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Abstract

Although sexual reproduction is ubiquitous throughout nature, the molecular

machinery behind it has been repeatedly disrupted during evolution, leading to the

emergence of asexual lineages in all eukaryotic phyla. Despite intensive research, lit-

tle is known about what causes the switch from sexual reproduction to asexuality.

Interspecific hybridization is one of the candidate explanations, but the reasons for

the apparent association between hybridization and asexuality remain unclear. In

this study, we combined cross-breeding experiments with population genetic and

phylogenomic approaches to reveal the history of speciation and asexuality evolu-

tion in European spined loaches (Cobitis). Contemporary species readily hybridize in

hybrid zones, but produce infertile males and fertile but clonally reproducing

females that cannot mediate introgressions. However, our analysis of exome data

indicates that intensive gene flow between species has occurred in the past. Cross-

ings among species with various genetic distances showed that, while distantly

related species produced asexual females and sterile males, closely related species

produce sexually reproducing hybrids of both sexes. Our results suggest that

hybridization leads to sexual hybrids at the initial stages of speciation, but as the

species diverge further, the gradual accumulation of reproductive incompatibilities

between species could distort their gametogenesis towards asexuality. Interestingly,

comparative analysis of published data revealed that hybrid asexuality generally

evolves at lower genetic divergences than hybrid sterility or inviability. Given that

hybrid asexuality effectively restricts gene flow, it may establish a primary reproduc-

tive barrier earlier during diversification than other “classical” forms of postzygotic

incompatibilities. Hybrid asexuality may thus indirectly contribute to the speciation

process.
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1 | INTRODUCTION

Sexual reproduction is one of the most ubiquitous properties of

eukaryotes. However, although the underlying molecular machinery

is highly conserved, it has been repeatedly disrupted in many differ-

ent ways, leading to independent emergences of asexual lineages

occurring in all phyla (Neiman, Sharbel, & Schwander, 2014). Eukary-

otic lineages collectively termed as “asexual” are scattered all over

the tree of life and employ a wide spectrum of independently arisen

cytological mechanisms for gametes production, which can consider-

ably differ even between closely related asexual taxa (Stenberg &

Saura, 2009, 2013). Although the reasons for the loss of sex have

been studied for over a century, rev. in Carman (1997), the answer

remains elusive apart from some straightforward cases, such as Wol-

bachia-induced asexuality (e.g., Pike & Kingcombe, 2009), leaving us

with various candidate hypotheses.

The “asexuality mutation” hypothesis assumes relatively simple

loss-of-function mutations (e.g., Eads, Tsuchiya, Andrews, Lynch, &

Zolan, 2012; Mogie, 1992) and is especially appealing for facultative

and/or cyclical asexuals, which are already predisposed to produce

asexual gametes. The phylogenetic-constraint hypothesis highlights the

observation that asexuality prevails only in some taxa (Hotz et al.,

1985; Murphy, Fu, Macculloch, Darevsky, & Kupriyanova, 2000),

indicating that some phylogenetic lineages have “predispositions” for

uniparental reproduction (e.g., inherent production of unreduced

gametes in low levels (e.g., Aliyu, Schranz, & Sharbel, 2010), while

others are deprived of such possibility (e.g., due to sex-specific

imprinting of genes (Kono et al., 2004)).

An alternative class of theories accentuates the hybrid origin of

many, if not the absolute majority of asexual animals (Neaves & Bau-

mann, 2011; Simon, Delmotte, Rispe, & Crease, 2003). In spite of

intensive research, it is still unclear whether there are any general

rules how interspecific hybridization initiates asexual reproduction.

However, already a century ago, Ernst (1918) hypothesized that out-

comes of hybridization may follow a continuum from fully sexual to

obligately asexually reproducing hybrids depending on how closely

related the hybridizing species are. Current opinions differ on if and

why the likelihood of hybrid asexuality should depend on genetic

distance between hybridizing genomes. Having noted that the pro-

portion of unreduced gametes is larger in hybrids between distantly

related rather than closely related species, Moritz et al. (1989) for-

mulated the “balance hypothesis.” It postulates that asexuality results

from accumulation of incompatibilities between hybridizing species

that disrupt cellular regulation of sexual reproduction. Hybrid asexu-

ality can thus arise only when the genomes of parental species are

divergent enough to disrupt meiosis in hybrids, yet not divergent

enough to seriously compromise hybrid viability or fertility. De

Storme and Mason (2014) suggested that unreduced gametes might

result from hampered pairings of homologues due to decreasing

sequence homology among divergent hybridizing species. Carman

(1997) suggested that rather than a mere consequence of accumu-

lated genetic divergence, the asexuality results from asynchronous

expression of genes brought together by hybridization between spe-

cies with differently timed developmental programs.

Unfortunately, empirical support for the aforementioned models

is rather scarce (Dijk, 2009). For example, the parental species of

some hybrid asexuals appear to be phylogenetically distant relatives

to each other rather than being sister species (e.g., Jan�c�uchov�a-

L�askov�a, Landov�a, & Frynta, 2015; Moritz, Densmore, Wright, &

Brown, 1992; Moritz, Uzzell, et al., 1992; Moritz, Wright, & Brown,

1992), but others argued that such phylogenetic patterns may still

be explained by the phylogenetic-constraint hypothesis (Hotz et al.,

1985; Murphy et al., 2000). After all, the causal role of hybridization

in asexuality induction remains speculative (Kearney, Fujita, & Ride-

nour, 2009), as most attempts to experimentally synthesize a new

asexual lineage from a crossing of sexual species failed (reviewed by

Choleva et al., 2012). Ultimately, it is not understood why hybridiza-

tion should affect meiosis in a similar way across diverse taxa (Kear-

ney et al., 2009). In this study, we suggest that general causality

interconnecting hybridization and asexuality does exist and may be

even more integral than previously believed.

A pervasive observation in speciation literature is that hybridiza-

tion capability decreases as one moves from closely to distantly

related pairs of taxa (Krop�a�ckov�a, Pi�alek, Gergelits, Forejt, & Reifov�a,

2015; Russell, 2003; Rykena, 2002; S�anchez-Guill�en, C�ordoba-Aguilar,

Cordero-Rivera, & Wellenreuther, 2014), which is believed to result

from gradual accumulation of genetic incompatibilities that cause

intrinsic postzygotic isolation, that is, hybrid infertility and inviability

(rev. in Seehausen et al., 2014). While the rate at which intrinsic

postzygotic reproductive isolation mechanisms (RIMs) accumulate

appears nonlinear and taxon-specific (Bolnick & Near, 2005; Edmands,

2002; Matute, Butler, Turissini, & Coyne, 2010; Orr & Turelli, 2001),

hybrid infertility generally evolves at lower genetic distances than

hybrid inviability (Price & Bouvier, 2002; Russell, 2003) and generally

affects the heterogametic sex earlier in evolution (Haldane, 1922). It is

interesting to note that Moritz et al. (1989) also hypothesized that

asexual gametogenesis in hybrids may relate to the amount of diver-

gence accumulated across many genes, rather than to the presence of

a specific allele at some particular locus. If so, hybrid asexuality may be

viewed as a special case of the accumulation of Dobzhansky–Muller

incompatibilities that disrupt critical processes—sexual reproduction

in this case. Such a view also implies an interesting perspective on

which we elaborate in this study: at early stages of the species diversi-

fication process when hybrids’ fitness has not yet considerably

decreased, accumulated incompatibilities may distort hybrids’ repro-

ductive mode towards asexuality, and because clonal transmission of
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hybrids’ genomes prevents interspecific gene exchange (e.g., Keller,

Wolinska, Tellenbach, & Spaak, 2007; Lampert et al., 2007), such a

change may in turn contribute to speciation.

