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abstract

PURPOSE Molecular cancer subtyping is an important tool in predicting prognosis and developing novel
precision medicine approaches. We developed a novel platform-independent gene expression–based classi-
fication system for molecular subtyping of patients with high-grade serous ovarian carcinoma (HGSOC).

METHODS Unprocessed exon array (569 tumor and nine normal) and RNA sequencing (RNA-seq; 376 tumor)
HGSOC data sets, with clinical annotations, were downloaded from the Genomic Data Commons portal. Sample
clustering was performed by non-negative matrix factorization by using isoform-level expression estimates. The
association between the subtypes and overall survival was evaluated by Cox proportional hazards regression
model after adjusting for the covariates. A novel classification system was developed for HGSOC molecular
subtyping. Robustness and generalizability of the gene signatures were validated using independent microarray
and RNA-seq data sets.

RESULTS Sample clustering recaptured the four known The Cancer Genome Atlas molecular subtypes but
switched the subtype for 22% of the cases, which resulted in significant (P = .006) survival differences among
the refined subgroups. After adjusting for covariate effects, the mesenchymal subgroup was found to be at an
increased hazard for death compared with the immunoreactive subgroup. Both gene- and isoform-level sig-
natures achievedmore than 92%prediction accuracy when tested on independent samples profiled on the exon
array platform. When the classifier was applied to RNA-seq data, the subtyping calls agreed with the predictions
made from exon array data for 95% of the 279 samples profiled by both platforms.

CONCLUSION Isoform-level expression analysis successfully stratifies patients with HGSOC into groups with
differing prognosis and has led to the development of robust, platform-independent gene signatures for HGSOC
molecular subtyping. The association of the refined The Cancer Genome Atlas HGSOC subtypes with overall
survival, independent of covariates, enhances the clinical annotation of the HGSOC cohort.

Clin Cancer Inform. © 2019 by American Society of Clinical Oncology

INTRODUCTION

High-grade serous ovarian carcinoma (HGSOC) ac-
counts for 70% to 80% of ovarian cancer deaths, with
little improvement in overall survival (OS) in recent
years.1 The standard therapy for HGSOC includes
maximal cytoreductive surgery followed by platinum
and taxane chemotherapy. Although the majority of
patients with HGSOC respond to initial treatment, most
tumors recur and become increasingly resistant to
chemotherapy, with a 5-year OS rate of approximately
30%.2 As a heterogeneous disease, HGSOCmolecular
subtyping can serve as a useful clinical tool to predict
response to therapy and inspire novel personalized
medicine treatment plans. Indeed, genomic and tran-
scriptome profiling by The Cancer Genome Atlas
(TCGA) consortium and others revealed few recurrent
somaticmutations but a highly complex genomic terrain
marked by copy number alterations and intertumor

heterogeneity.3 Four molecular subtypes—mesenchymal
(M), immunoreactive (I), differentiated (D), and pro-
liferative (P)—were independently identified, first by
the Australian Ovarian Cancer Study (AOCS)4 and then
by the TCGA consortium.3 However, TCGA subtypes
did not show statistically significant survival differ-
ences. Therefore, an important question is whether
the unsupervised clustering of samples on the basis
of gene-level annotations is still the best approach to
identify clinically relevant molecular subtypes.

The majority of human genes produce multiple func-
tional products, or isoforms, through alternative tran-
scription and alternative splicing.5-7 Different protein
isoforms of a gene participate in different functional
pathways,8,9 and cancer-associated aberrant alterna-
tive splicing events have been reported.10-13 In ovarian
cancer, specific splice variants have been identified as
prognostic markers and predictors of resistance to
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therapy, such as p53δ of TP53 and CD44v8-10 of CD44 as
prognostic markers14,15; MRP1 splice variant resistance
to doxorubicin16; the role of EVI1 transcript variant
(EVI1Del190-515) in tumorigenesis17; and the role of
osteopontin-c isoform in active proliferation, migration,
and tumor growth.18 Therefore, specific transcript variants
could be more effective as diagnostic and prognostic
markers than corresponding genes19,20 and suggest that
biomarker and molecular subtyping studies should ex-
plore the isoform-level transcriptome. We hypothesized
that isoform-based clustering of HGSOC tumors will lead to
more clinically relevant subgrouping than gene-level sub-
grouping. Moreover, isoform-level gene classifiers can identify
specific isoforms as biomarkers and generate robust and
clinically translatable assays for HGSOC stratification. We
have adopted our previously developed classification sys-
tem, PIGExClass (platform-independent isoform-level gene-
expression based classification-system) to robustly cluster
HGSOC tumors on the basis of isoform-level transcriptome
profiles, develop platform-independent classification models
for HGSOC molecular subtyping, and validate the classifiers
on independent data sets from different platforms.

