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Abstract

Background: Genome-scale metabolic modeling is a cornerstone of systems biology analysis of microbial
organisms and communities, yet these genome-scale modeling efforts are invariably based on incomplete

functional annotations. Annotated genomes typically contain 30-50% of genes without functional annotation,
severely limiting our knowledge of the “parts lists” that the organisms have at their disposal. These incomplete annotations
may be sufficient to derive a model of a core set of well-studied metabolic pathways that support growth in pure culture.

However, pathways important for growth on unusual metabolites exchanged in complex microbial communities are often

core pathways.

less understood, resulting in missing functional annotations in newly sequenced genomes.

Results: Here, we present results on a comprehensive reannotation of 27 bacterial reference genomes, focusing on
enzymes with EC numbers annotated by KEGG, RAST, EFICAZ, and the BRENDA enzyme database, and on membrane
transport annotations by TransportDB, KEGG and RAST. Our analysis shows that annotation using multiple tools can
result in a drastically larger metabolic network reconstruction, adding on average 40% more EC numbers, 3-8 times
more substrate-specific transporters, and 37% more metabolic genes. These results are even more pronounced for
bacterial species that are phylogenetically distant from well-studied model organisms such as E. coli.

Conclusions: Metabolic annotations are often incomplete and inconsistent. Combining multiple functional annotation
tools can greatly improve genome coverage and metabolic network size, especially for non-model organisms and non-
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Background

In the early days of genome sequencing, functional an-
notation involved computational prediction of gene
function coupled with extensive manual curation by
teams of experts [1-3]. Today, with the exponential ex-
plosion of DNA sequencing [4] the fraction of genes that
have undergone any degree of manual curation or even
experimental validation is becoming vanishingly small
[5, 6]. Automated gene annotation tools employing dif-
ferent methodologies with minimal manual curation are
widely used, functionally annotating by homology to
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existing annotations, or by identification of conserved
domains/motifs within a coding sequence [7, 8]. Many
draft genomes and metagenome bins are often run
through a single annotation pipeline where genome an-
notations are inherited from previous genome annota-
tions. Even when multiple annotation tools are used,
integrating the different outputs in a cohesive manner
remains a major challenge [9, 10]. However, individual
annotation tools often return annotations for different
subsets of genes, offering the potential to greatly in-
crease the coverage of annotations by combining the
outputs of multiple tools if the barrier for integration
can be overcome. Accurate and comprehensive genome
annotations are essential for deciphering evolutionary,
systematic and ecosphere functions of sequenced organ-
isms. In particular, constraint-based metabolic modeling
has emerged as a key tool in systems biology [11].
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Genome-scale metabolic models implicitly assume
complete and accurate functional annotation. However,
30-50% of genes in a typical genome still lack any func-
tional annotation [12], a statistic which has not im-
proved much over the past two decades of genome
sequencing [3]. More than 30% of these unannotated
genes are estimated to have metabolic functions [13]
leaving a significant gap in our understanding of the
underlying metabolic processes. In addition, annotated
genes include a large (and potentially growing) fraction
of misannotations [14]. Further, high-throughput untar-
geted metabolomics often contain a large fraction of
peaks that cannot be reliably matched to any known me-
tabolites [15], and many of those that can be identified
often do not match any metabolic reconstruction of the
microbial species involved [16], providing another strong
indication of the extent of microbial metabolism we are
missing with current metabolic annotation methods. As
the scale and complexity of the biosystems that we study
increases, there is a need to examine the metabolic
interactions between constituent organisms and asses
the system-level outcome of these exchanges. Metabolic
modeling efforts, are moving beyond studying core meta-
bolic pathways in a single organism towards multi-species
models, real-world communities and ecosystems [17-19],
and incorporation of complex ‘omics and metabolite data,
emphasizing the need for a more complete coverage of
the metabolic functions identified in microbial genomes, a
much wider range of metabolites found in complex com-
munities, and a greater emphasis on transport and ex-
change processes.

