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Abstract

Urbanization is rapidly altering landscapes worldwide, changing environmental con-
ditions, and creating novel selection pressures for many organisms. Local environ-
mental conditions affect the expression and evolution of sexual signals and mating
behaviors; changes in such traits have important evolutionary consequences because
of their effect on reproduction. In this review, we synthesize research investigating
how sexual communication is affected by the environmental changes associated with
urbanization—including pollution from noise, light, and heavy metals, habitat frag-
mentation, impervious surfaces, urban heat islands, and changes in resources and
predation. Urbanization often has negative effects on sexual communication through
signal masking, altering condition-dependent signal expression, and weakening fe-
male preferences. Though there are documented instances of seemingly adaptive
shifts in trait expression, the ultimate impact on fitness is rarely tested. The field of
urban evolution is still relatively young, and most work has tested whether differ-
ences occur in response to various aspects of urbanization. There is limited infor-
mation available about whether these responses represent phenotypic plasticity or
genetic changes, and the extent to which observed shifts in sexual communication
affect reproductive fitness. Our understanding of how sexual selection operates in
novel, urbanized environments would be bolstered by more studies that perform
common garden studies and reciprocal transplants, and that simultaneously evaluate
multiple environmental factors to tease out causal drivers of observed phenotypic
shifts. Urbanization provides a unique testing ground for evolutionary biologists to
study the interplay between ecology and sexual selection, and we suggest that more
researchers take advantage of these natural experiments. Furthermore, understand-
ing how sexual communication and mating systems differ between cities and rural
areas can offer insights on how to mitigate negative, and accentuate positive, conse-
guences of urban expansion on the biota, and provide new opportunities to under-

score the relevance of evolutionary biology in the Anthropocene.
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1 | INTRODUCTION

Eco-evolutionary research is being performed in a world facing an
ever-intensifying range of environmental and social changes. One
crucial driver of this change is urbanization, with over 2.5 billion
additional residents predicted to inhabit cities by 2050 (United
Nations, 2018). Urbanization affects both biotic and abiotic aspects
of the environment, creating novel habitats for the organisms in-
habiting cities. Urban environments are characterized by a suite of
environmental shifts, including increased ambient noise levels (e.g.,
from vehicle traffic), artificial light at night, heavy metal pollution,
and more impervious surfaces (e.g., buildings, roadways) relative to
rural areas less impacted by human activities (EImqvist et al., 2019;
Grimm et al., 2008). Although some features of urban environments
may have non-urban analogs (e.g., artificial light may be similar to
constant light at high latitudes), the interaction among these factors
almost certainly creates biologically novel selection on many organ-
isms inhabiting urban environments. Organisms in urban areas must
either rapidly adapt to the new conditions via evolution or plasticity,
or face barriers to urban colonization or population declines and
local extinction within urban areas (Alberti et al., 2017; Johnson &
Munshi-South, 2017; Shochat et al., 2006). Though urban evolution
is still a young field, a growing body of evidence demonstrates occa-
sional adaptation to this suite of novel conditions, mostly for natu-
rally selected traits like phenology, stress physiology, and cognition
(Garroway & Schmidt, 2020; Johnson & Munshi-South, 2017).

Urbanization can affect traits involved in sexual communication
(e.g., coloration, songs, mate choice) that are critical for successful
reproduction. While there is a rich body of research investigating
how sexual communication is affected by environmental conditions
(Cornwallis & Uller, 2010; Gillespie et al., 2014; Henneken et al.,
2015; Miller & Svensson, 2014; Servedio & Boughman, 2017), the
urban environment requires special consideration (Halfwerk, 2021;
Sepp et al., 2020). As environments change due to urbanization,
we expect strong selection on both sexual signal expression and
receiver responses to these signals for effective communication to
occur. Understanding how urbanization shapes sexual communica-
tion in animals—both the expression of sexual signals and behavioral
responses to them—is important because it directly affects repro-
duction and fitness. Furthermore, changes in sexual communication
can affect evolution within a population regardless of whether trait
changes are heritable or reflect phenotypic plasticity (Price et al.,
2003). Differences in environmental conditions between popula-
tions have often been implicated in causing divergence in sexual
signal expression (Cornwallis & Uller, 2010; Martin et al., 2014).
Such divergence in sexual traits can cause a breakdown of sexual
communication between populations, and lead to reproductive iso-
lation and eventual speciation (Boughman, 2001; Safran et al., 2013;
Servedio & Boughman, 2017).