We explore the interconnection between hybrid asexuality and

speciation by reconstructing the initiation of asexuality and the

diversification history of European spined loaches (Cobitis). There are

several European Cobitis lineages sensu Bohlen, Perdices, Doadrio,

and Economidis (2006), of which one comprises several morphologi-

cally and ecologically very similar species that have parapatric distri-

bution and meet in hybrid zones. Among these, four closely related

species (C. tanaitica, C. taenia, C. taurica and C. pontica) have Ponto-

Caspian distribution (C. taenia further colonized northern and west-

ern Europe) while their distant relative, C. elongatoides, is distributed

throughout the Danubian Basin. Their ranges have been fluctuating

over the Quaternary (Janko, Culling, Rab, & Kotlik, 2005) and overlap

in central Europe, the Lower Danube Basin and Southern Ukraine

(Janko, Flaj�shans, et al., 2007) (Figure 1). Hybridization has been

documented to take place in these zones, and reproductive contact

between C. elongatoides and either C. taenia, C. tanaitica or C. pon-

tica results in clonally reproducing all-females hybrid lineages (Cho-

leva et al., 2012; Janko, Bohlen, et al., 2007; Janko, Flaj�shans, et al.,

2007). These hybrid lineages achieved remarkable evolutionary suc-

cess and colonized most of the European continent, some of them

having achieved considerable ages (i.e., the so-called hybrid clades I

and II are as ancient as 0.35 and 0.25 Mya, respectively (Janko et al.,

2005, 2012)). Clonal reproduction of these hybrid lineages theoreti-

cally prevents any interspecific gene flow between extant species,

but Choleva et al. (2014) documented evidence for historical

replacement of the original C. tanaitica mitochondrion by a C. elonga-

toides-like mitochondrion. This suggests that introgressive hybridiza-

tion has been possible in the past.

To understand the speciation history and the evolution of

hybrid asexuality during fish speciation, we employed multiple

complementary approaches examining (i) whether the formation

of asexual hybrids does depend on genetic distance between

parental species and (ii) whether the establishment of reproduc-

tive barriers can be primarily accomplished by the formation of

hybrid asexuality. First, we analysed the reproductive modes in

hybrids between several differently related Cobitis species to

reveal their asexuality and the extent of the currently observed

reproductive isolation. Second, we performed a detailed popula-

tion genetic analysis of the elongatoides – taenia (Janko et al.,

2012) and elongatoides – taenia (this study) hybrid zones to test

whether there is any ongoing introgressive hybridization. Third,

we employed exomewide coalescent analyses to estimate the

levels and timing of historical gene flow among species. Finally,

we tested the generality of our hypothesis by literature surveys

on published cases of hybrid and/or asexual fish. The results

F IGURE 1 Map of sampling sites and distribution of species and hybrid biotypes. The inset shows the European distribution of the sexual
species studied. Red stands for the Cobitis taenia distribution range, yellow for C. elongatoides, blue for C. tanaitica, black for C. pontica and
green for C. strumicae. The orange dotted line delimits the distribution of the ancient clonal lineage, the so-called hybrid clade I, the purple
dotted line the distribution of the so-called hybrid clade II. Stars indicate sampling sites of individuals used for exome-capture analyses (the
C. paludica outgroup is in brown), circles, squares and diamonds those used in crossing experiments (circles indicate sampled sexual species,
the orange square stands for diploid and diamonds for triploid C. elongatoides–tanaitica hybrids used in crossings). The main map shows in
detail the Lower Danubian hybrid zone: yellow circles indicate localities with C. elongatoides, blue represents C. tanaitica, and green indicates
C. strumicae. Locality numbers correspond to Table S1
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implied that Cobitis diversification has indeed been accompanied

by decreasing intensity of introgressive hybridization. However,

unlike “classical” speciation cases, such a restriction in gene flow

has not been accompanied by evolution of classical RIMs but

rather by the production of asexual hybrids.

2 | MATERIALS AND METHODS

To test whether the formation of asexual hybrids depends on the

genetic distance between parental species and how the formation of

hybrid asexuality affects interspecific gene flow, we performed the

following four analyses.

2.1 | Analysis of reproductive modes of hybrids

In the first experiment, we analysed reproductive modes of naturally

occurring diploid and triploid hybrid EN and EEN females (Table 1; let-

ters E and N stand for haploid elongatoides and tanaitica genomes,

respectively) by crossing them with sexual males following (Choleva

et al., 2012). The families were genotyped using the microsatellite

multiplex 1 with loci Cota 006, Cota 010, Cota 027, Cota 032, Cota

068, Cota 093 and Cota 111 (Choleva et al., 2012; De Gelas, Janko,

Volckaert, De Charleroy, & Van Houdt, 2008) to verify their gyno-

genetic reproduction. We further performed allozyme analysis (Janko,

Flaj�shans, et al., 2007) to compare profiles of individual eggs to mater-

nal somatic tissues to test for hybridogenetic type of reproduction.

During hybridogenesis, reduced, albeit nonsegregating gametes are

produced by premeiotic exclusion of one parent’s genome leading to

protein expression of only one parental taxon per egg (Carmona, San-

jur, Doadrio, Machordom, & Vrijenhoek, 1997; Cimino, 1972; Uzzell,

Hotz, & Berger, 1980).

In the second experiment, we individually crossed C. taenia with

C. pontica, reared their F1 progeny until sexual maturity and

produced the F2 generation. The families were genotyped as

described above.

2.2 | Analysis of C. elongatoides–C. tanaitica hybrid
zone and test of ongoing introgressive hybridization

Specimens captured at the Lower Danubian hybrid zone (Figure 1,

Table S1) were first classified into taxonomic units using allozyme

and PCR-RFLP diagnostic markers (Janko, Flaj�shans, et al., 2007)

and their ploidy examined by flow cytometry. All diploids were

genotyped with microsatellite multiplex 1 and the locus Cota 033.

We checked the microsatellite data in MICROCHECKER version 2.2.3

(Van Oosterhout, Hutchinson, Wills, & Shipley, 2004) for null alle-

les, large allele dropouts and scoring errors. Summary statistics and

deviations from Hardy–Weinberg equilibrium (HWE), FST and pair-

wise linkage equilibria were evaluated for each locus per taxon

using MSA version 4.05 (Dieringer & Schl€otterer, 2003), GENEPOP ver-

sion 4.1.3 (Rousset, 2008) and FSTAT version 2.9.2 (Goudet, Perrin,

& Waser, 2002). The GenAlEx 6.5 software (Peakall & Smouse,

2006) was used to identify all unique multilocus genotypes (MLG),

and we employed the GenClone software (Arnaud-Haond & Belkhir,

2007) to calculate the probability that observed multiple copies of

the same MLG arose by independent sexual events (PSEX), taking

into account the deviations from HWE (PGEN(FIS); Arnaud-Haond,

Duarte, Alberto, & Serrao, 2007). As described in Janko et al.