In constraint-based genome-scale modeling methods
such as Flux Balance Analysis [11], the issue of missing
metabolic annotations is dealt with by “gap filling” - the
addition of a set of metabolic reactions beyond those
that were derived directly from the genome annotation
[20]. A variety of gap filling algorithms have been devel-
oped to predict the missing reactions necessary to make
the metabolic network model sufficiently complete to
produce biomass [21-24]. In a broad collection of 130
genome-scale metabolic models added to the Model-
SEED database [25], on average 56 additional gap filled
reactions were needed for each model to produce bio-
mass in simple defined nutrient media. Even after those
additions an average of one-third of the reactions in
each model were still blocked, meaning that there were
still enough reactions missing in the network to preclude
metabolic flux through those reactions [25, 26]. In
addition, the number of reactions that can partake in a
gap filling solution is vast (3270 in the case of E. coli),
and the sets of reactions generated by different gap fill-
ing algorithms may have little or no overlap with each
other [27]. Clearly, a more complete identification and
annotation of metabolic reactions would be preferable to
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the addition of dozens of poorly supported reactions just
to patch the holes in the network.

Recent genome-scale modeling of Clostridium beijer-
inckii NCIMB 8052 [28] demonstrated that the total
number of genes and reactions included in the final cu-
rated model could be almost doubled by incorporating
multiple annotation tools. The reconstruction of the C.
beijerinckii metabolic network used 3 different database
sources (SEED [29], KEGG [30], and RefSeq annotations
captured in BioCyc [31]) to evaluate annotation coverage
and produce a more robust model. Each annotation
source contributed only about half of the reactions in
the final curated model. Only a third of the reactions
were present in all three sources, and these reactions
were found to contribute significantly to a core set of ac-
tive reactions in validation simulations. The small over-
lap between annotations was not simply due to any
source contributing more heavily to a particular area of
metabolism, nor did any one source outperform another
in terms of model connectivity. Likewise, in an analysis
of nine prokaryotic genomes, the three enzyme annota-
tion sources used — NCBI, KEGG, and the PEDANT
protein database [32] — only agreed on less than one
third of the annotated genes [33].

Accurate metabolic models also rely on accurate deter-
mination of substrate transport between the bacterium
and its environment. Transporter annotations have
rarely been used in genome scale metabolic modeling
because of the difficulty in computationally determining
the exact substrate being transported. Because of this,
many metabolic modeling methods simply assume that a
transporter exists for the import of any necessary metab-
olite - an assumption that is incorrect in some cases. For
example, the yogurt bacterium Streptococcus thermophi-
lus has an unusual growth phenotype in that it grows
poorly on glucose, even though it possesses all the re-
quired metabolic enzymes [34]. Instead it preferably im-
ports the disaccharide lactose, hydrolyzes it to glucose
and galactose, then secretes the galactose back out of
the cell. S. thermophilus lacks the typical glucose phos-
photransferase system used by many bacteria, and in-
stead has an efficient lactose import mechanism that
makes it well adapted to grow in milk [34]. Prediction
tools such as TransportDB’s Transporter Automatic An-
notation Pipeline (TransAAP, [35]) now allow re-
searchers to generate substrate predictions that are
sufficiently detailed to be included in metabolic path-
ways, and could give insights into growth or metabolite
exchange phenotypes that are not readily apparent from
the metabolic pathways present in the genome.

We undertook an investigation into the effectiveness
of several popular tools for genome annotation and their
overlap with each other, focusing specifically on enzymatic
annotations characterized by EC (Enzyme Commission)
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numbers, because those can be most unambiguously
mapped across annotations from different sources [36].
Due to the current limitations and difficulties of merging
the functional ontologies from different annotation tools,
for this analysis we focused on those that produce EC an-
notations. Limiting our analysis to only EC numbers
allowed the mapping of functions between RAST, KEGG,
EFICAz and BRENDA. Note that many databases such as
RAST, KEGG and MetaCyc also curate their own set of
metabolic reactions and reaction variants beyond the ca-
nonical EC number hierarchy, however, differing reaction
identifiers can be much more difficult to compare across
the different tools. Using 27 bacterial reference genomes
from BioCyc [31] (see Table 1), we evaluated how many
genes, EC numbers, and gene-EC annotations were
unique or shared with other tools. We also undertook a
study of how transporter annotations were handled be-
tween RAST [29], KEGG [30], and TransportDB [35],

Table 1 Reference genomes used in this study
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focusing especially on transporters with detailed substrate
annotations. We hypothesized that by combining annota-
tion tools we could alleviate some of the known problems
with lack of coverage of metabolic annotations, especially
for less well studied organisms, pathways, and transporters.