METHODS

Preprocessing of TCGA HGSOC Exon Array Data

TCGA unprocessed exon array data for 569 HGSOC and
eight normal samples were downloaded from the Genomic
Data Commons portal.21 Gene-level and isoform-level
expression estimates were obtained using multimapping
Bayesian gene expression for whole-transcript arrays,22

using Ensembl database version 56 as the reference
genome. Expression estimates were normalized across
the samples using the LOWESS algorithm.23

Data Filtration

Two-step filtration was applied to obtain highly variable
isoforms for clustering. The first filter retains only one isoform
among highly correlated isoforms of the same gene. Two

isoforms of a gene are considered highly correlated if the
Pearson’s correlation coefficient of isoform-level expressions
across the samples is higher than 0.8. The isoform with the
highest coefficient of variation was retained among the
correlated isoforms of a gene. The second filter selects, using
coefficient of variation, the isoforms that are most variable
across patients.

Identification of HGSOC Subtypes on the Basis of

Isoform-Level Expression

Unsupervised non-negative matrix factorization consensus
clustering was applied using the NMF package of R.24-26

Consensus matrices with different factorization ranks (2 to
7) were obtained by taking the average of 50 connectivities.
Clustering quality was evaluated using the cophenetic
correlation coefficient and heat map plots (Data Supplement).
The factorization was repeated for 100 runs, and the one
with the lowest approximation error was retained. Samples
that were not true representatives of the subclasses were
filtered out by silhouette width procedure.27

Identification of OS Differences Among the Subtypes

Log-rank test was applied to determine the prognostic
relevance of the four subtypes. Kaplan-Meier survival
curves were plotted using the R function survival.28 Pairwise
comparison of survival among subtypes was adjusted
for multiple comparisons using the Benjamini-Hochberg
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in combination with pathologic information, advanced imaging analytics, and radiomics approaches to enable improved
precision diagnostics and treatment planning.

TABLE 1. Number of Up- and Downregulated Genes or Transcript
Variants Identified in the TCGA Ovarian Cohort Exon Array Data

Level, No.

Differential Expression Genes
Isoform

(transcript variant)

Upregulated 639 1,841

Downregulated 995 2,882

Total 1,634 4,723

NOTE. q ≤ .01; fold-change ≥ 2.0.
Abbreviation: TCGA, The Cancer Genome Atlas.
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procedure.29 Imputation of missing values was performed by
the R packagemice.30 The association of the subgroups with
OS was modeled by fitting a multivariable Cox proportional
hazards (PH) regression model adjusted for age, tumor
stage, cytoreduction, and chemotherapy.

Processing of the RNA Sequencing Data Set

TCGA RNA sequencing (RNA-seq) data for 376 HGSOC
samples were downloaded from the Genomic Data Commons
portal.21 A subset of 279 samples were profiled by both exon
array and RNA-seq platforms. For control samples, RNA-seq
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FIG 1. (A) Unsupervised non-negative matrix factorization clustering of 569 patients with high-grade serous
ovarian carcinoma (HGSOC) on the basis of highly variable (930) isoform-level signatures. The clusters were
identified and assigned into four subgroups on the basis of original The Cancer Genome Atlas core grouping. The
color code for samples in each cluster are as follows: differentiated (D), black; immunoreactive (I), red; mes-
enchymal (M), pink; and proliferative (P), blue. (B) The concordance table shows the agreement of sample
assignment with The Cancer Genome Atlas subgroups (gene-based subtypes) and our isoform-based subgroups.
Although the P subgroup showed good agreement, the I subgroup showed the worst agreement followed by the M
subgroup. (C and D) Kaplan-Meier survival curves plotted to determine the prognostic difference among four the
subtypes identified using gene- and isoform-level expression-based clustering, respectively. The statistical sig-
nificance in overall survival was determined at a threshold P = .05.
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data for six normal fallopian-tissue samples were down-
loaded from the Genotype-Tissue Expression database.
RNA-seq data were analyzed using Picard tools31 and the
RNA-Seq by Expectation-Maximization32 program.

