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Abstract: Lennox–Gastaut syndrome (LGS) is a devastating childhood epilepsy syndrome 

characterized by the occurrence of multiple types of seizures and cognitive decline. Most chil-

dren suffer from frequent seizures that are refractory to current medical management. Recent 

clinical trials have suggested that addition of clobazam may improve the clinical outcome for 

some LGS patients. Although clobazam has been available for over five decades, it has only 

recently been approved by the US Food and Drug Administration for this indication. As a 

1,5-benzodiazepine, clobazam is structurally related to the widely used 1,4-benzodiazepines, 

which include diazepam. Clobazam has been shown to modulate GABAergic neurotransmission 

by positive allosteric modulation of GABA
A
 receptors, and to increase expression of transport-

ers for both GABA and glutamate. The active metabolite n-desmethylclobazam (norclobazam) 

also modulates GABA
A
 receptors, and the relative importance of these two compounds in the 

clinical effectiveness of clobazam remains an open question. Clinical trials involving clobazam 

as an addon therapy in a variety of pediatric epilepsy populations have found a significant 

improvement in seizure control. In patients with LGS, clobazam may have greatest efficacy 

for drop seizures. Longstanding clinical experience suggests that clobazam is a safe and well 

tolerated antiepileptic drug with infrequent and mild adverse effects. These results suggest that 

adjunctive treatment with clobazam may be a reasonable option for LGS patients, particularly 

those who are treatment-resistant.
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Lennox–Gastaut syndrome
Lennox–Gastaut syndrome (LGS) is a catastrophic epileptic encephalopathy with a 

poor prognosis and limited treatment options. Although rare, LGS constitutes 3%–10% 

of childhood epilepsies, due to its intractable nature.1–5 Generally, LGS onset occurs 

before 8 years of age, with a peak at 3–5 years,5–7 and is more common in males.1,6,8 

LGS is identified by its characteristic triad of symptoms, including multiple generalized 

seizure types, a slow spike and wave (#2.5) pattern in the awake electroencephalogram, 

and cognitive decline. The types of seizures most commonly associated with LGS are 

tonic, atypical absence, myoclonic, and atonic seizures,5,6 but many LGS patients also 

experience generalized tonic-clonic and focal seizures.2,4,6,9,10 In addition to the slow 

spike and wave pattern, bursts of paroxysmal fast activity during sleep are also clas-

sically present on the electroencephalogram and may be associated with subtle tonic 

seizures.1,5,6 Up to 90% of patients with LGS have mental retardation and experience 

cognitive deterioration,2,3 and many children also develop behavioral and psychological 

problems, including aggression, hyperactivity, and characteristics of autism.3,5,11
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LGS often results from an underlying neurological injury 

or disorder, such as hypoxic-ischemic encephalopathy, cerebral 

palsy, tuberous sclerosis complex, or cortical dysplasia, but 

approximately 30% of LGS cases are cryptogenic, having 

no clear cause.1,5–7 Diagnosis is difficult and may take years 

because in addition to the various etiologies of LGS, the 

syndrome lacks a uniform clinical presentation,6 and often 

patients do not have all of the diagnostic elements at the 

onset of epilepsy.5 LGS is resistant to treatment and often, 

in part due to the multiple seizure types, a combination of 

antiepileptic drugs is required.3,6–8,12 LGS is considered an 

epileptic encephalopathy, in which the degree of cognitive 

deterioration present is thought to be related to seizure 

frequency and burden of epileptic discharges.4,5,11

Current treatment options
A broad spectrum antiepileptic drug or combination of anti-

