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Abstract

Background: Altered patterns of genetic expression induced by isoflurane preconditioning in mouse brain have not yet

been investigated. The aim of our pilot study is to examine the temporal sequence of changes in the transcriptome of

mouse brain cortex produced by isoflurane preconditioning.

Methods: Twelve-wk-old wild-type (C57BL/6J) male mice were randomly assigned for the experiments. Mice were

exposed to isoflurane 2% in air for 1 h and brains were harvested at the following time pointsdimmediately (0 h), and at

6, 12, 24, 36, 48, and 72 h after isoflurane exposure. A separate cohort of mice were exposed to three doses of isoflurane on

days 1, 2, and 3 and brains were harvested after the third exposure. The NanoString mouse neuropathology panel was

used to analyse isoflurane-induced gene expression in the cortex. The neuropathology panel included 760 genes covering

pathways involved in neurodegeneration and other nervous system diseases, and 10 internal reference genes for data

normalisation.

Results: Genes involving several pathways were upregulated and downregulated by isoflurane preconditioning. Inter-

estingly, a biphasic response was noted, meaning, an early expression of genes (until 6 h), followed by a transient pause

(until 24 h), and a second wave of genomic response beginning at 36 h of isoflurane exposure was noted.

Conclusions: Isoflurane preconditioning induces significant alterations in the genes involved in neurodegeneration and

other nervous system disorders in a temporal sequence. These data could aid in the identification of molecular mech-

anisms behind isoflurane preconditioning-induced neuroprotection in various central nervous system diseases.
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Conditioning is a strategy where a sub-lethal noxious stimulus

presented to any tissue in the body invokes endogenous

protective mechanisms so that the organ develops tolerance

towards a subsequent similar or stronger insult.1,2 It is not

only powerful, but also remarkably pleiotropic, as

conditioning strategies have highly protective effects on all

major cell types of the central nervous system including

neurones, glia, and vascular cells.1,3e5 The adaptive

responses induced by conditioning involve molecular

sensors and transducers, transcription factors, genes, and

effectors that ultimately produce a protective phenotype.1,2

Conditioning can be applied before or after the insult, and

referred to as preconditioning or postconditioning,
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respectively. Several distinct conditioning agents have been

shown to provide protection in a variety of cerebral disorders

through conditioning-based mechanisms.6e11 Specifically,

volatile anaesthetics (such as isoflurane, sevoflurane, and

desflurane) have been shown to induce strong

neuroprotection against several nervous system

disorders.12e16 These volatile anaesthetics are FDA approved,

have an excellent safety profile in humans, and are used in

millions of patients on a regular basis. Therefore,

understanding the molecular foundations of volatile

anaesthetic conditioning will identify new molecular targets

for drug development and heighten the translational

potential of anaesthetic conditioning-based therapeutics.
naesthesia. This is an open access article under the CC BY-NC-ND license
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Intriguingly, several preclinical studies in various brain

injury models have demonstrated the neuroprotective effects

of anaesthetic conditioning in mature adult brains, but have

shown opposite effects in developing and ageing brains.17

Although several studies have begun to elucidate the mo-

lecular mechanisms of the preconditioning response,

comprehensive mechanisms underlying anaesthetic

preconditioning-induced neuroprotection have not yet been

explored. In this study, we examine the impact of a volatile

anaesthetic, isoflurane, on genomic expression in mature

adult mouse cortex with the aim of identifying the genes

involved in isoflurane preconditioning-induced neuro-

protection. To achieve this, we utilised a mouse neuropa-

thology panel from NanoString, Seattle, Washington, 98109,

which includes 760 genes covering the pathways involved in

neurodegeneration and other nervous system diseases.
Methods

All experiments in the study were approved by the Washing-

ton University in Saint Louis animal care and use committee.

Twelve-wk-old C57BL/6J adult male mice (20e30 g) were ob-

tained from the Jackson Laboratory (Bar Harbor, ME, USA).

Mice were housed in an Association for Assessment and

Accreditation of Laboratory Animal Care (AAALAC) accredited

facility in a 12-hr darkelight cycle with controlled temperature

and humidity. Five mice were placed in each cage with un-

limited access to food and water. A total of 45 mice were used

in the experiments with n¼5 in each group. Animals were

randomly allocated to each experimental group. The experi-

mental groups were a control group (mice exposed to room air

for 1 h), and an isoflurane group (mice were exposed to iso-

flurane 2% with room air for 1 h). After isoflurane exposure,

cortical tissues were harvested at different time points,

immediately (0 h), and at 6, 12, 24, 36, 48, and 72 h later.