Results and discussion

Discrepancies in metabolic annotations between different
tools

In total, the RAST, KAAS, EFICAz and BRENDA tools
produced 47,447 Gene-EC annotations (“gene X codes
for an enzyme with EC number Y”) across the 27 refer-
ence genomes, for an average of 1757 annotations per
genome. The metabolic gene-EC annotations produced
by these automated genome-wide annotation tools dif-
fered drastically (Fig. 1). Each tool produced on average
between 23% (EFICAz) and 48% (BRENDA) unique
gene-EC annotations that were not predicted by any of

Genome Name Biocyc ID Phylum NCBI Accessions Proteins
Mycobacterium tuberculosis CDC1551 MTBCDC1551 Actinobacteria  AE000516 4189
Mycobacterium tuberculosis H37Rv MTBH37RV Actinobacteria  AL123456 4018
Streptomyces coelicolor A3(2) SCO Actinobacteria  NC_003888, NC_003903, NC_003904 8152
Bacteroides thetaiotaomicron VPI-5482 BTHE Bacteroidetes AE015928, AY171301 4825
Candidatus Cardinium hertigHb CBTQ1 Bacteroidetes HG422566, CBQZ010000001- CBQZ010000011 739
Synechococcus elongatus PCC 7942 SYNEL Cyanobacteria ~ CP000100, CP000101 2661
Listeria monocytogenes 104035 10403S_RAST Firmicutes CP002002 2814
Bacillus anthracis Ames ANTHRA Firmicutes NC_003997, AE017335, AE017336 5602
Bacillus subtilis 168 BSUB Firmicutes AL009126 4185
Clostridium saccharoperbutylacetonicum ATCC 27021 CLOSSAC Firmicutes CP004121, CP004122 5821
Eubacterium rectale ATCC 33656 EREC Firmicutes CP001107 3626
Clostridioides difficile 630 PDIF272563 Firmicutes AM180355, AM180356 3809
Agrobacterium fabrum C58 AGRO Proteobacteria  AE008687, AE008688, AE008689, AE008690 5402
Aurantimonas manganoxydans SI85-9A1 AURANTIMONAS  Proteobacteria  AAPJO1000001- AAPJO1000035 3650
Caulobacter crescentus CB15 CAULO Proteobacteria  AE005673 3737
Caulobacter crescentus NA1000 CAULONAT000 Proteobacteria ~ CP001340 3885
Escherichia coli CFT073 ECOL199310 Proteobacteria  AE014075 5379
Escherichia coli K-12 substr. W3110 ECOL316407 Proteobacteria  NC_007779 4410
Escherichia coli B str. REL606 ECOL413997 Proteobacteria  CP000819 4209
Escherichia coli K-12 substr. MG1655 ECOLI Proteobacteria  U00096 4140
Escherichia coli O157:H7 str. EDL933 ECO0157 Proteobacteria  AE005174, AF074613 5449
Candidatus Evansia muelleri® EVA Proteobacteria  LM655252 330
Helicobacter pylori 26,695 HPY Proteobacteria  CP003904 1594
Methylosinus trichosporium OB3b MOB3B Proteobacteria  NZ_ADVE02000001- NZ_ADVE02000003 4344
Candidatus Portiera aleyrodidarurm BT-QVLC® PABTQVLC Proteobacteria  CP003867 280
Shigella flexneri 2a str. 2457 T SHIGELLA Proteobacteria  AE014073 4068
Vibrio cholerae O1 biovar El Tor str. N16961 VCHO Proteobacteria  AE003852, AEO03853 3828

Tier 1 Pathway Genome Database (EcoCyc)
PEndosymbiont with reduced genome
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Fig. 1 Large differences exist between the sets of Gene-EC annotations generated by the four annotation tools across the 27 reference genomes
J

the other tools. Overall, fewer than a quarter of all
gene-EC annotations were agreed on by at least 3 tools.

