/L (d) 50 μmol/L.

 

 
Figure 7. Effect of compound 4a on the early apoptotic rates (μM = μmol/L). 

  

Figure 7. Effect of compound 4a on the early apoptotic rates 
(μM = μmol/L).

 
Figure 8. The effects of compound 4a on the protein levels were assessed by Western blot. 

  
Figure 8. The effects of compound 4a on the protein levels were 
assessed by Western blot.
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Figure 9. The fold-changes in the relative protein levels were calculated with reference to the controls. 

  

Figure 9. The fold-changes in the relative protein levels were calculated with reference to the controls.
 

 
Figure 10. The ratio of Bax and Bcl-2 of HeLa cells treated with compound 4a. (μM = μmol/L). 

expression ratio was enhanced (Figure 10), 
which enhanced the membrane permeabili-
ty of mitochondria and thereby 4a promoted 
cell apoptosis. These results suggested that 4a 
promotes apoptosis in HeLa cells by reducing 
the expression of anti-apoptotic proteins and 
increasing the expression of pro-apoptotic 
proteins.

Conclusion

In summary, riluzole alkyl derivatives had 
been synthesized firstly and their anti-prolif-
erative activities against HeLa, HepG2, SP2/0 
and MCF-7 cancer cell lines were assessed. 
Most of them show forceful cytotoxic effects 
against the four cancer cell lines and low toxic 
to normal liver cells. In particular, 2-(N-ethyl-

Figure 10. The ratio of Bax and Bcl-2 of HeLa cells treated 
with compound 4a. (μM = μmol/L).

amine)-6-trifluoromethoxy-benzothiazole 
(4a) showed a very low IC50 value in HeLa 
cells and admirable anticancer specificity. 
Furthermore, flow cytometry indicated that 4a 
could induce remarkable early apoptosis and 
G2/M cell cycle arrest in HeLa cells. Wound 
healing assays indicated that the 4a show an 
excellent anti-migration activity. Western blot 
results demonstrated that 4a promotes apop-
tosis in HeLa cells by elevating the Bax/Bcl-2 
expression ratio. These new findings suggest 
that 4a exhibited beneficially anti-cervical 
cancer effect on HeLa cells by inducing HeLa 
cell apoptosis.
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