Variable Selection and Building Classification Model

We adopted the PIGExClass algorithm, which combines
data discretization and random forest–based variable se-
lection procedures, to build gene/isoform-level classifiers.33

Equal-frequency binning data discretization was applied
on fold-change values (cancer over normal).34 Variable
selection was performed using fold-change estimates to
select a small set of nonredundant genes/isoforms that
were used to build random forest–based classification
models. Tenfold cross-validation was applied followed by
training the models on 75% of the samples and testing on
the remaining 25% of samples.

Validation of Classification Model on Independent

Data Sets

We evaluated the gene-level classification model on data
from two independent platforms. The misclassification rate
was computed for 279 RNA-seq samples that were profiled
by both exon array and RNA-seq platforms. In addition, we
built gene-level classification models on the TCGA exon
array data set and validated the models using two inde-
pendent microarray data sets—GSE98914 and GSE2671235—
downloaded from theGene Expression Omnibus database.36

This study followed the recommendations in the Transparent
Reporting of a Multivariable Prediction Model for Individual

Prognosis or Diagnosis statement (Data Supplement). Ad-
ditional details about the validation methods are provided in
the Data Supplement.

RESULTS

Numerous Genes Were Differentially Expressed at the

Isoform Level Between HGSOC and Normal Samples

We obtained expression estimates for 35,612 gene-level
and 114,930 transcript-level features by analyzing the
TCGA exon array data set of 569 tumor and eight normal
samples. Although only 1,634 genes were obtained as
differentially expressed at the gene level, isoform-level
analysis resulted in 4,723 transcript variants correspond-
ing to 2,245 genes as differentially expressed between
HGSOC and normal samples (fold-change ≥ 2; q ≤ .001;
Table 1). Because we found more than double the number
of genes differentially expressed at the isoform level than at
the gene level, we investigated whether the isoform-level
transcriptome can provide a better molecular subgrouping
of patients with HGSOC in terms of overall prognosis.

Unsupervised Clustering of TCGA HGSOC Samples Using

Isoform-Level Transcriptome Recaptured the Molecular

Subtypes With Improved Prognostic Stratification

The TCGA Research Network reported four gene-based
molecular subtypes with no significant survival differences
(P = .117; Data Supplement). Therefore, we performed
clustering of 569 TCGA HGSOC samples using isoform-
level expression estimates of 930 highly variable isoforms.

TABLE 2. Cox Proportional Hazards Regression Model by Gene- and Isoform-Based Subgroups
Gene-Based Subgroup Isoform-Based Subgroup