When two annotation tools both assigned a particular
gene an EC annotation, the two tools assigned at least
one identical EC annotation in more than 50% of cases
(Table 2). BRENDA on average had the lowest agree-
ment with other tools (56.0-69.7%). Note also that
BRENDA had a larger fraction (47.5%) of gene-EC anno-
tations not shared by any other tools (Fig. 1). In con-
trast, EFiCAz showed the highest agreement with other
tools (69.7-86.4%) and had the lowest number of
gene-EC annotations not shared by other tools (23.4%).

The denominator is the number of genes across the 27
reference genomes that are covered by both tools. The
numerator counts the number of such genes for which
both tools provide at least one identical gene-EC num-
ber annotation.

Comparing annotation tools against each other can give
a sense of which tools are closest to a consensus annota-
tion, or which tools seem to be outliers, however assessing
the integrity of these predictions is difficult without ex-
perimental validation. Therefore, to determine which tool
provides the best ratio of true/false annotation predictions

Table 2 Percentage of gene-EC annotation agreements that
exist between pairs of tools

Tool Combination Gene-EC Agreements

KEGG-RAST 16,697/20,915 (79.8%)
KEGG-EFICAZz 14,413/16,677 (86.4%)
KEGG-BRENDA 3777/6748 (56.0%)
RAST-EFICAZ 12,977/15,694 (82.7%)
RAST-BRENDA 3907/6288 (62.1%)

EFICAZ-BRENDA 3902/5601 (69.7%)

we compared their predictions to the EcoCyc database
[37]. EcoCyc is a gold-standard continuously updated
database of experimentally determined and extensively
hand-curated enzymatic functions in Escherichia coli K-12
substr. MG1655, the most-studied model organism in
modern biology. We used the gene-EC numbers anno-
tated in EcoCyc as a set of true positives to evaluate how
well the two most commonly used automated annotation
tools, RAST and KEGG, are able to assign function to the
enzymes in E. coli K-12. Overall, there was a high degree
of overlap between the RAST and KEGG predictions
(Fig. 2) with EcoCyc, however neither tool covered all of
EcoCyc, and both tools predicted a small number of reac-
tions not experimentally validated.

One major caveat of using E. coli to evaluate the qual-
ity of annotation tools is that so much of our knowledge
of microbial metabolism is based on E. coli, and there-
fore annotation tools can be expected to be trained or
optimized on E. coli to some extent, so performance on
E. coli is not necessarily indicative of results on other or-
ganisms. For example, the KEGG annotation provided
by KAAS is done by calculating bidirectional best
BLAST hits against annotated reference genomes in-
cluding E. coli, essentially providing a direct lookup of E.
coli annotations in the KEGG database.

Coverage of the metabolic network reconstruction

While the individual gene-EC annotations examined in
the previous section reflected the quality and agreement
between annotation tools, the total set of EC reactions
annotated for a genome by each tool reflects the size
and coverage of its metabolic network reconstruction. In
this case, we simply counted the total number of differ-
ent EC numbers, regardless of whether multiple genes
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drawn proportionally to the number of annotations in each
.

Fig. 2 Gene-EC annotations produced by KEGG and RAST for E. coli K-12, compared to the EcoCyc gold standard. The sets and intersections are

J

are annotated with the same EC number (isozymes), or
whether genes were annotated with multiple EC num-
bers (multifunctional enzymes). On average, the four
tools combined produced 868 EC reactions per genome,
with the largest agreement between RAST and KEGG
(Fig. 3). In general, KEGG produced a larger number of
unique EC numbers, which could indicate more
over-prediction, or more comprehensive pathway cover-
age. Note that both RAST and KEGG also generate
many reactions without official EC numbers, so in some

cases these annotation tools may produce annotations
that are minor variants or subsets of the canonical EC
number reaction in EcoCyc.

EFICAz produced the least number of unique EC
numbers but had high agreement with RAST and KEGG
(86% of EFICAz EC numbers were also generated by
both RAST and KEGG - see Fig. 3), even though it uses
very different annotation methods, which suggests it can
be helpful in validating those annotation tools. Note that
EFICAz also produces incomplete “three-digit” EC number

.