epileptic drugs is frequently necessary to treat the multiple 

seizure types associated with LGS.3,6–8,12 Valproate is often 

used as a first-line treatment for LGS by many physicians 

because it is effective for both generalized and focal seizures 

and is not known to worsen any seizure types associated with 

LGS.13,14 However, valproate is rarely effective as mono-

therapy3 and has not been approved by the US Food and 

Drug Administration for this purpose.3,6,12,15 Adverse events 

related to valproate use can be serious, including hepatic 

toxicity and pancreatitis, and there are many potential drug 

interactions.16

Felbamate, lamotrigine, topiramate, and rufinamide 

are all approved by the Food and Drug Administration as 

adjunctive treatments for LGS. Each of these antiepileptic 

drugs has been tested in randomized, double-blind, placebo-

controlled clinical trials demonstrating their efficacy for 

seizures associated with LGS.3,7,12 There have been no studies 

comparing approved treatment options for LGS patients,15 

and comparing results from different trials is complicated 

by variations in study populations, concurrent use of other 

antiepileptic drugs, and differences in the types of reported 

data.3,7 A Cochrane database review of treatment options 

for LGS included seven randomized, controlled studies that 

evaluated rufinamide, lamotrigine, cinromide, felbamate, 

thyrotropin-releasing hormone, and topiramate in children 

and adults with LGS.7 In each of these studies, the drug being 

evaluated was compared with placebo, with the exception 

of a study evaluating thyrotropin-releasing hormone, which 

compared low-dose and high-dose efficacy. In their review, 

Hancock and Cross7 concluded that an optimum treatment 

option could not be identified from these studies, but that 

lamotrigine, rufinamide, topiramate, and felbamate may be 

useful as adjunctive therapies.

Felbamate was the first antiepileptic drug approved for 

use as addon therapy for LGS.3 Since its approval in 1993, 

felbamate has been associated with aplastic anemia and 

hepatic failure, and due to these severe adverse events, its 

use has been limited to patients who have not responded to 

other antiepileptic drugs.17–19 Lamotrigine, approved as an 

adjunctive treatment for LGS in 1998, is a broad spectrum 

antiepileptic drug that is effective against multiple seizure 

types.20–22 The most common side effect of lamotrigine is 

a mild skin rash,21,23,24 but Stevens–Johnson syndrome and 

toxic epidermal necrolysis have occurred in rare cases.22,23 

Drug interactions with lamotrigine are common, complicat-

ing its use in combination therapy.25 Topiramate, approved 

for use in LGS in 2001, lacks the risk of life-threatening 

adverse events, like those associated with lamotrigine 

and felbamate,3 but has been associated with cognitive 

impairment,26–28 although this can often be minimized by 

slow titration.3,10,15 Rufinamide, approved in 2011, may be 

particularly effective for drop seizures (due to either tonic or 

atonic events) in children with LGS.29 Rufinamide has been 

associated with somnolence and vomiting,29 which can be 

mitigated by slowed titration.30

If pharmacological treatment fails, other options include 

the ketogenic diet, vagus nerve stimulation, corpus callo-

sotomy, and resective surgery.3,6,12 The ketogenic diet, ie, a 

high-fat, low-protein, and low-carbohydrate diet, has been 

shown to decrease drop seizure frequency in patients who 

do not respond to antiepileptic drugs, including patients with 

LGS.31–34 In studies of the ketogenic diet in the treatment 

of children with refractory epilepsy including LGS, the 

diet provided complete seizure control for more than 50% 

of patients.34 Common side effects include gastrointestinal 

symptoms, such as nausea, vomiting, and constipation, 

which may be improved by decreasing the nonlipid to lipid 

ratio. Compliance with the diet may also be difficult to main-

tain in patients with cognitive and behavioral problems.15 

Although vagus nerve stimulation is not as effective in 

patients with LGS as it is in patients with partial epilepsy,35 

it has been demonstrated to decrease seizure frequency 

with minimal adverse effects.35–37 Corpus collosotomy is 

used to decrease the spread of epileptic discharges between 

hemispheres and can be helpful for patients with intractable 

drop attacks.38 There may be a seizure focus in symptomatic 

cases of LGS such as those caused by tuberous sclerosis or 

cortical dysplasia, in which case resective surgery may be 

effective.12,39
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Each of the approved antiepileptic drugs is effective 

for some patients, but many LGS patients continue to have 

seizures even with the use of multiple antiepileptic drugs, 

and combination therapy puts these patients at increased 

risk for experiencing side effects.1,7,8 It is clear that new 

options are necessary for these treatment-resistant patients. 

One such option is the use of clobazam, a 1,5-benzodi-

azepine, which may be particularly effective in pediatric 

populations.

Clobazam, a 1,5-benzodiazepine
Clobazam was initially proposed as an effective anticon-

vulsant and anxiolytic with an improved side effect profile 

compared with the 1,4-benzodiazepines, which include diaz-

epam and clonazepam (Figure 1).2,40,41 The original report42 

found clobazam to be effective in several animal models of 

acute seizures, and it was first reported to have therapeutic 

activity in patients with a variety of seizure disorders by 

Gastaut and Low in 1979.43 Clobazam (marketed under the 

brand names Frisium®, Urbanyl®, Onfi, and Mystan®) is now 

available in many countries as adjunctive therapy for several 

types of seizures.