(2012), we further identified groups of MLGs that are related to

each other more closely than expected by chance alone and might

therefore represent members of the same clone, the so-called mul-

tilocus lineage (MLL). We calculated the sum of the differences in

allele lengths between each pair of MLG (Meirmans & Van Tien-

deren, 2004). Subsequently, we simulated hybrid genotypes by

10,000 random combinations of individuals from hybridizing species

to obtain the null distance distribution, which was used to evaluate

the probability that any two MLG belong to the same clone after

TABLE 1 Crossing experiments

Female ID Biotype Origin Male ID Biotype Origin

Progeny

Family IDSexual Clonal Polyploid

EENF1 EEN Okna R., Slovakia EEM1 EE Okna R., Slovakia 0 6 1 No. 401

EENF24 EEN Okna R., Slovakia EEM8 EE Okna R., Slovakia 0 16 0 No. 424

EENF25 EEN Okna R., Slovakia EEM8 EE Okna R., Slovakia 0 9 0 No. 425

EENF10 EEN Ipel’ R., Slovakia EEM9 EE Nov�a �R�ı�se, Czech R. 0 9 0 No. 413

097CENNF1 EN Jantra R., Bulgaria 09EXPM7C PP Veleka R., Bulgaria 0 6 4 No. 8

10EXF1F9C08 TP Laboratory hybrid 10EXF1M9C08 TP Laboratory hybrid 11 6 9 No. 1

F1TFPM062 TP Laboratory hybrid F1TFPM065 TP Laboratory hybrid 6 0 0 No. 17; clutch A

F1TFPM062 TP Laboratory hybrid F1TFPM066 TP Laboratory hybrid 1 0 0 No. 17; clutch B

Biotype—E, haploid Cobitis elongatoides genome; N, haploid C. tanaitica genome; P, haploid C. pontica genome; T, haploid C. taenia genome. For each

family, we indicate different types of progeny: “sexual” denotes a number of progeny obtained from segregating gametes; “clonal,” a number of progeny

obtained from clonal gametes; “polyploid,” a number of progeny obtained from fertilized clonal gametes. Note that several clutches from different F1

individuals occurred in the experimental family No. 17. GPS coordinates: Okna R. 48.718100, 22.120511; Ipel’ R. 48.072868, 19.088204; Nov�a �R�ı�se
49.152760, 15.547374; Jantra R. 43.469008, 25.725494; Veleka R. 42.026909, 27.623940.
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correcting for multiple comparisons with the sequential Bonferroni’s

correction.

We subsequently sequenced a 1,188-bp fragment of the cyto-

chrome b gene according to Janko, Flaj�shans, et al. (2007) in a sub-

set of diploid individuals and used the median-joining network

(Bandelt, Forster, & R€ohl, 1999) drawn with NETWORK (http://

www.fluxus-engineering.com/netwinfo.htm) to put newly discovered

haplotypes into the context of previously published mtDNA variabil-

ity (Choleva, Apostolou, R�ab, & Janko, 2008; Janko et al., 2012).

Combined microsatellite and allozyme data were used to detect

admixed diploid individuals by two clustering methods. We first used

the admixture model implemented in Structure 2.3.4 (Falush, Ste-

phens, & Pritchard, 2003; Pritchard, Stephens, & Donnelly, 2000) to

compute the parameter q, that is, the proportion of an individual’s

genome originating from one of the two inferred clusters, corre-

sponding to the parental species C. elongatoides and C. tanaitica. The

analysis was based on runs with 106 iterations, following a burn-in

period of 5 9 104 iterations. Three independent runs for the number

of populations varying from K = 1 to K = 10 were performed, and

the best value of K was chosen following Evanno, Regnaut, and Gou-

det (2005), with Structure Harvester (Earl & vonHoldt, 2011).

The Bayesian clustering method implemented in NewHybrids 1.1

(Anderson & Thompson, 2002) was also used to compute the poste-

rior probability that an individual belongs to one of the eight prede-

fined classes: C. elongatoides, C. tanaitica, F1 hybrid, F2 hybrid, and

two types of backcross to either C. elongatoides or C. tanaitica. The

two backcross types included those having 75% of their genome

originated from the backcrossing species (B1 generation) and those

having 95% of their genome originated from the backcrossing spe-

cies (further-generation backcrosses). Posterior distributions were

evaluated by running five independent analyses to confirm conver-

gence. We started with different random seeds, performed 104

burn-in iterations and continued with 500,000 Markov chain Monte

Carlo iterations without using prior allele frequency information.

Analyses were run for four combinations of prior distributions (uni-

form or Jeffreys for Ɵ and p parameters) to explore the robustness

of the results (Anderson & Thompson, 2002).

To minimize the effect of clonal propagation, we used only one

randomly chosen representative of each unique MLL and repeated

the analysis several times to check its robustness against the particu-

lar choice of MLL representatives (Janko et al., 2012). We also

repeated those analyses with either the Cota_006 or Cota_041 loci

removed due to their possible linkage (De Gelas et al., 2008).

2.3 | Estimation of levels and timing of historical
gene flow among the species using exomewide SNP
data

2.3.1 | Assembly of exome reference from RNAseq
data of nonmodel fish species

The mRNA sequencing concerned liver tissues of six C. taenia indi-

viduals and also oocyte tissue from one of them. Isolated RNA was

transcribed into cDNA, normalized by Trimmer cDNA normalization

Kit (Evrogen, Moscow, Russia) and sequenced using GS FLX+ chem-

istry (454 Life Sciences, Roche). The initial 1,886,536 reads from

C. taenia were quality filtered and trimmed from adaptors and primer

sequences using Trimmomatic software (Bolger, Lohse, & Usadel,

2014). Technical PCR multiplicates were removed using cdhit-454

software (Niu, Fu, Sun, & Li, 2010). The resulting 1,707,769 reads

(568,470,258 base pairs) were used for assembly using Newbler

(Software Release: 2.6 20110517_1502) with parameters: read

length >40; overlap length >40; match: >90%; contig length

>300 bp. To minimize the potential effect of undetected paralogy,

copy number variation, repetitions and misassemblies, we removed

all contigs where subsequent read mapping was not unique. The final

assembled transcriptome consisted of 20,385 potential mRNAs (av-

erage length 1,096.5 bp, total length 22,355,325 bp and N50

1,246 bp; Data available from the Dryad Digital Repository).

2.3.2 | DNA isolation and exome-capture procedure

To extract the information about SNP variability of homologous loci

from previously collected ethanol-preserved fish material, we used

the assembled transcriptome to design the probes for targeted

enrichment of gDNA loci. 7,000 contigs with highest coverage and

assembly quality were sent to NIMBLEGEN for probe design, so that

the total length of all contigs is less than 10 Mbp according to the

manufacturer’s suggestions. We used the probes to obtain enriched

exome libraries from stored tissue material of two individuals of each

C. taenia, C. elongatoides, C. tanaitica and C. pontica (Figure 1; data

available from the Dryad Digital Repository) as well as of C. paludica

—the outgroup species from the Iberian Peninsula, collected in the

terra typicae. High molecular gDNA was fragmented with a Bioruptor

(NextGen, Diagenode, Liege, Belgium) to obtain the required frag-

ment length. DNA libraries with appropriate barcodes were prepared

with the KAPA Library Preparation kit for Illumina platforms (KAPA

Biosystems), and we followed the NimbleGen SeqCap EZ Library SR

protocol (Roche) for sample mixing, hybridization with probes, cap-

tured DNA recovery and amplification. Libraries were sequenced

with Illumina HiSeq 100-bp paired-end reads.

An additional four samples of two C. elongatoides–taenia F1

hybrid individuals and both their parents (data available from the

Dryad Digital Repository) following the design of a previous crossing

experiment (Choleva et al., 2012) were sequenced to experimentally

verify the efficiency of exome capture and SNP calling by parent-to-

offspring comparison.