Immediately after the tissue extraction, the sample was

placed on dry ice and stored at �80�C until used for analysis. A

further group of mice was exposed to three doses of isoflurane

2%, 24 h apart to examine the impact of repetitive exposure of

isoflurane on genomic expression. The cortical tissue in this

group was harvested immediately after the last dose of iso-

flurane exposure. The cerebral cortex was chosen for the

genomic analysis as it plays a crucial role in almost all the

higher functions of brain.
Isoflurane preconditioning

A medium sized anaesthetic induction chamber (Smiths

Medical, Dublin, OH, USA) was used to administer isoflurane.

Isoflurane preconditioning was accomplished by exposing

spontaneously breathing mice to isoflurane 2% with air for 1

h. The control groups were placed in the same chamber and

exposed to air, but not the isoflurane, for 1 h. A homeother-

mic blanket was utilised (HTP-1500 heat therapy pump, Kent

Scientific Corporation, CT, Torrington, USA, accuracy; plus or

minus 2�F) to maintain normal temperature throughout the

anaesthetic exposure. Isoflurane and carbon dioxide con-

centrations in the induction chamber were measured using

an anaesthetic gas analyser (Capnomac Ultima, Datex

Ohmeda, Louisville, Kentucky, USA). The dose of isoflurane

2% was chosen for this study, as it has been used safely in

several experimental studies examining the impact of iso-

flurane conditioning-induced neuroprotection.7,13,14
RNA extraction

Total RNAwas prepared from cerebral cortex using the RNeasy

mini kit (cat# 74104, Qiagen Inc., Germantown, Maryland),

following the manufacturer’s instruction. In brief, the brain

tissue was homogenised in RLT buffer containing 2-

mercaptoethanol (1:100 dilution, Sigma Aldrich Inc., Missouri,

United States), using a Bullet blender (model, Storm 24, Next

Advance Inc., Troy, NY) and an RNase-free bead lysis kit (Navy

1.5ml RINO). After centrifugation at 12 000�g atþ4�C for 5min,

the supernatantwas transferred to aQIA shredder (Qiagen Inc.)

column and centrifuged at maximum speed for 3 min at room

temperature (RT). The flow-through was collected and RNA

was precipitated with the addition of an equal volume of

ethanol 70% andmixedwith gentle pipetting. Themixture was

transferred to an RNeasy Mini spin column and centrifuged at

<9000�g for 15 s, RT. On-column DNase digestion was done

using an RNase-free DNase set (cat# 79254, Qiagen Inc.),

following the manufacturer’s instructions. Following RNA

clean-up steps, the RNA was eluted in RNeasy-free water. The

RNA concentration for each sample was measured using a

NanoDrop 2000, and all RNA samples were diluted to a final

concentration of 20 ng ml�1 in RNeasy-free water and stored

immediately at �80�C for future NanoString analysis.
NanoString nCounter® mouse neuropathology gene
expression analysis and statistics

The nCounter® Neuropathology panel was selected in partic-

ular to examine the effects of isoflurane on the specific gene

sets involving neurodegenerative diseases. This specific panel

provides comprehensive assessment of neurodegenerative

pathways and processes, and also in profiling the abundance

of important neural cell types. nCounter® gene expression

analysis from the mouse Neuropathology panel was per-

formed with nSolver 4.0 and Advanced Analysis package 2.0

(NanoString Technologies) according to the recommended

procedures (NanoString User Manual C0019-08 and 1003-03)

and as previously described.18 Heatmaps for raw data show

the level of raw gene expression for each sample in the data

set. Raw counts were normalised to the geometric mean of the

selected housekeeping genes followed by log2 transformation.

For normalised data heatmaps, samples are plotted by z-score

and clustered by sample. All statistical analyses were per-

formed on log2 transformed normalised counts. Differential

gene expression analysis was performed for control vs

different isoflurane treatment groups (0, 12, 24, 36, 48, 72, re-

petitive 72 h). Adjustment of the significance threshold was

done using a Benjamini-Yekutieli correction to maintain or

control the false discovery rate (FDR) below the 0.05

threshold.19 It is important to note that when multiple hy-

potheses are tested, FDR is a very useful measure of accuracy

comparedwith false positive rate (FPR) as FDR considers all the

hypotheses being tested rather than measuring each metric

independently. Global significance scores were calculated as

the square root of the mean squared t-statistic for the genes in

a gene set, with t-statistics coming from the linear regression

underlying the differential expression analysis. The directed

global significance score is calculated as the square root of the

mean signed squared t-statistic for the genes in a gene set,

with t-statistics coming from the linear regression underlying

the differential expression analysis. Heatmaps of global sig-

nificance scores used unsupervised hierarchical clustering of

genes and samples that were scaled by gene or score.
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Results