Clobazam acts primarily through positive allosteric 

modulation of GABA
A
 receptors, a mechanism of action 

shared by all clinically useful benzodiazepines. These ligand-

gated chloride channels are responsible for fast inhibitory 

neurotransmission throughout the central nervous system, 

and drugs that enhance their activity are often effective 

anxiolytics, sedatives, and anticonvulsants. While the ben-

zodiazepines are widely considered to be safe and effective 

for the treatment of acute seizures, their clinical utility for 

long-term therapy is often limited by side effects and the 

development of tolerance.41

Metabolism of clobazam
The primary pathway for metabolism of clobazam is dem-

ethylation by cytochrome P450 (CYP)3A4 and CYP2C19 

to its active metabolite n-desmethylclobazam (norclobazam, 

Figure 1).44 Clobazam can be hydroxylated to an inactive form, 

but this appears to be a minor pathway. CPY2C19 also acts 

on norclobazam, inactivating it through hydroxylation.44,45 

Since norclobazam itself is an anticonvulsant, an increase in 

its levels through inhibition of CYP2C19 can greatly increase 

the duration of therapeutic effect. Mutations in CYP2C19 that 

reduce its activity are relatively common, with nearly 3% of 

Caucasians and up to 20% of Asians characterized as “poor 

metabolizers”.46 In epileptic patients treated with clobazam, the 

norclobazam to clobazam ratio was found to be dramatically 

higher in those with mutations in CYP2C19.44,47,48 Interestingly, 

one study found that clobazam therapy was more effective in 

patients with defective CYP2C19 alleles, with no correlation to 

adverse side effects,49 which may suggest a prominent role for 

norclobazam in determining the therapeutic benefits. However, 

others have reported an increased occurrence of side effects, 

primarily sedation, with clobazam administration in patients 

carrying CYP2C19 mutations, and clobazam doses may need 

to be reduced for some in this patient population.47

Studies in animal models of seizure 
and epilepsy
Clobazam has demonstrated effectiveness in a wide variety 

of animal models, including acute and chronic seizures and 

genetic forms of epilepsy.2,50 In recent studies, clobazam 

generally showed eff icacy similar to that of the 1,4-

benzodiazepines, albeit with lower potency when compared 

with diazepam or clonazepam.51–54 The side effect profile, 

development of tolerance, and withdrawal hyperexcitability 

produced by clobazam were all similar to that seen with 

diazepam in these animal models.51 However, the activity 

of clobazam was not identical to the 1,4-benzodiazepines in 

all cases, because clobazam was found to be more effective 

in a model of inherited epilepsy,53 and had a distinct profile 

of activity against acute seizures.51

Activity at GABAA receptors
A variety of studies have clearly shown that, like the 1,4-

benzodiazepines, clobazam is a positive allosteric modulator 

of GABA
A
 receptors. Direct enhancement of the response by 

clobazam to applied GABA was demonstrated in cultured 

cortical55 and cerebellar56 neurons, and clobazam was also 

found to slow the decay of miniature inhibitory post-synaptic 

currents in brain slices from rat hippocampus.57
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Figure 1 Clobazam (7-chloro-1-methyl-5-phenyl-1,5-benzodiazepine-2,4-dione). 
Structures of diazepam, clobazam, and norclobazam and major metabolic pathways 
for clobazam and norclobazam.  
Note: Clobazam is primarily metabolized by demethylation to n-desmethylclobazam 
(norclobazam). Dashed line indicates a minor pathway by hydroxylation. Norclobazam 
is hydroxylated to an inactive compound mainly through the activity of CYP2C19. 
Adapted with permission from Giraud C, Tran A, Rey E, Vincent J, Tréluyer JM, Pons G.  
In vitro characterization of clobazam metabolism by recombinant cytochrome P450 
enzymes: importance of CYP2C19. Drug Metab Dispos. 2004;32:1279–1286.44
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Neuronal GABA
A
 receptors are structurally heterogeneous, 

and the pentameric channel can be assembled from a 

combination of at least 16 different subunit subtypes (includ-

ing α1–6, β1–3, γ1–3, δ, ε, π, and θ).58 These subunits show 

different patterns of expression throughout the brain, and 

their levels change throughout development and in response 

to pathological conditions, including seizure activity.59 The 

subunit composition of the receptor greatly influences its 

pharmacological properties.