2.3.3 | SNP calling

The obtained fastq files were trimmed based on quality by the

fqtrim tool (Pertea, 2015) with the following parameters: minimum

read length 20 bp; 30 end trimming if quality drops below 15;

polyA/T trimming was not performed as no homopolymers were

enriched in reads. After aligning reads to the reference transcrip-

tome with the BWA MEM algorithm (Li & Durbin, 2009), and
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processing the resulting files with Picard tools version 1.140 (Broad

Institute, http://broadinstitute.github.io/picard), we applied GATK ver-

sion 3.4 best practices recommendations (DePristo et al., 2011;

McKenna et al., 2010; Van der Auwera et al., 2013) for individuals’

variants calling. Each individual’s variants were called with the

HaplotypeCaller tool, and then, all individuals were jointly geno-

typed using the GenotypeGVCFs tool. For variant recalibration, we

used our own SNP database from our ongoing RNAseq study of

C. elongatoides, C. taenia and hybrid females (unpublished Master’s

Thesis https://is.cuni.cz/webapps/zzp/detail/168590/). We selected

species-diagnostic positions, where all specimens from both

hybridizing species were fixed for alternative alleles and all hybrids

were heterozygous, to create a learning set for variant quality score

recalibration tool VariantRecalibrator and employed it to exome-

capture data. Variants were then filtered with the ApplyRecalibra-

tion tool using several tranche sensitivity thresholds. After inspec-

tion of the data, we applied the 99.5% tranche to filter all variants.

All resulting highly confident SNPs with coverage >15 were trans-

ferred into the database using our own SQL scripts, and we ulti-

mately sorted the identified SNPs from each locus into individual

locus-specific matrices (Appendix S1) for subsequent model-based

analyses.

We further identified potential paralogs using the same rationale

as in Gayral et al. (2013). To do so, we identified excessively

heterozygous contigs, which possessed positions where identical

heterozygotic states occurred in all ingroup species as well as in the

distant outgroup (C. paludica). Such spurious heterozygote calling is

unlikely to result from common biological processes but rather from

mapping of reads from undetected paralogs, and so we excluded

such loci from subsequent analyses.

2.3.4 | Reconstruction of historical gene flow

Detection of interspecific gene flow from SNP data was based on

recently introduced coalescent-based maximum-likelihood methods

(Costa & Wilkinson-Herbots, 2016, 2017; Wilkinson-Herbots, 2008,

2012, 2015), which are computationally inexpensive and estimate

simultaneously the population sizes and migration rates as well as

population splitting times, including some scenarios of time-variable

migration rates.

Contigs matching to mitochondrion were identified by blasting

against Cobitis takatsuensis mtDNA (GenBank Accession no. NC_

015306.1) and removed from analysis. The remaining nuclear data

were used to fit the following types of models, which are character-

ized in Figure 2:

1. The strict isolation models (labelled I4, I6 and I7) with four, six or

seven parameters, respectively, assuming that an ancestral popu-

lation split into two isolated descendant populations. The I6 and

I7 models allow for one additional change in size of either the

ancestral or the descendant populations, respectively;

2. The “isolation-with-migration” model (IM5) with five parameters,

where an ancestral population of size Ɵa split at time t0 into two

descendant populations of equal (IM4) or unequal (IM5) sizes

interconnected by gene flow at rate Mc;

3. The “isolation-with-initial-migration” models (IIM7 and IIM8) with

seven or eight parameters, respectively, assuming that an ances-

tral population of size Ɵa split at time t0 into two descendant

populations (of equal or unequal sizes depending on the model)

interconnected by gene flow at rate M, lasting until time t1 after

which two descendant populations of sizes Ɵc1 and Ɵc2 evolved

in isolation until the present;

4. The most complex “generalized isolation-with-migration” models

were employed in two variants. The one with nine parameters

(GIM9) assumes that an ancestral population of size Ɵa split at

time t0 into two descendant populations of sizes Ɵ1 and Ɵ2 inter-

connected by gene flow at rate M until t1, from which time

onwards both species are at their current sizes Ɵc1 and Ɵc2 and

gene flow occurs at its current rate Mc. The other model with

eight parameters (GIM8) assumed M = 0 and modelled the sec-

ondary contact scenario. Note that all models described above

are nested within the GIM9 model.

All models were ranked according to their Akaike Information

Criterion (AIC) score, and we also calculated the evidence ratios pro-

viding a relative measure of how much less likely a given model is

compared to the best-fitting model, given the set of candidate mod-

els considered and the data (Anderson, 2008); Table S3. Likelihood

ratio tests were performed to compare pairs of nested models,

where, in the case of parameters on the boundary, we used the

appropriate mixture of chi-square distributions as the null distribu-

tion (Self & Liang, 1987) or assumed that the use of the chi-square

distribution with the appropriate number of degrees of freedom is

conservative (Costa & Wilkinson-Herbots, 2017; Self & Liang, 1987;

Wilkinson-Herbots, 2015). Because the currently available implemen-

tation of the above models allows the analysis of only two species

at once, we prepared a separate data set for each pairwise compar-

ison of C. elongatoides, C. taenia, C. tanaitica and C. pontica. The

input data sets were represented by locus-specific alignments of

SNP positions with three rows–two rows with SNPs of both com-

pared species and the third row containing SNPs of the C. paludica

outgroup.

The coalescent models assume free recombination among loci

but no recombination within loci and require three types of informa-

tion for each pairwise species analysis. These consist of the number

of nucleotide differences between pairs of sequences sampled (i)

both from species 1, (ii) both from species 2 and (iii) one from each

species. To estimate all parameters simultaneously, all three types of

information must come from a different, independent set of loci

(Wilkinson-Herbots, 2012). Therefore, we randomly divided the anal-

ysed loci into three nonoverlapping data sets. The intraspecific data

were simply calculated as the number of heterozygous positions at

each locus, which in fact represents the number of nucleotide differ-

ences between a pair of alleles brought together by segregation into

a sampled individual. The preparation of the third data set requires

the comparison of two haploid sequences from different species,
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while our sequences originated from diploid individuals sometimes

possessing multiple heterozygotic positions with unknown phase.

We therefore extracted the longest possible alignment of SNPs

where each compared individual (species 1 and species 2) had at

most one heterozygous position by trimming the per-locus align-

ments of SNPs. We then randomly selected one haploid sequence

from each compared individual and recorded the number of nucleo-

tide differences between them, along with the distance between the

in- and outgroup, for the trimmed locus, to include information

about relative mutation rates for each locus. To incorporate

intrapopulation variability into our estimates, we sampled two indi-

viduals from each species and randomly sampled each locus from

either one or the other individual (always keeping the sequence of

SNPs within each locus from a single randomly selected individual).

The relative mutation rates at all loci were estimated by compar-

ison with an outgroup species (Wang & Hey, 2010; Yang, 2002),

C. paludica, whose divergence time from the ingroup was set to

17 Mya according to Majt�anov�a et al. (2016). For each pairwise spe-

cies comparison, estimated standard errors of the maximum-likeli-

hood estimates for the best-fitting model were computed from the

Hessian matrix. For species comparisons involving C. elongatoides,

because the estimated standard errors of the migration rate are rela-

tively large and because this parameter is of particular interest, we

also computed 95% confidence intervals based on the profile likeli-

hood, which are more accurate in the case of parameters near the

boundary of the parameter space (Costa & Wilkinson-Herbots, 2017;

Pawitan, 2001), but which are computationally much more expensive

to obtain.