Isoflurane administration affected a range of genes involved in

neurodegeneration and other nervous systemdisorders. Out of

760 genes in the neuropathology panel, 76 unique transcripts

were differentially expressed (compared with control) after a

brief single exposure to isoflurane 2%. Out of those 76 genes, 62

were upregulated and 14were downregulated. During the early

phase (0, 6 h), isoflurane exposure caused the differential

expressionof 33 genes (five genesoverlappedbetween0hand6

h groups, so 28 unique genes were expressed), and during the

late phase (36, 48, 72 h), 73 genes were differentially expressed

(25 genes overlapped between 36 h, 48 h, and 72 h groups, so 48

unique genes expressed). Out of the 76unique genes expressed,

only eight genes overlapped between the early and late phase.

There were six unique genes that appeared in the repetitive

isoflurane exposure group comparedwith the other single time

isoflurane exposure groups.

Heatmaps of the raw and normalised data generate a series

of high-level plots that describe the data overall and are useful

for identifying anomalous data, covariates, or both. Figure 1a

is generated from raw data and allows identification of sam-

ples and gene sets with low signal. The blue bar labelled below

threshold on the left indicates probes the counts of which

have fallen below threshold in all samples. The heatmap

(Fig. 1a) shows that the data set with low raw counts (<25) are
minimal, indicating that the overall data are highly reliable

and reproducible.
Differential expression of genes and volcano plot

The genes which appeared to be significant by adjusted P-

value after correcting for FDR are listed in the Supplementary

material. Each figure represents genes differentially expressed

by isoflurane at different time points compared with the

control group. All the genes and the corresponding pathways

were summarised into six themes as following: (1) compart-

mentalisation and structural integrity; (2) metabolism; (3)

neuroinflammation; (4) neuroneeglia interaction; (5) neuro-

plasticity, development, and ageing; and (6) neurotransmis-

sion. A significant expression of genes during the early phase

(0 and 6 h), with a transient pause (12 and 24 h), followed by a

second peak of gene expression (36, 48, and 74 h) was noticed.

The complete list of genes differentially expressed by iso-

flurane exposure comparedwith control at various time points

is given in the Supplementary material.
Global significance scores

The undirected global significance score (Fig. 2) shows that

genes are extensively differentially expressed at 0, 48, 72, and

repeat 72 h groups and a limited gene expression was noted at

6, 12, 24, and 36 h after isoflurane preconditioning. The direct

global significance score indicates that the majority of gene

sets were downregulated during the initial few hours of iso-

flurane preconditioning (0, 6 h).
Discussion

Examining the time-based impact of isoflurane-induced

genomic changes reveals several interesting findings. (1) Iso-

flurane exposure applied for a brief period (2% for 1 h) induced

significant gene expression changes in the mouse cortex that

lasted for at least 72 h. (2) A temporal sequence of isoflurane-
induced genomic changes was noted. An immediate early

change in expression of genes (0, 6 h), followed by a quiescent

phase (12, 24 h), and an eventual late change in expression of

genes (36, 48, 72 h) was observed. (3) The genes differentially

expressed after exposure to isoflurane during the early phase

(0, 6 h), were largely distinct from the genes differentially

expressed during the late phase (36, 48, 72 h), indicating the

possibility that the noted genomic modifications were sec-

ondary changes induced by isoflurane rather than the primary

effect of the anaesthetic itself. 4) Repetitive exposure to iso-

flurane (isoflurane 2% for 1 h, three doses, 24 h apart) caused

the differential expression of a distinct set of genes compared

with a single time isoflurane exposure group, at the examined

72-h time point.

A single brief exposure of isoflurane (2% for 1 h) resulted in

the altered appearance of transcripts that persisted for at least

3 days. These genes were involved in a wide array of processes

including compartmentalisation and structural integrity,

metabolism, neuroinflammation, neuroneeglia interaction,

neuroplasticity, development and ageing, and neurotrans-

mission. During the early phase (mainly at 0 h), though iso-

flurane altered expression of genes in all the above-mentioned

themes, it was more evident with the neuroplasticity of the

brain during development and ageing (upregulateddDdit3,

Pik3r1, Col4a2, Col4a1, Ncl, Tnfrsf12a, Gata2, Efna1, AcvrI1, bid;