Fig. 3 Reaction overlap between the annotation tools (average number of EC numbers per genome)
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annotations (e.g. 1.2.3.-) which may be useful for hole filling
but were not considered in this analysis.

BLASTing against the BRENDA database of reference
enzymes produced the smallest number of annotations,
but a high fraction of unique EC numbers. Interestingly,
of the top 10 unique EC numbers produced by this
method, only one is also covered by RAST and KEGG,
two of the EC numbers have been deprecated by the En-
zyme Commission, and six are EC numbers that have
been assigned in 2000 or later and may not have been
incorporated into the predictions by the other annota-
tion tools yet. So even though a simple BLAST against a
reference database such as BRENDA proves to be one of
the less effective means for assigning metabolic func-
tions (compared to the more sophisticated HMM or
protein family based methods used by the other tools), it
may still have some value to capture recently described
enzymes not already covered by the other tools.

While counting the number of EC numbers reflects
the size of the metabolic network, counting the numbers
of genes that have received any metabolic annotation re-
flects the genome annotation coverage. Additional file 1:
Figure S1 shows the number of genes in all of the refer-
ence genomes annotated with one or more EC numbers
by each of the tools. On average, 1361 genes per genome
were assigned a function with at least one tool, and
more than 65% of these genes were assigned a metabolic
function by more than one tool. The results show that
just as each tool adds a significant number of reactions
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significantly contributes to the number of genes covered
with metabolic annotations.

The EC numbers on which the different tools most
often agree across the 27 reference genomes tended to be-
long to well-studied core metabolic pathways. Out of the
79 EC numbers on which all four tools agreed in at least
half of the genomes (Additional file 2), more than three
quarters (61/79) were involved in biosynthesis or biodeg-
radation of amino acids, nucleotides, carbohydrates, and
cofactors; or in the processing of RNA, DNA and proteins.
In contrast, almost none of these EC numbers were in-
volved in biosynthesis or degradation of fatty acids, lipids,
aromatics compounds, or secondary metabolites.

The differing sets of annotations produced by each
tool can enable a user to trade off confidence for cover-
age, with higher confidence obtained when accepting
only annotations that were agreed upon by multiple
tools (the intersection), or higher coverage obtained by
using the combined set of annotations from multiple
tools (the union). To examine the effect of taking the
intersection (higher confidence) or union (higher cover-
age) of the annotation tools, we compared combinations
of the four annotation tools against the E. coli K-12
“gold standard” metabolic reactions in EcoCyc (Fig. 4).
These combinations included the single tool annota-
tions, as well as the union and intersection of all four
tools combined in pairs, triplets and quartets. The
resulting EC annotations from these combinations were
then compared to the 1064 EC numbers from EcoCyc,

to the metabolic network model, each tool also and the number of true positives, false positives, and
1.0
0.9
0.8
0.7
§ 0.6
o
o
0.5
Intersection
0.4
Brenda
0.3
0.2
0.8 0.85 09 0.95 1.0
Precision
Fig. 4 Precision vs Recall of EC numbers for different combinations of tools on EcoCyc. Individual tools are denoted by B, E, K, or R for BRENDA,
EFICAZ KEGG, and RAST, respectively. For each combination of tools, we calculated precision and recall for both the union and intersection of the
sets of EC numbers generated by each tool. The union corresponds to the set of EC numbers generated by at least one of the tools in the
combination, while the intersection corresponds to those EC numbers generated by every single tool in the combination
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false negatives were calculated for each combination, as
well as the resulting Precision and Recall (Table 3).