Benzodiazepine agonists do not modulate receptors 

containing α4 or α6 subunits, and require the presence of a 

γ subunit.60 Clobazam appears to share the same binding site 

as other benzodiazepine agonists, because a mutation in the 

γ subunit had a similar effect on potency of both diazepam 

and clobazam.61 However, clobazam and norclobazam have 

been tested directly on very few GABA
A
 receptor isoforms, 

and no comprehensive studies of the subunit dependence of 

their activity have been reported for either compound.

The modulatory activity of clobazam, norclobazam, and 

diazepam was compared at recombinant α3β3γ2 receptors,62 

which is likely to be a significant isoform in the developing 

brain.59 In that study, clobazam had efficacy similar to that 

of diazepam, but lower potency, consistent with the higher 

clobazam doses required in animal studies. Relative to one 

another, norclobazam and clobazam had similar potency 

at these receptors, although norclobazam showed lower 

efficacy.62 Few other studies have been performed to examine 

the possible subunit dependence of clobazam or norcloba-

zam activity at GABA
A
 receptors. Clobazam was shown 

to enhance the response of α1β2γ1 receptors modestly63 

and to bind to an α5-containing receptor population from 

rat hippocampus with characteristics similar to those of 

diazepam.64 It is important to understand whether clobazam 

or norclobazam show a different pattern of subunit selec-

tivity compared with other benzodiazepines, which might 

explain the distinct characteristics associated with clobazam. 

Drugs that modulate different receptor populations would be 

expected to have unique effects on seizure activity, sedation, 

and anxiety,65,66 and could also produce different levels of 

tolerance development and abuse potential.67

In addition to direct modulation of GABA
A
 receptor activ-

ity, clobazam was shown to cause a region-specific increase 

in expression of transporters for GABA (GAT3) and gluta-

mate (GLT-1) in an animal model of temporal lobe epilepsy.68 

This alteration may have been an indirect effect from the 

reduction in seizure activity, because clobazam had no 

effect on transporter levels in control (seizure-free) animals. 

The impact of these changes in the clinical effectiveness 

of clobazam is not known, but an increase in GLT-1 could 

potentially reduce the high hippocampal glutamate levels 

associated with epileptogenesis in animal models of tem-

poral lobe epilepsy.69 Modulation of voltage-gated Na+ and 

Ca2+ channels by clobazam has also been suggested by some 

authors,2,70 although no studies have demonstrated a direct 

action at these channels.

Does norclobazam have a 
therapeutic role?
It is clear that norclobazam is an active metabolite of cloba-

zam, with direct anticonvulsant activity both in animal mod-

els of epilepsy and in patients with refractory epilepsy.70 Less 

clear are the relative roles of each of these compounds in the 

therapeutic and side effect profiles of clobazam. In epilepsy 

patients, the degree of seizure control was correlated with 

blood levels of norclobazam rather than clobazam.72 Studies 

with both neurons and recombinant expression systems 

have shown that norclobazam acts as a positive allosteric 

modulator of GABA
A
 receptors, with a similar potency but 

lower efficacy than clobazam.55,62 It has been suggested that 

partial agonists at modulatory sites might have improved 

side effect profiles compared with full agonists,73 and indeed, 

norclobazam was associated with reduced development 

of tolerance compared with clobazam in a mouse seizure 

model.71 However, very few studies have directly examined 

the properties of norclobazam. If norclobazam is a primary 

mediator of the anticonvulsant effects of clobazam, further 

studies into its mechanism(s) of action are warranted.