Variable HR (95% CI) P HR (95% CI) P

Subtypes

Mesenchymal 1

Immunoreactive 0.81 (0.56 to 1.18) .278 0.66 (0.45 to 0.97) .034

Differentiated 0.85 (0.60 to 1.19) .341 0.81 (0.58 to 1.14) .234

Proliferative 0.82 (0.59 to 1.14) .244 0.84 (0.62 to 1.13) .247

Stage

II 1

III 1.87 (0.96 to 3.64) .064 1.79 (0.92 to 3.48) .086

IV 2.56 (1.26 to 5.20) .009 2.41 (1.19 to 4.89) .015

Age 1.02 (1.01 to 1.03) .001 1.02 (1.01 to 1.03) .001

Cytoreduction

RD = 0 cm 1

RD ≤ 1 cm 1.95 (1.29 to 2.93) .001 1.96 (1.30 to 2.94) .001

RD . 1 cm 1.81 (1.16 to 2.81) .001 1.86 (1.19 to 2.90) .006

Chemotherapy

Intravenous 1

Intraperitoneal 0.62 (0.38 to 1.00) .049 0.61 (0.38 to 0.98) .042

NOTE. Boldface indicates significance at P , .05.
Abbreviations: HR, hazard ratio; RD, residual disease.
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The samples clustered into four distinct subgroups, which
largely overlapped with the TCGA subgroups and, as
such, refined the TCGA subtypes. Therefore, we retained
TCGA subgroup nomenclature of I, D, P, and M on the basis
of the concordance in cluster membership calls between
our isoform-based groups and the TCGA core sample
subgrouping (Fig 1A).

To find homogenous clusters, we filtered out 134 samples
with negative silhouette width values, which resulted in the
final set of 435 samples (isoform-based core samples)
grouped into 128 as I, 106 as D, 97 as M, and 104 as P.
Among the 371 tumor samples that are common between
TCGA and our isoform-based subgroups, on the basis of the
concordance table (Fig 1B), 80 samples were clustered
into a different subgroup by our isoform-based clustering.
The switching of 22% of the samples into a different
subgroup resulted in a statistically significant difference in
OS among the four isoform-based subtypes (P = .006;
Fig 1D), whereas, the gene-based subtypes, derived by
using the gene-level expression profiles, did not show
significant OS differences (P = .057; Fig 1C), similar to the
TCGA subtypes (P = .117; Data Supplement). In pairwise
comparisons among the four subtypes, after controlling for

false discovery rate, we found that isoform-based subtype
pairs D and M (P = .0145) and I and M (P = .0332) were
significantly different in OS (Fig 1D). However, none of the
adjusted pairwise comparisons among TCGA subtypes
were statistically significant at the α = .05 level (Data
Supplement). Similarly, for the gene-level subtyping of 569
samples (Fig 1C), although the OS P value was smaller
compared with that of TCGA subgrouping (Data Supple-
ment), it was still not significant at α = .05. For pairwise
comparisons, only one comparison (D vM) was found to be
statistically significant. For the isoform-based subgroups,
the median OS for the M subtype was 3.2 years (95% CI,
2.6 to 4 years); for the D subtype, 4.2 years (95% CI, 3.8 to
4.8 years); for the I subtype, 4 years (95%CI, 3.0 to 6.8 years);
and for the P subtype, 3.6 years (95% CI, 3.2 to 4.1 years).

Multivariable Cox PH regression analysis revealed that
isoform-based, but not gene-based, molecular subtypes
have a significant association with OS after accounting for
clinical variables age, tumor stage, residual tumor size after
cytoreductive surgery, and chemotherapy (intravenous or
intraperitoneal). More specifically, the I subtype hazard
ratio was 0.66 (95% CI, 0.45 to 0.97; P = .034) compared
with that of the M subtype and after accounting for the four
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TABLE 3. Concordance Between the True-Class Labels and Predicted Calls by the Isoform-Level Classifier That Was Trained on the Exon Array Data Set and
Applied on RNA-Seq Data Set

True Class

Predicted Class RNA-Seq Differentiated Immunoreactive Mesenchymal Proliferative Total

Differentiated 71 2 4 2 79

Immunoreactive 0 64 0 1 65

Mesenchymal 2 0 63 0 65

Proliferative 2 0 2 66 70

Total 75 66 69 69 279

Abbreviation: RNA-seq, RNA sequencing.
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clinical variables. However, although the D and P subtypes
showed better OS compared with the M subtype, the Cox
PH P values were not statistically significant at the α = .05
level (Table 2). Although factors such as increased age at
the time of diagnosis, tumor stage III or IV, and suboptimal
debulking surgery (residual disease. 0 cm) are associated
with an increased risk of death, intraperitoneal chemo-
therapy was associated with longer survival than intravenous
chemotherapy (Table 2). In summary, both univariable
and multivariable survival analyses demonstrated that the
isoform-level subgrouping shows improved association
with OS compared with the gene-based subgrouping.