A more lenient annotation policy (e.g. merging anno-
tations from all tools) will tend to generate fewer false
negatives but more false positives, achieving a higher Re-
call at the expense of lower Precision. Conversely, a
more restrictive annotation policy (e.g. only including
EC numbers if all tools agree on them) can increase Pre-
cision, but at the expense of a lower Recall. Figure 4
shows a plot of precision versus recall for all the differ-
ent combinations of tools. Out of the individual tools,
KEGG performed best in terms of both precision and re-
call on this dataset (although as mentioned before, per-
formance on E. coli K12 may not reflect performance on
other genomes), and a simple Blast against the BRENDA
database performed worst. Combinations that contain
some union of the tools have a higher recall than each
of the individual tools in the combination, but a some-
what lower precision (>80%). In contrast, intersections
of annotations from two or more tools show very high
(>90%) precision but much lower recall (< 65%). A con-
sensus annotation that produces both higher recall and
higher precision might be achieved by means of a
weighted sum of all the annotation sources, similar to
the approach taken by EnzymeDetector [33].

Even though we expected the E. coli K-12 genome to
be a best-case annotation candidate, there were still sig-
nificant differences in the annotations produced by the
different tools, with each tool only covering a subset of
the known enzymes in EcoCyc. The four annotation
tools annotated a significantly larger fraction of the gen-
ome, and showed much more agreement on E. coli than
on more remote lineages such as Actinomycetes, Bacter-
oidetes, or Clostridia (Fig. 5a). For E. coli K-12, 60% of
EC numbers were agreed on by 3 or more tools, while
28% EC numbers come from only a single tool. In con-
trast, for C. difficile 630, only 33% of EC numbers were
agreed on by 3 or more tools, and 48% of EC numbers
come from only a single tool. Note that this also seems
to justify the use of multiple annotation tools in the
recent work on modeling of Clostridium beijerinckii
NCIMB 8052 [28]. Compared to the five E. coli strains
in our dataset, the annotation tools also cover on aver-
age around 30% fewer genes for the 13 genomes in the
bottom half of Fig. 5b. We see a similar effect when we

Table 3 Definitions of Precision, Recall and associated terms
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compare the annotation coverage for B. subtilis — argu-
ably the best studied Gram-positive model organism —
with all 8 other Gram-positive genomes in our dataset.
These results suggest that genome coverage for each
tool, and agreement in annotations across tools are sig-
nificantly worse for organisms that are more phylogenet-
ically distant from well-studied model organisms,
making it all the more important to combine multiple
tools when annotating these genomes.

Transporter annotations

Knowledge of the molecules and substrates an organism
can transport and exchange with the environment can
help to build a more accurate metabolic model. Both
RAST and KEGG include membrane transport annota-
tions, yet both tools yielded on average only 114 and 204
transporter predictions per genome, respectively (Fig. 6a
and Additional file 1: Figure S2). Many of these annotated
transporters lack substrate predictions (52% of transporter
annotations in RAST, 25% in KEGG) or have ambiguous
substrate predictions (ranks 3—4 (Table 4, Additional file 3);
20% in RAST, 28% in KEGG), while less than half have
substrate predictions that are sufficiently detailed to be in-
corporated in a metabolic model (ranks 1-2; 28% in RAST,
48% in KEGG; Fig. 6b). In contrast, TransportDB produces
an average of 426 transport annotations per genome, and
most of those have specific substrate predictions (59% rank
1-2; 32% rank 3—4, 10% rank 5; Fig. 6b).

Transporter annotations by RAST, KEGG and Trans-
portDB showed surprisingly little overlap. Out of the
more than 15,000 genes annotated as transporters (re-
gardless of substrate prediction), the three tools only
agree on 2.8% (423/15,161). Out of those, only 130 genes
are annotated by all three tools with a specific substrate
prediction (ranks 1-2). When two or more tools provide
a sufficiently specific substrate annotation, the substrate
annotations tend to agree 85% of the time, even if they
may not be identical (for example, one transporter was
annotated as “leucine/valine”, “leucine”, and “branched-
chain amino acid” by TransportDB, RAST and KEGG re-
spectively). Overall, the detailed transporter annotations
by TransportDB’s Transporter Automatic Annotation
Pipeline provide a significant advance over more general
metabolic annotation tools such as RAST and KEGG.

Term Formula Definition

True Positive TP EC numbers predicted by tools and found in EcoCyc.

False Positive FP EC numbers predicted by tools and not found in EcoCyc.
False Negative FN EC numbers in EcoCyc but not predicted by tools.

Precision TP/(TP + FP) Fraction of predicted EC numbers that are in EcoCyc.