Clinical trials in Lennox–Gastaut 
syndrome and other pediatric 
epilepsies
Clobazam was first synthesized in the 1960s and is approved 

for use as an antiepileptic drug in over 100 countries.2 Thus, 

longstanding clinical experience indicates that clobazam 

is a safe and effective addon therapy for many patients 

(Table  1). In many countries, clobazam has been used as 

a first-line antiepileptic drug in pediatric epilepsy, and in 

spite of other options becoming available, it continues to be 

used as an adjunctive therapy for patients with treatment-

resistant epilepsy.74–76 In the US, until its October 2011 

approval by the Food and Drug Administration, clobazam 

was only obtained from foreign pharmacies and paid for 

out-of-pocket by patients. Thus, the use of clobazam in the 

US was typically limited to patients with severe epilepsy that 

had proven refractory to multiple medication options.30,77 
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Table 1 Clobazam as addon therapy in refractory pediatric epilepsy

Study Trial design Participants and  
included diagnoses

Dosage Results

Conry et al8 Phase II, multicenter,  
randomized,  
double-blind,  
dose-ranging

68 patients  
(42 males, 26 females) 
2–26 years 
LGS

0.25 mg/kg/day  
or 1.0 mg/kg/day

0.25 mg/kg/day: 38% of patients had  
a $50% decrease in drop seizure frequency 
1.0 mg/kg/day: 83% of patients had  
a $50% decrease in drop seizure frequency

Conry et al87 Phase III, multicenter,  
randomized,  
double-blind,  
dose-ranging,  
placebo-controlled

238 patients 
2–54 years 
LGS

0.25 mg/kg/day, 
0.5 mg/kg/day,  
or 1.0 mg/kg/day

0.5 mg/kg/day: 58% of patients had  
a $50% decrease in drop seizure frequency 
1.0 mg/kg/day: 77% of patients had  
a $50% decrease in drop seizure frequency

da Silveira  
et al84

Retrospective 100 patients  
(61 males, 39 females) 
1–18 years 
Refractory focal epilepsy

5–60 mg/day 33% of patients had a $75% decrease  
in seizure frequency

Farrell78 Open-label,  
prospective

50 patients, 33 with LGS2,  
16 years 
Refractory epilepsy

5–40 mg/day 54% of patients had a $50% decrease  
in seizure frequency

Jan and  
Shaabat79

Open-label,  
prospective

31 patients  
(21 males, 10 females),  
14 with LGS 
2 months to 15 years 
Intractable childhood epilepsy

5–40 mg/day 80% of patients had a $50% decrease  
in seizure frequency

Kalra et al81 Open-label,  
prospective

88 patients  
(59 males, 29 females) 
7 months to 12 years 
refractory epilepsy

0.3–2.0 mg/kg/day 85% of patients had a $50% decrease  
in seizure frequency

Keene et al86 Double-blind,  
placebo-controlled, 
crossover

21 patients  
(11 males, 10 females) 
2–19 years 
Refractory epilepsy

0.25–1.0 mg/kg/day 54% of patients had a $50% decrease  
in seizure frequency

Munn and  
Farell74

Open-label,  
prospective

115 patients  
(68 males, 47 females),  
25 with LGS 15 months to 17 years 
refractory epilepsy

0.36–3.8 mg/kg/day 62% of all patients had a $50% decrease  
in seizure frequency 
64% of LGS patients had a $50% decrease  
in seizure frequency

Silva et al85 Retrospective 97 patients (58 males,  
39 females),  
26 with LGS, 2 with LGS and  
West syndrome 
1–17 years 
Epileptic encephalopathy

5–60 mg/day 37% of patients had a $50% decrease  
in seizure frequency

Sheth et al82 Open-label,  
prospective

63 patients  
(30 males, 33 females),  
14 with LGS 
3–20 years 
Intractable epilepsy

Average  
0.8 mg/kg/day

65% of patients had $50% decrease  
in seizure frequency

Sugai80 Open-label,  
prospective

Short term: 55 patients, 8 with LGS 
Long-term: 31 patients, 4 with LGS 
Refractory epilepsy

0.28–1.25 mg/kg/day Short term: 71% of all patients and 62%  
of LGS patients had a $50% decrease  
in seizure frequency 
Long-term: 81% of all patients and 50%  
of LGS patients had a $50% decrease  
in seizure frequency

Vadja et al83 Open-label,  
prospective or  
double-blind,  
placebo-controlled,  
crossover

14 patients*  
(5 males, 9 females),  
7 with LGS 
6–38 years 
Refractory epilepsy

15–60 mg/day 40% of patients had a $50% decrease  
in seizure frequency

Note: *Results not reported for four patients.
Abbreviation: LGS, Lennox–Gastaut syndrome.
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However, clobazam is anticipated to be more widely available 

from early 2012 for LGS patients. Clobazam was granted 

orphan drug status by the Food and Drug Administration in 

December 2008, and a new drug application submitted in 

March 2011 for use in children with LGS was approved in 

October 2011.