Gene- and Isoform-Based Classification Models for

HGSOC Subtype Prediction

Using the isoform-based subtypes as the four classes, we
built both gene-based and isoform-based classifiers on the
basis of the 435 isoform-based core samples. Although the
gene-based classifier can be applied to data from either
microarray or RNA-seq platforms, the isoform-based
classifier is mainly for exon array and RNA-seq platforms.
The random forest feature selection step selected 206
isoforms as feature variables that are most discriminating
among the four subgroups (Fig 2A; Data Supplement). The
isoform-based random forest classifier achieved 92% ac-
curacy with 206 isoforms as feature variables when trained
and tested by 10-fold cross-validation on the TCGA exon
array data set. The classifier was further tested by dividing
the isoform-based core samples into two groups: 75% of
samples to be used as a training set and 25% to be used as
a test set. The classification model generated from the
training set was applied to the test set. The results of this
additional testing agreed with those of the 10-fold cross-
validation approach in 99% of the sample calls in the test
set, which confirmed that the algorithmeffectively distinguishes
the four subgroups. Similarly, the gene-based classifier
achieved 91% accuracy, with 132 genes as feature var-
iables (Fig 2B; Data Supplement). Although the feature
selection step of the random forest algorithm selected
a different number of features for gene- and isoform-based

classifiers, both classifiers achieved more than 90% accu-
racy with as few as 100 feature variables (Fig 2).

Platform Transition of the Classification Models to

RNA-Seq and Other Microarray Platforms

Because the gene- and isoform-based classifiers (both of
which were derived on data from the exon array platform)
achieved a prediction accuracy of more than 90%, we
tested the robustness and generalizability of the classifi-
cation models by testing on data from independent plat-
forms, such as RNA-seq and other microarray platforms.
First, we evaluated the transition of the isoform-based
classifier from the exon array to the RNA-seq platform by
applying 279 RNA-seq TCGA samples that overlapped with
the isoform-level core samples and were profiled by both
exon array and RNA-seq methods. Therefore, the class
labels for these 279 samples are known from the isoform-
level clustering. By comparing the concordance among the
prediction calls by applying the classifier on RNA-seq data
and true-class labels, we found that the classifier made 95%
(Table 3; Data Supplement) similar subtype calls between
the two platforms and achieved 91% prediction accuracy
compared with the true-class labels (Data Supplement).

Next, we tested the gene-based classification models de-
rived from the TCGA exon array data set on data from two
independent studies.4,35 After filtering outlier genes (not
well-behaved genes) between the exon array and other
microarray platforms by fitting regression models between
the mean gene expression vectors from the exon array and
microarray platforms, we retained 11,319 and 7,280 genes
from the GSE9891 and GSE26712 data sets, respectively.
Two separate classifiers that consisted of 106 and 43
variables were derived for the GSE9891 and GS26712 data
sets, respectively (Data Supplement). Because the true
accuracy of the classifiers cannot be assessed as a result of
the nonavailability of the class labels in these two data sets,
we evaluated the degree of concordance between the
previously defined subgroups and the subtypes predicted
by our classifiers. We compared the predicted molecular
subtypes with those of previously predicted molecular

TABLE 4. Overlap in Cluster Membership of 245 Ovarian Serous Samples Between Our Predicted Isoform-Based Subgroups and AOCS Clusters (Gene
Expression Omnibus GSE9891)

Predicted Isoform-Based Subgroup

AOCS Cluster Differentiated Immunoreactive Mesenchymal Proliferative

C1 12 11 57 1

C2 3 36 1 0

C3 13 0 0 5

C4 23 8 0 9

C5 1 1 0 31

C6 0 0 0 1

NC 18 7 0 7

NOTE. From Tothill et al.4

Abbreviations: AOCS, Australian Ovarian Cancer Study; NC, no cluster assigned.
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subgroupings (C1 [high stromal response], C2 [high im-
mune signature], C4 [low stromal response], and C5 [low
immune signature] for HGSOC) by AOCS.4 Overall, we found
that the isoform-level subtyping was significantly associated
with the AOCS study subtyping (χ2 test P, .001), where the
C1, C2, C4, and C5 subgroups mapped to the M, I, D, and
P isoform-based subgroups, respectively (Table 4). Within
the combined data set of 430 patients, the predicted sub-
groups showed a significant difference in OS (P , .001).
Moreover, the OS pattern of the predicted subgroupsmirrored
that of our isoform-based subgrouping, and the patients
grouped under the M class were found to have the highest
risk of death, with a median survival of 2.25 years (Fig 3).