In this review, we focus on the influence of urbanization on sex-
ual communication. While understanding how sexual communica-
tion and selection will be affected by a changing planet is beginning
to attract more attention (Candolin, 2019; Candolin & Wong, 2012,

2019), work that focuses on urban evolution of sexual traits has
received less attention (Sepp et al., 2020). We focus mostly on re-
search that explores how sexual communication is affected by par-
ticular environmental aspects of urbanization, but we also draw from
work in relatively undisturbed habitats to project how we might
expect urban-associated environmental changes to affect sexual
communication. For example, pollution from anthropogenic sources
of light, noise, and metals, and the existence of physical structures
and impervious surfaces are largely biologically novel, requiring
new research approaches to understand their direct effects and
their interactions. For other changes like shifts in resource quantity
and quality, habitat fragmentation, or increased temperatures, we
extrapolate from work that did not explicitly consider urbanization.
Our overarching goal is to encourage additional research on how
urbanization can affect the sexual selection and evolutionary out-
comes in cities, which can, in turn, inspire policies and development

that mitigate negative, and promote positive, impacts on the biota.

2 | BACKGROUND ON SEXUAL
COMMUNICATION RELEVANT FOR URBAN
ECOLOGY

Elaborate sexual traits often serve as signals that contain informa-
tion individuals use to make mating decisions. For effective commu-
nication to occur, signals first need to be detected by the receiver,
and second deemed of sufficient quality. Sexual signals are often
costly to produce and maintain, resulting in signals that honestly re-
flect individual condition (Hill & Montgomerie, 1994; Salvador et al.,
1995). Changes in the urban environment may render signals less
easily detectable by the receiver, and/or make their information con-
tent less reliable than under typical habitat conditions.

Animals often use multiple signals during sexual communication
and understanding how and why this occurs is currently a key topic
in sexual selection research (Partan, 2013). Different signals, or dif-
ferent components of the same signal, can provide information to
receivers that is redundant “backup” information, amplifies infor-
mation, or offers distinct, complementary information (Candolin,
2003). The existence and use of multiple sexual signals have been
hypothesized to help buffer populations from rapid environmental
changes because communication would not be completely curtailed
when one signal becomes ineffective in novel condition (Partan,
2013). Urbanization may shift the relative efficacy of different signal
modalities, providing opportunities for researchers to assess how
commonly and under what circumstances adaptive trait compensa-
tion may occur. Urban studies might be particularly useful for deter-
mining whether signal compensation is more likely to occur when
signals convey redundant information about the signaler.

Whether sexual selection hinders or helps adaptation to novel
environmental conditions remains an active question in evolu-
tionary biology (Candolin & Heuschele, 2008; Kokko & Brooks,
2003; Servedio & Boughman, 2017). If individuals use highly strin-

gent and inflexible criteria to choose mating partners, then some
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individuals may forgo reproduction altogether when no available
mate is deemed suitable, particularly under poor conditions or
when population sizes are small (Kaneshiro, 1976, 1980). However,
theory and a growing body of empirical work indicates that sex-
ual selection can facilitate local adaptation, as it operates through
differential reproductive success and is directly related to fitness
(Dugand et al., 2019; Fricke & Arnqvist, 2007; Holland & Rice,
1999). Sexual selection can increase the speed of local adaptation
if natural and sexual selection favor the same traits, and locally
adapted individuals contribute more offspring to the next genera-
tion (Lorch et al., 2003). By favoring individuals in good condition,
sexual selection can also improve population viability by purging
deleterious mutations (Jarzebowska & Radwan, 2009; Whitlock &
Agrawal, 2009). It is currently unclear how the strength of sexual
selection generally changes with urbanization, and whether any
changes in sexual selection generally facilitate adaptation to novel
urban conditions. It is also important to note that acclimation and
adaptation may have less influence than community assembly
processes in determining the characteristics of the biota in urban
environments. Thus, understanding how sexual communication
allows for or prevents colonization of urban areas is also an im-

portant area for research.

3 | LITERATURE REVIEW METHODS

We conducted a search in ISI Web of Science that included the fol-

"

lowing search terms, TOPIC: "sexual selection" or "sexual signal*" or

*1

"mating behavio*" or "courtship" or "sexual communication" or "mate
choice" or "male-male competition" AND TOPIC: "urban*" or "city"
This search was last updated March 3, 2021, and yielded 327 papers
in total. We determined the relevance of each paper and excluded
reviews, meta-analyses, empirical studies that did not explicitly ex-
amine the city as a selective agent on sexual traits, and studies that
broadly investigated consequences of anthropogenic impacts but
not urbanization per se. For instance, we excluded papers that in-
volved agriculture, consequences of nutrient pollution from fertilizer
(e.g., eutrophication, hypoxia), and endocrine-disrupting chemicals
from pharmaceuticals that did not directly address urbanization.
We were left with 58 relevant papers from this search that are sum-
marized in Table 1 and Figure 1. Most (75%) of these papers were
published since 2014. Most (63%) focused on birds, followed by in-
sects (14%) and amphibians (12%); no studies focused on plants. The
aspect of sexual selection that received the most attention in these
papers was acoustic signals (54%) followed by visual signals (30%).
For the 45 studies that focused on a specific aspect of urbanization,
most of these (58%) focused on noise pollution.