2.4 | Comparative analysis of genetic divergence
between hybridizing fish species and types of
reproductive isolation including hybrid asexuality

Finally, we tested the generality of the hypothesis that hybrids’ asexu-

ality represents an intermediate stage of the species diversification

process by investigating the general association between the genetic

divergence of hybridizing pairs of fish species and the dysfunction of

their F1 fish hybrids. This analysis used data from Russell (2003), who

investigated the association between the genetic divergence between

hybridizing fish species (Kimura-2-parameter-corrected distances in

the cytochrome b gene) and the level of postzygotic isolation, which

was categorized by an index ranging from 0 (both hybrid sexes fertile)

to 4 (both sexes inviable). The index value 2 represented the stage

when both hybrid sexes are viable but infertile, therefore preventing

interspecific gene flow. We amended Russell’s study by introducing an

additional value (5) of postzygotic isolation index to those fish hybrids

that have been documented to transmit their genomes clonally (gyno-

genesis, androgenesis) or hemiclonally (hybridogenesis). Altogether,

the literature search performed led us to 17 cases of fish asexual

hybrids (Appendix S4), which were added to the database of Russell

(2003). In a single case, we modified Russell’s (2003) data as he

assigned R. rutilus 9 A. bramma hybrids a postzygotic isolation index

F IGURE 2 Schematic view of the eight coalescent models. Arrows along the side of model diagrams indicate the respective time periods.
The population size parameter is defined as Ɵi = 4Nil, where Ni is the effective diploid size of species i and l is the mutation rate per
sequence per generation, averaged over the loci included in the analysis; the migration rate is defined as M = 4Nm, where m is the proportion
of migrants per generation. Wherever an index “c” accompanies the parameter name, it will always indicate the values relevant for current
populations, while an index “a” indicates the states of ancestral populations before the split
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of 0.5 but Slyn’ko (2000) showed that such hybrids produce clonal

gametes and can reproduce via androgenesis. Therefore, R. ru-

tilus 9 A. bramma hybrids were assigned the index value 5. In accor-

dance with Russell’s data, the cytochrome b gene divergence was

calculated from available sequences of parental taxa using the Kimura-

2-parameter (K2P) correction using the MEGA 5.0 asoftware (Tamura

et al., 2011) (Appendix S4). The genetic distances of group 5 were

compared with the other types of hybrids using the t test after the

normality of the data was evaluated with the Shapiro–Wilk test.

Published cases of asexual hybrids concern nonoverlapping spe-

cies pairs with three exceptions. Cobitis elongatoides has been

involved in two crosses leading to naturally occurring asexuals

(C. elongatoides–taenia and C. elongatoides–tanaitica), but as the origi-

nal C. tanaitica-like mitochondrion has been lost (see above), we

considered the C. elongatoides – C. taenia cross only. Hexagrammos

octogramus and Poeciliopsis monacha produce asexual hybrids by

mating with two (H. otaki and H. agrammus) and three (P. lucida, P.

occidentalis, P. latipina) congenerics, respectively. Hence, to avoid

phylogenetic dependence, the analyses were repeated several times

with only one cross per species.

3 | RESULTS

3.1 | Reproductive modes of Cobitis hybrids

3.1.1 | Reproductive modes of natural
C. elongatoides–tanaitica hybrids

We successfully analysed backcrossed progeny of four natural EEN

and one EN hybrid females. Progeny consistently expressed all

maternal alleles, suggesting the production of unreduced gametes

and lack of segregation. In one locus, a single progeny differed

from the maternal allele by a single repeat, indicating a mutation

event. A subset of the progeny also contained a haploid set of

paternal alleles indicating that the sperm’s genome is sometimes

incorporated, leading to a ploidy increase (Tables 1 and S5). Com-

parison of allozyme profiles of eggs and somatic tissues of six EEN

females revealed no evidence of premeiotic genome exclusion

because allozyme profiles of all eggs were identical to the somatic

tissues of the respective maternal individuals (Table S6), suggesting

the absence of hybridogenesis.

3.1.2 | Reproductive modes of artificial F1 hybrids

Cobitis elongatoides–taenia hybrids were successfully backcrossed

and analysed between 2004 and 2009 (Choleva et al., 2012). In

addition, we successfully obtained two C. taenia–C. pontica primary

crosses in 2006 (family Nos. 1 and 17 from which we ultimately

obtained F2 progeny [Tables 1 and S5]). Both hybrid sexes were

viable and fertile in both families No. 1 and No. 17, as evidenced

by successful production of F2 progeny. F2 progeny mostly pos-

sessed one allele from the mother and the other from the father.

Such inheritance patterns suggest the sexual reproduction of

C. taenia–pontica hybrids in both families. However, family No. 1

also contained different types of F2 progeny: 15 individuals con-

tained the complete set of maternal alleles. Nine of those individ-

uals further possessed the haploid set of paternal alleles (Table 1).

Such patterns indicate that C. taenia–pontica hybrid females pro-

duced both recombinant sexual and unreduced gametes.

3.2 | Analysis of C. elongatoides – C. tanaitica
hybrid zone and test of ongoing introgressive
hybridization

Eight hundred and eighteen Cobitis specimens were captured and

identified from 26 localities all over the Lower Danubian River Basin.

Genotyping by allozyme and PCR-RFLP markers and flow cytometry

revealed the presence of C. elongatoides at 11 sites and C. tanaitica

at seven sites. Ten localities were inhabited by the distantly related

species, C. strumicae (Figure 1 and Table S1). Apart from sexual spe-

cies, we found various individuals that were heterozygotic in all spe-

cies-diagnostic loci indicating their hybrid state (Table S1). Most of

them were polyploids, but we also encountered 31 diploid hybrids.

MICROCHECKER indicated two loci with potentially present null alleles,

but none were consistent across populations; therefore, we did not

exclude any locus from further analysis (Table S7). Summary statistics

of microsatellite DNA analysis for three taxa are given in Table S8.

Microsatellite analysis of 104 identified diploids (Table S7) altogether

revealed that 28 of them clustered in eight groups of identical multilo-

cus genotypes (MLG A—MLG H) with negligible probability of identi-

cal genotypes arising from independent sexual events (pSEX < 10�5).

Comparison of pairwise distances against simulated distributions fur-

ther revealed that several MLGs and/or individuals with unique geno-

type are related to each other with significantly lower genetic

distances than would be expected from independent sexual events

(p < .01). These were subsequently grouped into two MLL altogether

indicating that 28 diploid individuals cluster in six distinct clonal lin-

eages, each represented by two or more individuals. Notably, all such

clonal individuals were identified as interspecific hybrids by the pres-

ence of diagnostic alleles in heterozygous states and by subsequent

analyses. In addition, three hybrids had unique genotypes distant from

any other individual, probably representing independent hybrid ori-

gins. No mtDNA haplotypes were shared by C. elongatoides and

C. tanaitica (Figure 3). One clone (MLG B) possessed a haplotype E1,

which was shared with C. elongatoides, while the remaining individuals

assigned as hybrids possessed haplotypes clustering in the old hybrid

clade I defined in Janko et al. (2005).

Likelihood values provided by Structure converged during the

runs, and results did not notably change between replicates.

Although Cobitis specimens were sampled across many localities,

Evanno et al.’s (2005) method implemented in StructureHarvester

indicated K = 2 as the most likely number of genetic clusters for the

diploid data set. Altogether, we found three types of diploid individ-

uals, that is, those with the parameter q ranging between 0.003 and

0.019 and 0.934 and 0.997, respectively, presumably indicating pure

C. tanaitica or pure C. elongatoides individuals, and those with
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intermediate q values (0.569–0.710; Figure 4a), which were identi-

fied as hybrids using our diagnostic markers (recall that only one rep-

resentative of each clone was used for Structure input).