Recall TP/(TP + FN) Fraction of EC numbers in EcoCyc correctly predicted by tools.
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Fig. 5 Genome coverage and overlap in annotations varies across genomes. a Horizontal bars represent the fraction of the total number of EC numbers
for each genome produced by only a single tool, or by two, three or all four tools. The 27 reference genomes were sorted with respect to the fraction of
EC numbers that were predicted by 3 or more tools (blue bars). The top of the list is dominated by model organisms such as E. coli, B. subtilis, and closely
related organisms. As we move farther away from such well-studied model organisms, the fraction of unique EC numbers predicted only by a single tool
(red bars) increases, at the expense of those predicted by multiple tools. b The fraction of genes annotated as enzymes by each tool likewise decreases as
we move farther away from model organisms such as E. coli. Note that two of the organisms with a drastically reduced genome content, Candidatus
Portiera aleyrodidarum BT-QVLC and Candidatus Evansia muelleri, also have a relatively higher fraction of core metabolic enzymes
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Conclusions

This analysis has led us to make recommendations for
providing a more comprehensive metabolic genome an-
notation. We found that a single annotation tool is often
insufficient unless one is only interested in core metab-
olism where different tools often agree. Organisms that
are phylogenetically far removed from well-studied
model organisms are particularly susceptible, in which
case annotation tools will tend to diverge far more. In
addition, one can trade off confidence in predictions

union of multiple annotation tools. BLASTing against

-

versus greater coverage by using the intersection or

a

database of reference sequences is generally an ineffi-
cient method for annotating enzymes but may be useful
to cover more recently assigned EC numbers not yet in-
cluded by other tools. Still, all these efforts require man-
ual curation to bring together annotation from multiple
sources. More tool development is needed to merge an-
notations beyond simple EC numbers, and a universal
reference database for well-balanced reactions and

B

RAST

Fig. 6 a Total number of genes annotated as transporters, regardless of substrate. b Transporter annotations with substrates predictions specific
enough to be included in metabolic models (rank 1 or 2)

A
TransportDB TransportDB

RAST

@@

KEGG
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Table 4 Examples of substrate annotation ranking
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Rank Substrate Examples
1 Metabolite that can be incorporated as a transport - Fe

reaction in a metabolic model - lysine
2 Substrate(s) that map to a small number of possible « Mg/Co/Ni

transport reactions « aromatic amino acid
3 Broader substrate classes not directly usable to - dipeptide

construct a metabolic network - sugar
4 Very broad class of substrates - multidrug efflux

- protein

5 No substrate annotated

Transporter substrates were ranked from most specific (rank 1) to least specific (no substrate, rank 5). See Additional file 3 for the full table

metabolites would be a very valuable resource to merge
annotations that use different reaction nomenclatures
[38—40]. Likewise, now that annotation tools such as
TransportDB are producing significant numbers of
transporter annotations with substrate predictions that
are precise enough to be included in metabolic model-
ing, more tool development may be needed to fully take
advantage of these substrate predictions in Flux Balance
Analysis methods, and move beyond the current implicit
assumption used by most algorithms that all metabolites
can be transported when needed.

Material and methods

Reference genomes

We focused on a total of 27 genomes of BioCyc Tier 1 &
Tier 2 bacteria [31]. These genomes are from a range of
phyla, including 15 Proteobacteria, 6 Firmicutes, 3 Acti-
nobacteria, 2 Bacteroidetes and 1 Cyanobacteria. In
addition to a range of phyla, these 27 organisms also
cover different lifestyles, including a human gut sym-
biont (Bacteroides thetaiotaomicron VPI-5482), patho-
gens (e.g. Mycobacterium tuberculosis), an obligate
insect endosymbiont (Candidatus Evansia muelleri), an
unusual manganese oxidizing bacterium (Aurantimonas
manganoxydans SI85-9A1), and a photoautotrophic
cyanobacterium (Synechococcus elongatus PCC 7942).
Genbank files were downloaded from NCBI (accessions
listed in Table 1), and standardized to remove all
functional annotation, retaining only the original open
reading frames and locus tag/protein identification infor-
mation (Additional file 4).