DISCUSSION

Molecular classification of cancers is essential for developing
personalized therapies.37 Although gene expression–based
patient stratification strategies have been published for
numerous cancer studies, the reproduction and validation of
the derived gene signatures across different laboratories or
profiling platforms have proven to be a complex and difficult
informatics problem. In classification, the main goal is to
derive a probabilistic model for predicting the class mem-
bership of a new observation (patient with ovarian cancer)
on the basis of a training set of data (tumor samples) that
contains observations (eg, gene expression measures) for
which class membership is already known. A considerable
overlap of the molecular subtypes exists among various
HGSOC publications,3,4,38,39 but these studies were solely
based on gene-level expression estimates and ignored the
variability associated with splice/transcript variants. Although
aberrant expression of splice variants in ovarian cancer
has been reported,40-42 the current study is the first to our
knowledge that has explored the use of isoform-level
transcriptome in the molecular subtyping of ovarian can-
cer. Our isoform-level subtypes provide more prognostic
information than the gene-level subtypes that were pre-
viously reported.3,4,35,43 Similar overall prognostic signifi-
cance among the four molecular subtypes have been
reported,39 but we noticed some inconsistencies between
independent data sets. For example, we observed similar
overall prognostic significance and pairwise (D v M, I v M)
survival differences in both TCGA (Fig 1D) and indepen-
dent data sets (Fig 3). However, the survival difference
between the I and M subtypes was inconsistent between
the TCGA and the other two cohorts, which could be due to
differences in the patient population and errors in the
subtype calls on data from different platforms. Although the
univariable Kaplan-Meier survival analysis showed both D
and I isoform-based subtypes as significantly different
in their OS from theMsubtype,multivariable Cox PH regression
analysis showed only the I subtype as significantly different
from the M subtype after adjusting for the clinical variables.

Having established improved association of the refined
subgroups with the OS, we translated the exon array–based

classification system to independent platforms. The testing
of the derived models on data from two independent
platforms showed a high level of cross-platform (exon array
to RNA-seq) consistency and accuracy (. 90%) without
loss of analytic precision. In addition, the classification
system simplified the interplatform translation with the
selection of a small subset of genes and/or transcript
variants as feature variables. The small set of genes/tran-
script variants for molecular classification will be clinically
useful and cost effective for patient subgroupings and a key
resource to develop precision medicine strategies further.43

For example, molecular subtypes with poor prognoses (P
and M subgroups) have been reported to benefit from
treatment with the vascular endothelial growth factor in-
hibitor bevacizumab.44,45 Furthermore, patients in the P
subgroup are sensitive to poly (ADP-ribose) polymerase
inhibition (veliparib).43,46 These data provide a rational
basis for selecting specific treatments for histologic and
molecular subtypes of ovarian cancer. A major limitation of
the classification system is the requirement of the tumor
transcriptome profile from either a microarray or a next-
generation sequencing platform. To translate the assay to
a low-dimensional platform, such as quantitative reverse
transcriptase polymerase chain reaction (RT-qPCR) or
NanoString (NanoString Technologies, Seattle, WA), ad-
ditional experiments are required on an independent pa-
tient cohort.33 In addition, the combining of the molecular
subtype information with pathologic subtypes, advanced
imaging analytics, and radiomics approaches would
enable improved precision diagnostics and treatment
planning.47,48
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In conclusion, we developed a new platform-independent
isoform-level classification system for efficient and accurate
stratification of patients with HGSOC with prognostic

significance. The classifiers derived here have the potential
to develop into prognostic biomarkers for stratification of
patients with HGSOC.
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