Data analysis using the NewHybrids software was slightly sensi-

tive to the type of prior applied to Ɵ but not to p. However, consis-

tent with Structure, all specimens presumed to be C. elongatoides

and C. tanaitica were always assigned as the pure parental species

(p > .95). Under Jeffrey’s prior, NewHybrids assigned all but one of

the above-mentioned hybrids to the F1 class with probability

exceeding 95%; however, in the case of MLL E, it could not distin-

guish between the F1 (p = .51), F2 (p = .11), and B1 (p = .37) states

(Figure 4b). Under the uniform prior, most hybrids were assigned to

the F1 class, but NewHybrids could not distinguish between the F1

and B1 states of MLL H, MLL E and individual 09BG19K22

(Figure 4b and Table S7).

3.3 | Estimation of levels and timing of historical
gene flow among species using exome-capture data

After read mapping and SNP calling, we identified and removed from

analysis potentially paralogous loci with spurious heterozygosity (see

above) leaving us with the final data set of 52,473 SNPs from 6,192

contigs. Summaries of SNP variability for within- and among-species

comparisons are provided in Table S9.

Parent-to-offspring analysis confirmed the reliability of SNP

detection showing that in >99% of SNPs, both experimental F1 pro-

geny possessed variants derived from both parents and only less

than 1% were potential mistakes (where F1s either possessed a new

variant in a heterozygous state or, alternatively, a hybrid was called

as a homozygote for one parental variant, while both parents were

homozygotes for alternative alleles).

SNPs detected in wild-caught animals were then analysed by

fitting eight coalescent models assuming different scenarios of spe-

cies divergence and connectivity (Table S3). The data sets of spe-

cies pairs comparing C. elongatoides with either C. taenia,

C. tanaitica or C. pontica were best fitted by models assuming isola-

tion with initial migration (IIM7, followed by IIM8 as the second-

best model). The models of strict isolation (I7 and I4) provided a

significantly worse fit than the IIM8 and IIM7 models, respectively

(LRT p < .001 for all data sets). We also rejected the hypothesis of

ongoing gene flow between C. elongatoides and other species as

models assuming ongoing gene flow fitted the data poorly

F IGURE 3 Median-joining haplotype network showing phylogenetic relationships among Cobitis elongatoides-like haplotypes of the
cytochrome b gene. The network was constructed from previously published haplotypes and those from the current study (with asterisk).
Yellow colour denotes haplotypes sampled in C. elongatoides; blue in C. tanaitica; black in C. pontica; orange in C. elongatoides–tanaitica hybrid
(hybrid clade I) and C. elongatoides–taenia hybrid (hybrid clade II). Light grey circles denote haplotypes shared by both C. elongatoides and
hybrids. Small black circles represent missing (unobserved) haplotypes
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compared to models assuming isolation with initial migration.

Specifically, IIM8 fitted all data sets significantly better than the

nested IM5 model (LRT p � 10�10) while the most complex GIM9

model did not significantly improve the fit compared to IIM7 or

IIM8 (LRT p > .4 in all cases and evidence ratio <0.25). Further-

more, the parameter estimates obtained for the GIM9 model indi-

cated a drastic decrease in recent migration rates compared to

historical ones (Mc ~ 0), thus virtually converging to the IIM8 model.

The GIM8 model assuming secondary contact could not be com-

pared to the IIM7 or IIM8 models by LRT as these are not nested

models, but its evidence ratio was low (<0.11 for all data sets) and

it was significantly outperformed by GIM9 (LRT p < .05 in all cases),

suggesting that C. elongatoides has been historically exchanging

genes with the other species but became isolated in recent times.

The divergence time estimates were consistent across species

comparisons. The results for the best-fitting model (IIM7) indicated

that C. elongatoides initially split from the other species roughly at 9

Mya but exchanged genes with them at estimated rates of between

0.05 and 0.1 migrant individuals per generation until time t1, for

which ML estimates vary between 1.19 and 1.57 Mya depending on

the data set (Table S3). Given that the speciation times of the other

three species are much more recent (see below) than their split from

C. elongatoides, our results suggest that the detected gene flow

occurred predominantly between C. elongatoides and the common

ancestor of the other three species.

For the pairwise data sets of the closely related C. taenia,

C. tanaitica and C. pontica, the GIM9 model reduced to the IIM8

model as it gave 0 estimates for the current migration rate. The iso-

lation-with-initial-migration models (IIM7, IIM8) fitted the data signif-

icantly better than the isolation (I4 and I7) or isolation-with-

migration (IM5) models (LRT p < .001 for all appropriate compar-

isons). However, the IIM models consistently suggested very inten-

sive gene flow since t0 until a time t1 of approximately 0.15–

0.3 Mya, at levels considered close to panmixia (e.g., Lowe & Allen-

dorf, 2010), suggesting that those taxa probably formed a single per-

haps substructured species until t1. Having modelled this scenario

with the I6 model allowing a size change in the ancestral population,

we obtained the best fit and estimated speciation time at around

0.3 Mya, further suggesting their recent speciation.

3.4 | Comparative analysis of genetic divergence
between hybridizing fish species and types of
reproductive isolation including hybrid asexuality

Finally, we tested the generality of our findings, implying that the

hybrids’ asexuality may represent a transient stage of the species

F IGURE 4 Population genetic analyses of the hybrid zone. (a) Individual proportion of membership to one of the two species-specific
clusters according to structure for K = 2. Each vertical bar represents one individual, and colours show the proportion of their assignment to
the respective clusters corresponding to sexual species. For visual guidance, the individuals are grouped into a priori defined biotypes
according to diagnostic allozyme markers (horizontal axis). (b) Classification of individuals’ genotype according to NewHybrids. Each vertical
bar represents one individual. Each colour represents the posterior probability of an individual belonging to one of the eight different
genotypic classes. Individuals are sorted as in (a). The upper pane represents the results with Jeffreys prior and the lower pane with the
uniform prior
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diversification process. To do so, we investigated the relationship

between the genetic divergence of hybridizing pairs of fish species

and the dysfunction of their F1 fish hybrids. We found that the

K2P-corrected divergences of cytochrome b gene sequences from

fish species pairs that produce asexual hybrids range from 0.004 to

0.172 (mean = 0.1192; SE = 0.0459). This appears to be intermedi-

ate between those species pairs producing fertile and viable hybrids

of both sexes (Russell’s (2003) hybrid class 0; mean = 0.079;

SE = 0.054) and those pairs that produce viable but infertile hybrids

of both sexes (Russell’s hybrid class 2; mean = 0.179; SE = 0.025)

(Figure 5 and Appendix S4). Although some species of the Cobitis,

Hexagrammos and Poecilia genera were involved in more types of

hybridization producing asexuals, we included each species only

once and repeated the analysis several times to account for all

combinations. The Shapiro–Wilk test did not reject normality in any

of the hybrid classes tested (p > .05). Regardless of the species

pairs considered, parental divergences in the asexual hybrid class

were always significantly lower than those of Russell’s class 2 (Stu-

dent’s t test, p < .02) and always significantly higher than that of

Russell’s (2003) hybrid class 0 (t test, p < .03). Interestingly, the

range of divergences among asexual hybrids is generally similar to

the divergences of hybrids where the functionality of one sex is

lower than that of the other (hybrid classes 0.5–1.5; mean = 0.118;

SE = 0.040).