Annotation tools

RAST (Rapid Annotation Subsystem Technology, [29]) is
an open-source web server for genome annotation, using
an assignment propagation strategy based on manually
curated subsystems and subsystem-based protein fam-
ilies that automatically guarantees a high degree of
assignment consistency. RAST returns an analysis of the
genes and subsystems in each genome. We used the
NMPDR website [41] to generate genome-wide annotations

for our 27 reference genomes and parsed any EC numbers
from the functional annotation. This is also the core
metabolic annotation tool used by the popular ModelSEED
tool for generating draft genome-scale models of
metabolism [42].

KEGG (Kyoto Encyclopedia of Genes and Genomes,
[30]) is a collection of genome and pathway databases
for systems biology. We used KAAS (KEGG Automatic
Annotation Server [43, 44]) to generate genome-wide
annotations for our 27 reference genomes. KAAS assigns
KEGG Orthology (KO) numbers using the bi-directional
best hit method (BBH) against a set of default prokary-
otic genomes in the KEGG database. We mapped KO
numbers to EC numbers using a mapping table provided
by the KEGG BRITE Database [45].

EFICAz [46] uses large scale inference to classify en-
zymes into functional families, combining 4 methods into
a single approach without the need for structural informa-
tion. Recognition of functionally discriminating residues
(FDR) allows EFICAz to use a method called evolutionary
footprinting. EFICAz has been rigorously crossed vali-
dated, and achieves very high precision and recall, even
for sequence similarities to known enzymes as low as 40%.
We used a local install of EFICAz*” to generate EC num-
ber predictions for our 27 reference genomes.

BRENDA [47] is a database containing 7.2 million en-
zyme sequences categorized into 82,568 enzymatic func-
tions based on the literature and contains functional and
molecular information such as nomenclature, structure,
and substrate specificity. We annotated our 27 reference
genomes based on a BLAST search at >60% sequence
identity against a local copy of the 2011 BRENDA data-
base of enzyme reference sequences.

All EC number annotations are available in Additional
file 5.

Transport annotations

Where available, pre-generated transporter annotations
were downloaded from the TransportDB 2.0 database
[35]. For those reference genomes that were not already
present in the database (M. trichosporium OB3b,
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Candidatus C. hertigii, Candidatus E. muelleri, and A.
manganoxydans SI85-9A1), we submitted the predicted
protein sequences to the TransAAP web-based trans-
porter annotation tool using the default parameters [48].
We also retrieved transporter annotations from RAST and
KEGG. For RAST, annotations were filtered for the
subsystem for “Membrane Transport”. For KEGG, we
mapped KO numbers to transporter annotations using a
mapping table provided by the KEGG BRITE Database
[49]. Substrate names were ranked from most to least spe-
cific (see Table 3). Substrates that can be incorporated as a
transport reaction in a metabolic model were ranked 1
and 2. Broader substrate classes that could be used for gap
filling or interpretation of transcriptomics data were
ranked 3 and 4, and annotated transporters without sub-
strate prediction were ranked 5. The full table of substrate
names and ranking can be found in Additional file 6.

Additional files

Additional file 1: Figure S1. Overlap of annotated genes between the
tools (average numbers of genes annotated per genome). Figure S2.
Average transporter annotations per genome produced by TransportDB
(426.0), KEGG (203.8) and RAST (113.7) and the distributions of their
substrate specificities (rank 1 is most specific, rank 5 has no substrate
prediction). (DOC 3273 kb)

Additional file 2: EC numbers predicted by all 4 tools. Excel file with
the EC numbers predicted by all 4 tools in most genomes. (XLS 35 kb)
Additional file 3: Substrate ranks. Excel file with all transporter substrate
ranks. (XLS 74 kb)

Additional file 4: Genome data. Zip file with the 27 reference genomes
in Genbank format, cleaned to include only coding sequences and locus
tags. (ZIP 68984 kb)

Additional file 5: EC annotations. Excel file with all EC annotations by
all 4 tools for all 27 genomes. (XLS 3442 kb)

Additional file 6: Transporter annotations. Excel file with all transporter
annotations by all 3 tools for all 27 genomes. (XLS 2134 kb)
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