In six open-label prospective studies evaluating the effi-

cacy of clobazam as addon therapy for pediatric patients with 

refractory epilepsy, 54%–85% of patients experienced at least 

a 50% decrease in seizure frequency74,78–83 (Table 1). These 

studies included a total of 423 patients, with 98 patients iden-

tified as having LGS. Most studies did not provide distinct 

data for the LGS population, but Sugai80 reported that 62% of 

LGS patients in the group evaluated for short-term efficacy 

and half of LGS patients followed for at least 6 months had 

a 50% or greater decrease in seizure frequency on clobazam. 

In another study, 64% of 25 patients with LGS achieved at 

least a 50% decrease in seizure frequency.74 Jan and Shaabat79 

noted that three of the 14 LGS patients included in their study 

continued to have daily seizures while taking clobazam, 

a higher proportion than in the rest of the study population.

Two retrospective studies on the efficacy of clobazam as 

addon therapy for pediatric patients also reported significant 

reductions in seizure frequency84,85 (Table  1). Da Silveira 

et  al84 evaluated 100 patients who received clobazam as 

addon therapy for refractory focal epilepsy, and 33% of  

these patients had a 75% or greater decrease in seizure 

frequency. Silva et al85 reviewed the efficacy of clobazam 

as addon therapy for 97 pediatric patients with epileptic 

encephalopathies. Of the patients in this study, 28 had LGS. 

Thirty-seven percent of all patients had a 50% or greater 

decrease in seizure frequency, and complete seizure control 

was achieved in nine patients.

In 1990, Keene et al86 reported the results of a double-blind, 

placebo-controlled, crossover study evaluating clobazam as 

addon therapy in 21 patients aged 2–19 years with refractory 

epilepsy. Fifty-two percent of patients in the clobazam arms had 

a 50% or greater decrease in seizure frequency. More recently, 

Conry et al8 reported the results of a multicenter, double-blind 

Phase II study evaluating low-dose (0.25 mg/kg/day) or 

high-dose (1 mg/kg/day) clobazam in 68 patients with LGS, 

aged 2–26 years. Eighty-three percent of patients in the 

high-dose group had a 50% or greater reduction in seizure 

frequency compared with baseline. In addition to decreased 

seizure frequency, patients had improved global assessments 

on both high-dose and low-dose clobazam,8 consistent with 

prior work suggesting improved cognitive and behavioral 

performance on clobazam.74,78 Following the encouraging 

results of the Phase II study, a multicenter, randomized, 

double-blind, Phase III study was performed.87 This study 

evaluated the efficacy of low-dose (0.25 mg/kg/day), medium-

dose (0.5 mg/kg/day), and high-dose (1 mg/kg/day) clobazam 

versus placebo as addon therapy for 238 patients with LGS, 

aged 2–54 years. Fifty-eight percent of patients in the medium-

dose group and 77% of patients in the high-dose group had a 

50% or greater decrease in seizure frequency. Improved global 

assessments were reported for patients in all dosage groups 

compared with placebo.

Adverse effects in epilepsy patients
Adverse effects from clobazam are generally similar to those 

of the other benzodiazepines, but perhaps less frequent. 

Conry et al8 reported little difference in the occurrence of side 

effects in patients receiving clobazam 0.25 mg/kg/day and 

those receiving 1.0 mg/kg/day. The most common adverse 

effect is somnolence, reported by 9%–19% of patients.8,78,81,84 

Other common side effects include behavioral abnormalities, 

irritability, ataxia, and drooling, each occurring in under 10% 

of patients.8,81,84 Notably, in spite of the efficacy observed in 

many patients, an increase in seizures, worsening of seizures, 

or development of new seizure types have been reported in 

up to 5%–13% of patients.8,74,80,84 In the only double-blind 

trial, Conry et al8 reported 13% with adverse events related to 

seizures, each mild or moderate in severity, and more common 

in the low-dose clobazam group than in the high-dose group. 