downregulateddBdnf, Egr1). Specifically, biological roles of

these genes are connected with the pathways including

growth factors, angiogenesis, chromatin modification, and

apoptosis. During the late phase (mainly at 48 h), the effect of

isoflurane was more evident on compartmentalisation and

structural integrity (upregulateddLrp1, Mtor, Cacna1b, Grin1,

Dlg4, Fus, Htt, Grik2, Dnm2, Rims1, Hdac6, Cacna1c, Unc13a;

downregulateddclu), metabolism (upregulateddAtp1312,

Smpd4, Mtor, Park2, Gga1, Atrn, Taz, Pdgfrb, Tcerg1, Akt1s1,

Dnm2, Trpm2, Atxn2, Htra2, Hdac6, Tcirg1, Man2b1; down-

regulateddAtf4), neuroplasticity, development and ageing

(upregulateddCacna1b, Flt1, Inpp4a, Notch3, Cspg4, Col4a2,

Pdgfrb, Atxn7, Egfl7, Nelfa, Hdac7, Htra2, Ring1, Hdac6, Cacna1c,

Col4a1, Sirt7, Cacna1d; downregulateddCdkn1a, Tnfrsf12a, Atf4,

Clu), and neurotransmission (upregulateddCacna1b, Grin1,

Dlg4, Flt1, Ryr2, Tnr, Pdgfrb, Grik2, Dnm2, Rims1, Trpm2, Ryr1,

Cacna1c, Tcirg1, Cacna1d, Unc13a; downregulateddAtf4) path-

ways. Interestingly, isoflurane exposure significantly altered

the expression of genes at a later time point compared with

the early phase and these genes are involved in several path-

ways controlling biological processes such as tissue integrity,

neuronal connectivity and cytoskeleton, axon and dendrite

structure, lipid and carbohydrate metabolism, autophagy,

oxidative stress, unfolded protein response, transcription and

mRNA splicing, transmitter synthesis, storage, reuptake and

release, vesicular trafficking, growth factors, angiogenesis,

chromatin modification and apoptosis (nanostring.com/

neuroscience/neuropathology/).

The above-mentioned findings may have wider implica-

tions for translational science research, as the majority of

experimental studies are conducted using isoflurane anaes-

thesia and the ability of isoflurane to affect several pathways

after a brief exposure may potentially influence the results of

the study. Supporting this notion, numerous studies have

implicated a protective role of isoflurane preconditioning in

several in vivo and in vitro brain injury models, including

ischaemic stroke, spinal cord injury, hypoxic ischaemic brain

injury, and oxygen glucose deprivation injury models.12e17

Interestingly, Gaidhani and colleagues,20 using a common
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Fig 1. Heatmap of raw and normalised data. (a) The plot provides an overview of robustness of the raw expression levels across samples
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plot identify the quality control (QC) flag status and covariate categorisation. The dark blue bar (counts less than background, 25) indicates
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Iso, isoflurane.
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ischaemic stroke model (transient middle cerebral artery oc-

clusion in rats) showed that isoflurane-induced neuro-

protection was directly proportional to the duration of

anaesthesia, suggesting that isoflurane anaesthesia for

experimental procedures should be restricted to 20e30 min to

avoid the confounding results during novel drug testing.

Whether this duration applies to other animal/brain injury

models and the molecular changes induced by isoflurane

exposure (<1 h) remains to be investigated.

Another intriguing finding in our study is the biphasic

regulation of gene expression by isoflurane pre-

conditioningdan early change in expression of genes (0, 6 h)

followed by a late change in expression (36, 48, and 72 h). This

late regulation of gene expression by isoflurane conditioning

has several possible explanations. (1) Residual effect of iso-

flurane: it is possible that residual isoflurane in the brain af-

fects the expression of genes at later time points. The

mismatch found between the early and late phase regulation

of genes and the fact that isoflurane is minimally metabolised

(0.2%) and themajority of isoflurane (95%) is eliminatedwithin

a few minutes from lung alveoli, does not support this hy-

pothesis.21 (2) Impact of trifluoroacetic acid: another possibil-

ity is that the metabolite of isoflurane, trifluoroacetic acid (a

potential immunogen) could mediate late regulation of

genes.22 Currently, studies specifically examining the impact

of trifluoroacetic acid on gene regulation are lacking. (3) Iso-

flurane’s secondary effect: a highly likely hypothesis is that

isoflurane-induced translation of proteins from early phase

genes stimulates the expression of late phase genes. The fact

that a nearly distinct set of genes is differentially expressed in

the late phase compared with the early phase suggests that

this is not a direct effect of isoflurane, rather a secondary ef-

fect mediated by the transcriptional changes induced by iso-

flurane conditioning.