4 | DISCUSSION

The principal role of hybridization in the evolution of asexuality is

frequently debated, but the causality and underlying mechanisms are

poorly understood (Dijk, 2009; Kearney et al., 2009). Our study not

only provides clear support for earlier hypotheses that emergence of

asexuality correlates with the divergence between parental species,

but it also offers a conceptually novel view suggesting that hybrid

asexuality forms an inherent stage of the process of species diversifi-

cation with possible effects on the speciation itself.

4.1 | Accomplishment of speciation in spite of
fertile hybrids

Two lines of evidence indicated the absence of interspecific gene

flow between C. elongatoides and both its parapatric counterparts

C. taenia and C. tanaitica, suggesting the accomplishment of specia-

tion. Experimental crossings (Choleva et al., 2012; Janko, Bohlen,

et al., 2007; this study) showed that elongatoides – taenia and

elongatoides–taenia hybrid females are fertile but do not produce

reduced gametes neither through the “standard” sexual process, nor

by genome exclusion (hybridogenesis). Instead, hybrid females pro-

duce unreduced gametes that either develop clonally or occasionally

incorporate the sperm’s genome leading to polyploidy, but are unli-

kely to enable interspecific gene flow. Hybrid males also do not

appear to mediate gene flow as C. elongatoides–taenia hybrid males

are infertile (Choleva et al., 2012) and C. elongatoides–tanaitica

hybrid males have not been observed in nature.

Similar conclusions are drawn from analyses of hybrid zones

between C. elongatoides and C. taenia or C. tanaitica. Both zones

revealed parallel evolutionary patterns being dominated by polyploid

asexuals (in the Danube drainage, they also invaded rivers inhabited

by phylogenetically distant species C. strumicae (Choleva et al.,

2008)). Diploids were less frequent, and unlike classical hybrid zones,

where the genetic admixture follows a continuum, we found a tri-

modal distribution of the q parameter indicating the presence of

both pure species (q ~ 0 or 1, respectively) and their hybrids with

intermediate values. Most diploid hybrids apparently formed clonal

lineages and mtDNA analysis indicated a prevalently unidirectional

origin of asexuality within both zones; C. elongatoides was maternal

to all Danubian hybrids, while C. taenia was maternal to the vast

majority of elongatoides–taenia clones (Janko et al., 2012).

The detected hybrids were assigned as F1 (NewHybrids soft-

ware, p > .95) except three Danubian diploid lineages where New-

Hybrids could not reject the B1 state although the F1 state was still

preferred. Interestingly, these three lineages belong to the old clonal

hybrid clade I and possess a number of private microsatellite alleles,

suggesting that their assignment by both the Structure and NewHy-

brids software might have been affected by mutational divergence

from contemporary sexual species (see, e.g., da Barbiano, Gompert,

Aspbury, Gabor, & Nice, 2013). We are aware that NewHybrids may

fall short in detecting backcrosses using a limited number of loci

especially when between-species divergence is low (V€ah€a &

0.00 0.05 0.10 0.15 0.20 0.25

0
1

2
3

4
5

cyt b sequence divergence (%)

po
st

zy
go

tic
 is

ol
at

io
n 

in
de

x

F IGURE 5 Plot of the postzygotic reproductive isolation index
against K2P-corrected distances in cytochrome b gene between
hybridizing species. The reproductive isolation index is defined
according to Russell’s study as follows: 0, both hybrid sexes are
fertile; 0.5, one sex fertile, the other sometimes infertile; 1, one sex
fertile, the other infertile but viable; 1.5, one sex infertile but viable,
the other sometimes still fertile; 2, both sexes viable but infertile;
2.5, one sex viable but infertile, the other sex only sometimes viable;
3, one sex viable, the other missing; 3.5, one sex sometimes viable,
the other not; 4, both sexes inviable; 5, hybrids of at least one sex
are known to form asexual lineages (highlighted in grey colour).
Species pairs where one species occurred more than once in the
analysis are indicated by grey triangles (Cobitis taenia), diamonds
(Poeciliopsis monacha) and grey squares (Hexagrammos octogramus),
respectively
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Primmer, 2006). However, our inferences are unlikely to have been

substantially affected by this problem because interspecific FST val-

ues were large in all loci and the observed lack of resolution did not

concern misclassification between B1/pure species as suggested by

V€ah€a and Primmer (2006) but rather between the B1 and F1 classes.

The absence of recombinant hybrid progeny altogether agrees

with crossing experiments and implies the lack of introgressive

hybridization between C. elongatoides and other species. Interest-

ingly, the isolation of their gene pools appears to be driven neither

by strong prezygotic RIMs nor by extrinsic postzygotic isolation, as

species readily hybridize both in natural and experimental conditions

(Choleva et al., 2012; Janko, Flaj�shans, et al., 2007; Janko et al.,

2012), and do not notably differ in ecological requirements. Instead,

the data show that ultimately, a reproductive barrier separating the

gene pools of contemporary species is ensured by asexual reproduc-

tion of hybrid females and sterility of hybrid males.

4.2 | Historical periods of gene flow and change in
hybrids’ reproductive mode

Despite current postzygotic isolation, hybrids able to mediate gene

flow must have existed in the past as indicated by the coalescent

analysis, where the isolation-with-initial-migration models outper-

formed both the strict isolation and isolation-with-migration models,

for all pairwise species comparisons involving C. elongatoides. The

best-fitting IIM models suggested historical episodes of gene

exchange after the initial divergence of C. elongatoides around

9 Mya, followed by isolation of contemporary species since t1, esti-

mated at around 1–1.5 Mya (Figure 2 and Table S3). While the mod-

els only allowed pairwise species comparisons, the results indicated

significant historical gene flow between C. elongatoides and each of

the other three species. As these three species diversified only

recently (~0.3 Mya), it is reasonable to conclude that the inferred

gene flow occurred predominantly between their common ancestor

and C. elongatoides although we may not rule out that the gene flow

continued also after the C. taenia – C. tanaitica–C. pontica speciation.

The present results are consistent with a previous application of

a Bayesian IM model to nine nuclear and one mtDNA loci (Choleva

et al., 2014) but two differences were noted. First, Choleva et al.

reported significant mitochondrial but not nuclear C. elongatoides –

C. tanaitica gene flow, which led to the impression that the nucleus

has not been affected by hybridization despite complete introgres-

sive replacement of C. tanaitica’s mitochondrion. The current evi-

dence for gene flow also in the nuclear compartment is more

plausible biologically. Second, the present data indicate isolation

among the three closely related species while the previous study

suggested intensive C. taenia–C. tanaitica gene flow. This was at

odds with the field data because sympatry between both species

has not been documented and we never observed their hybrids in

nature (Janko, Flaj�shans, et al., 2007). The present analysis is there-

fore again more in line with current knowledge about Cobitis. The

discrepancy with the previous inference may potentially reflect the

tendency of Bayesian IM algorithms to inflate estimates of gene flow

when the number of loci is low and splitting times are recent

(Cruickshank & Hahn, 2014; Hey, Chung, & Sethuraman, 2015).

Given that crossing experiments indicated fertility of hybrids

between closely related species, their genetic isolation may poten-

tially result from the distribution in separated inflows of the Black

Sea, rather than from other pre- or postzygotic RIMs. In any case,

more intensive sampling and analyses are required to fully under-

stand the diversification of these close relatives.