Other studies reporting adverse seizure-related events were 

open-label, prospective,74,80 or retrospective84 in nature without 

randomization or control arms. Because the rate and types of 

seizures often fluctuate over several weeks or months in patients 

with LGS, it remains unclear whether these episodes of seizure 

worsening are related to clobazam administration.3,8

Tolerance is an issue with many antiepileptic drugs, espe-

cially benzodiazepines, and the loss of efficacy of clobazam 

in some patients has been noted. Reports of the development 

of tolerance among published studies varied from as few as 

10% to as many as 87% of patients.81,84 For up to 70% of 

patients who developed tolerance, efficacy returned after 

stopping and reintroducing clobazam after 2–3 months or 

after increasing the dosage.74,80,81 Others noted persistent 

efficacy for more than one year in as many as 85% of patients 

who experienced improved seizure control, and some patients 

maintained complete seizure control during this time.85

Clobazam is typically initiated at a low dose, often 5 mg/

day or 0.1 mg/kg/day for smaller patients, and increased at 

5–7 day intervals until a minimum effective dose is reached 

or side effects occur.74,79 Studies have suggested that slow 
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titration may help avoid adverse effects and that when 

present, side effects may be reduced or eliminated with 

dose reduction.79,80 Doses of 0.2–3.8 mg/kg/day2,73 have been 

used in trials evaluating the use of clobazam (Table 1). In 

our experience, doses up to 2 mg/kg/day divided into twice 

daily doses are often required. Rarely, higher doses up to 

3 mg/kg/day are required and tolerated.

Interactions with stiripentol and 
other antiepileptic drugs
Clobazam has been coadministered with a wide variety of 

other antiepileptic drugs, with few reported harmful drug–

drug interactions. Any inhibitors or inducers of CYP2C19 

can have an impact on clobazam and norclobazam levels, 

and coadministration of CYP2C19  inhibitors has been 

successfully used to enhance the duration and efficacy 

of clobazam treatment, possibly by increasing levels of 

norclobazam. This interaction seems particularly ben-

eficial when clobazam is coadministered with stiripentol 

(Diacomit®), an antiepileptic drug, which is both a GABA
A
 

receptor modulator and a potent CYP2C19 inhibitor.88–90 

Clobazam and stiripentol act via separate mechanisms at 

the GABA
A
 receptor57,62 and stiripentol can dramatically 

increase norclobazam levels.45 Animal studies have demon-

strated a significant positive interaction between clobazam 

and stiripentol, with both an additive pharmacodynamic 

interaction and a large increase in the brain concentration of 

clobazam.54 The combination of clobazam with stiripentol 

is widely used in the treatment of patients with Dravet syn-

drome (severe myoclonic epilepsy of infancy).88 In contrast 

with its possibly beneficial interaction with stiripentol, 

clobazam has also been reported to inhibit the metabolism 

of valproate, so has the potential to increase valproate-

associated toxicity.91 Overall, clobazam is generally well 

tolerated when combined with most of the antiepileptic 

drugs commonly used in clinical practice.

Summary
LGS is an epileptic encephalopathy with childhood onset 

that is characterized by multiple seizure types and an 

intractable nature. LGS is also associated with a num-

ber of cognitive and behavioral problems that progress 

over time, often even after seizure control has improved. 

Clobazam has been demonstrated to decrease the overall 

rate of seizures in patients with LGS, with a significant 

reduction in the frequency of drop seizures, often consid-

ered to be the most disabling type of seizure associated 

with the syndrome.3,6,10,12 Improved global assessments for 

patients on clobazam have been noted, which may warrant 

further investigation. Hancock and Cross7 reported that the 

behavioral and cognitive deterioration associated with LGS 

are the symptoms that are hardest to cope with for many 

families. Further work needs to be done to characterize 

fully the activity of both clobazam and norclobazam, its 

active metabolite, at different GABA
A
 receptor popula-

tions and to optimize the incorporation of clobazam into 

a treatment plan.

Clobazam has been used as a first-line treatment in 

many countries, and is now frequently used as an adjunc-

tive therapy for patients with refractory epilepsy. Its recent 

approval by the Food and Drug Administration will now 

allow its use for LGS patients in the US. The antiepileptic 

drugs currently approved for the treatment of LGS are 

not effective for all patients and each is associated with 

significant side effects. Other safe and effective options for 

treatment-resistant patients are needed, and recent studies 

of clobazam suggest that it may be an effective and well 

tolerated option for patients with LGS.
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