Interestingly, studies have shown that the protection

offered by anaesthetic preconditioning occurs in two phases:

(1) early phasedwhich starts immediately after the anaes-

thetic conditioning, lasting for minutes to a few hours and this

protection depends on the multiple intracellular phosphory-

lation signalling cascades, and (2) the late phasedwhich starts

after 12e24 h, and has the potential to provide a sustained

protection lasting somewhere between 3 and 14 days, leading

to improved long-term neurological outcomes. This delayed

protection depends on altered protein expression induced by

the early transcriptional changes caused by anaesthetic pre-

conditioning.23e27 Thus far, no experimental studies have

evaluated the impact of isoflurane-induced genomic changes

in a temporal sequence, and the results from our current study

support the above notion indicating that isoflurane

preconditioning-induced neuroprotection may occur in two

phases: (1) immediate protection by the early expressing genes,

where a significant upregulation of genes by isoflurane condi-

tioning at 0 h was noticed. The observed changes in gene

expression were transient as only 50% of genes were differen-

tially expressed at 6 h compared with 0 h and the majority of

genes differentially expressed at 6 h were downregulated, and

(2) the delayed protection by the late phase gene expression

changes at 36e72 h after isoflurane conditioning. A dormant

period of ~24 h was noticed before the next set of differentially

expressed genes emerged at 36 h followed by a more robust

differential gene expression at 48 and 72 h after isoflurane

conditioning. This dormant period may correlate with the

transcriptional changes required for the delayed protection

induced by isoflurane conditioning.
We also examined the effect of repetitive exposure of iso-

flurane on transcriptional changes, as there is conflicting ev-

idence regarding repeated isoflurane exposure, with some

studies showing a neuroprotective effect and others noting a

detrimental effect.28e31 Interestingly, we noted that although

several genes were overlapping between the single and

repeated isoflurane exposure groups measured at 72 h, a few

genes were differentially expressed in only one of the groups.

Notably six genes (Naglu, Pla2g4e, Bche, Tor1a, Akt1, and Erlec1)

were exclusively differentially expressed in the repetitive

isoflurane exposure group compared with all other groups

examined and most of these genes are implicated in

neuroprotection.32e36
Strengths and limitations

Our study has several strengths. (1) We have examined

genomic expression in a large set of neuropathology genes in

young adult mice. (2) To the best of our knowledge, this is the

first study which has examined the isoflurane-induced gene

expression in temporal sequence. (3) The impact of repetitive

exposure of isoflurane has been evaluated. (4) We have pre-

sented the genes which were significant by FDR-adjusted P-

values. This is important to avoid high FPRs when comparing

hundreds of genes. Our study also has several limitations. (1)

Only cortical tissue was studied in the current study, and the

genomic expression in other areas such as hippocampus

needs to be evaluated in the future. (2) We did not include

female mice, or older mice in the study. (3) Haemodynamic

and physiological variables were not measured to avoid any

interference during the experiments which may induce other

gene expressions. (4) The impact of isoflurane on protein

expression was not examined in this study. Though mRNA is

required for the production of protein, isoflurane may affect

translation and other aspects of protein expression. (5) Long-

term effects of isoflurane have not been studied. (6) The

impact of other commonly used volatile and intravenous an-

aesthetics such as sevoflurane, desflurane, propofol, and

anaesthetic adjuvants such as opioids, benzodiazepines, and

neuromuscular blockers, on gene and protein expression were

not studied. For example, a recent study examining the impact

of a clinically relevant dose of sevoflurane and propofol in

human fetal brain cells showed that both anaesthetics

extensively altered transcriptomic profiling across different

brain cells.37 Hence it is important to examine the effect of

other commonly used anaesthetics on genomic and proteomic

expressions in neurodegenerative disorders which could

eventually help in the identification of the molecular mecha-

nisms underlying anaesthetic conditioning-induced neuro-

protection. (7) Finally, it is important to note that this is an

exploratory analysis and the sample size utilised in the cur-

rent studymay limit our power to detect small effect sizes. Our

data will aid power calculations for future studies in this area.
Conclusions

Our preliminary study shows that isoflurane administration,

as used for preconditioning, alters expression of RNA tran-

scripts that are involved in neurodegeneration and other

central nervous system disorders in two phases. Further

studies are warranted to examine the corresponding molecu-

lar pathways mediated by these genes that could provide in-

sights into isoflurane conditioning-induced neuroprotection

in several central nervous system disorders.
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