As with all models, various violations of assumptions might have

affected our inferences. These include uncertainty regarding the rela-

tive mutation rates of the different loci, population size fluctuations,

intralocus recombination and geographical structure. Model results

might further have been affected by direct or background selection

(Walczak, Nicolaisen, Plotkin, & Desai, 2012). Moreover, the intensity

of gene flow was probably not constant between t0 and t1, and pair-

wise coalescent analyses might have been affected by intractable

interactions with other species although IM models are reasonably

robust to this type of violation (Strasburg & Rieseberg, 2010).

However, although our model-based inference might have suf-

fered from various such limitations, we emphasize that independent

types of data corroborated the scenario of historical introgressive

hybridization with little or no contemporary gene exchange between

C. elongatoides and the other species. On the one hand, the exis-

tence of intensive gene flow between C. elongatoides and the other

species is supported by the massive introgression of its mitochon-

drial lineage into C. tanaitica (Choleva et al., 2014). On the other

hand, the lack of contemporary gene flow is evidenced by small but

nonzero divergences between contemporary C. elongatoides mtDNA

haplotypes and those fixed in C. tanaitica as well as by clonal repro-

duction of hybrids and the apparent lack of introgressive hybridiza-

tion in hybrid zones. Finally, the crossing experiments indeed

showed that recently diverged species pairs are able to produce

mostly fertile and recombining F1 and F2 progeny of both sexes

(C. taenia and C. pontica crosses from this study), while hybrids

between substantially diverged species cannot mediate gene flow,

being exclusively represented by sterile males and highly fertile, yet

clonal females (C. elongatoides and C. taenia crosses by Choleva

et al., 2012).

4.3 | Simultaneous evolution of asexuality and
RIMs

Several complementary approaches consistently indicated that the

incipient spined loach species originally produced hybrids whose

reproductive mode enabled more or less intensive gene flow, but as

those species diverged further, introgressions became restricted and

asexuals were the major type of hybrids. Hybrid asexuality arose

multiple times in the family Cobitidae, involving taenia – pontica

crosses (laboratory hybrids from this study), elongatoides – taenia and

elongatoides – taenia crosses (Choleva et al., 2012; Janko, Flaj�shans,

et al., 2007) as well as two cases from other genera in Asia (Kim &

Lee, 2000; Zhang, Arai, & Yamashita, 1998). Such a widespread and

independent emergence of asexuality is not consistent with the
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phylogenetic-constraint hypothesis (Hotz et al., 1985; Murphy et al.,

2000). It rather conforms to the balance hypothesis (Moritz et al.,

1989), which predicts that hybridization between gradually diverging

species would initially produce mostly sexual hybrids while success-

ful asexuals would arise at intermediate stages when a hybrid’s

meiosis is disrupted but fertility is not yet significantly reduced.

Simultaneously, the inferred diversification history of spined loaches

is consistent with the gradual decline in the species’ capability of

introgressive hybridization that is expected to evolve along the spe-

ciation continuum from weakly separated entities towards strongly

isolated species (e.g., Seehausen et al., 2014).

The establishment of hybrid asexuality thus appears in many

aspects similar to the gradual accumulation of intrinsic postzygotic

RIMs. Most notably, both processes correlate with the divergence of

hybridizing species. It is interesting to note that the interval of diver-

gences allowing the initiation of clonality may be wide as successful

clones readily emerge from hybridization between C. elongatoides

and other species, diverged ~9 Mya, while we also documented

asexuality between recently diverged C. taenia and C. pontica. Fur-

thermore, analogously to RIM accumulation, the establishment of

hybrid asexuality appears asymmetrical with respect to the direction

of cross (Janko, Kotlik, & R�ab, 2003; Wirtz, 1999) as well as the sex

of hybrids—asexuality is present in females, while hybrid males in

most species combinations are sterile. Although extensive investiga-

tion of Cobitis sex chromosomes is yet to be carried out, two studies

indicated male heterogamety in Asian C. striata and European

C. tanaitica (Saitoh, 1989; Vasil’eva & Vasil’ev, 1998), suggesting that

our data conform to the empirical observation that the heteroga-

metic sex tends to acquire infertility earlier than the homogametic

one (Bolnick & Near, 2005; Haldane, 1922; Russell, 2003). Such

analogies with postzygotic RIMs justify the hypothesis that hybrid

asexuality may be considered a specific form of Dobzhansky–Muller

incompatibility evolving during the species diversification process.

The results obtained by adding asexual hybrids into Russell’s

(2003) comparative analysis suggests that the scenario revealed in

spined loaches has the potential to be generalized. Asexual hybrids

appear at higher levels of parental divergences than species pairs

producing fertile and viable hybrids but lower than those producing

infertile hybrids of both sexes (Figure 5, Appendix S4). Similar pat-

terns were observed also in reptiles (Jan�c�uchov�a-L�askov�a et al.,

2015; Moritz, Densmore, et al., 1992; Moritz, Uzzell, et al., 1992;

Moritz, Wright, et al., 1992). The divergence of asexual-producing

species pairs is similar to those producing hybrids with lowered

hybrid fertility in one sex (Russell’s hybrid classes 0.5–1.5), which is

in line with the observation that populations of asexual fish often

consist of females only. The relatively wide interval of divergences

allowing the initiation of asexuality (Figure 5) also agrees with the

expectation that accumulation of RIMs follows a variable-rate clock

and that different types of incompatibilities accumulate in a noisy

manner (Edmands, 2002).

We may now ask whether hybrid asexuality may represent the

true primary barrier, thereby directly contributing to speciation, or

only a way to temporarily rescue hybrids that would otherwise be

sterile anyway. As the species diverge, meiosis and gametogenesis

become impaired in hybrids (Russell, 2003; S�anchez-Guill�en et al.,

2014) leading to sterility and gene flow reduction. Some organ-

isms, like spined loaches, might have temporarily alleviated sterility

by making fertile, yet asexual, hybrids. Possibly, if Cobitis hybrids

were unable of asexuality, they would be sterile and gene flow

would occur at the same low rate as in the actual situation.

Hybrid asexuality would thus have no specific effect on specia-

tion. However, Cobitis asexual females, just like many other hybrid

asexuals, are highly fertile and retained functional meiosis (the

clonality is achieved by premeiotic endoduplication followed by

two meiotic divisions (Saat, 1991; Juchno, Arai, Boro�n, & Kujawa,

2016). Moreover, hybrid asexuality generally appears at lower

divergences than hybrid sterility (Figure 5). We therefore prefer

the alternative hypothesis viewing hybrid asexuality as a true form

of postzygotic RIM that evolves earlier in the diversification pro-

cess than sterility.

5 | CONCLUSIONS

Our data suggest that hybrid asexuality constitutes a transient stage

of the speciation continuum that may be viewed as a special case of

Dobzhansky–Muller incompatibilities and tends to evolve at lower

divergence than hybrid sterility or inviability. Given that asexuals are

unlikely to mediate gene exchange, the production of asexual rather

than sexual hybrids may help to establish an effective barrier even in

the absence of other typical forms of postzygotic RIMs. This implies

a possibility that various currently incompatible species might have

historically produced asexual hybrids that have gone extinct. Such a

phase might be difficult to detect from current patterns due to its

transiency and the typically short lifespan and cryptic nature of asex-

ual lineages (Butlin, Sch€on, & Martens, 1999).

In any case, it appears that there is a mechanistic connection

between recombination suppression, hybrid incompatibility and spe-

ciation (Balcova et al., 2016). Given that asexuality is one of the

most prominent processes that alter recombination, the stage of

hybrid asexuality requires close attention as it might represent an

underappreciated mechanism in the speciation of those groups

which are capable of asexual reproduction, including arthropods, ver-

tebrates or plants.
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