Below, we highlight key themes in these studies and others that
focused on environmental factors associated with urbanization (i.e.,
light, noise, and metal pollution, impervious surfaces, and urban heat
islands) to synthesize our current understanding of how urbanization
affects sexual communication and to identify important areas for fu-

ture research.
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4 | ENVIRONMENTAL CONSEQUENCES
OF URBANIZATION FOR SEXUAL
COMMUNICATION AND SELECTION

Urbanization encompasses a complex suite of environmental
changes, including pollution from noise, light, and metals; new physi-
cal structures that fragment habitats and change ambient conditions;
and shifts in community structure and resource quality (Figure 2a).
Below, we describe how sexual selection and sexual signaling can be

affected by each of these environmental changes.

4.1 | Ambient noise pollution

Cities experience much more background noise than rural areas,
largely due to air and vehicle traffic (Barber et al., 2010). Traffic noise
produces a low-frequency sound that at least partially overlaps with
the acoustic signals that many birds, frogs, and insects use to locate
and attract potential mates (Brumm & Slabbekoorn, 2005). This fre-
quency overlap is called auditory masking, or signal masking more
generally, because it can obstruct the ability of individuals to detect
and discriminate acoustic signals from background noise, thereby
disrupting communication (Holt & Johnston, 2015). The effect of
noise pollution on sexual communication has received a great deal of
attention (including 58% of papers in Table 1), and much of that work
has focused on birds (e.g., Patricelli & Blickley, 2006; Raboin & Elias,
2019; Slabbekoorn et al., 2018).

One of the most common findings is that birds increase the fre-
quency of their songs in noisy urban areas (e.g., Brumm & Zollinger,
2013; Hamao et al., 2011; Lampe et al., 2012; Lampe et al., 2014;
Luther et al., 2016; Montague et al., 2013; Moseley et al., 2018;
Moseley et al., 2019; Parris et al., 2009; though see Rios-Chelen
et al., 2015). This has also been demonstrated in some other acous-
tically communicating taxa like frogs and grasshoppers (Lampe et al.,
2012; Lampe et al., 2014; Schwartz & Bee, 2013; Tyack & Janik,
2013; but see Zollinger et al., 2012), though not as consistently. This
discrepancy between taxa likely reflects physiological differences
in both call production and detection. In general, increases in song
frequency are considered adaptive because it avoids masking by a
low-frequency traffic noise. Such frequency shifts should increase
detectability by receivers and make the acoustic signal more salient
(Halfwerk et al., 2011; Wong & Lowry, 2016). However, it may come
at the cost of receiver preferences and the use of the information
encoded in songs. Lower frequency songs tend to be preferred by
females and likely serve as honest indicators of male condition, so a
consistent shift to higher frequency songs may disrupt sexual selec-
tion (e.g., Halfwerk et al., 2011).

Indeed, females experiencing anthropogenic noise often show
weaker preferences for male traits (des Aunay et al., 2014, 2017;
Bent et al., 2018; Swaddle & Page, 2007). For example, the monoga-
mous zebra finch (Taeniopygia guttata) showed a weaker preference
for pair-bonded males when exposed to high-amplitude white noise,

suggesting that normally monogamous songbird populations may
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Em Acoustic (31)
Em Other (14)
N Visual (18)

(b)

Amphibians (7)
Birds (37)

Fish (2)

Insects (8)
Lizards (3)
Mammals (2)

HI101

(d

~

Habitat fragmentation (2)
Heavy metals (3)

Light pollution (4)

Noise pollution (25)
Resource availability (5)
Unclear/other (21)

1171

FIGURE 1 Summary of information from the research papers uncovered by the literature search and included in our table. (a)
Distribution of papers by publication year. (b) Focal taxon of the study. (c) Primary signal modality investigated. (d) Aspect of urbanization

studied

show more extra-pair behavior in areas with more anthropogenic
noise (Swaddle & Page, 2007). In canaries (Serinus canaria), females
do not express typical preferences for low-frequency male songs in
noisy conditions, thereby weakening sexual selection (des Aunay
etal.,2014,2017). If preferred low-frequency signals are consistently
masked, it is unclear whether females will begin preferring higher
frequency songs (thereby disrupting signal-cost associations and
underlying signal honesty), whether sexual selection will weaken in
the population because males rarely produce preferred signals (des
Aunay et al., 2014), or whether females will shift the relative impor-
tance of other signal modalities during mate choice (Partan, 2013;
Rios-Chelen et al., 2015). Future research should explore whether
the capacity for flexible acoustic communication influences the po-
tential for taxa to persist in noisy urban areas.

It is important to note that not all species adjust signals and
responses in the same way, if at all, to low-frequency noise pol-

lution. A recent meta-analysis discovered that birds seem better

than frogs at adjusting song frequencies to avoid signal masking
(Roca et al., 2016). This may be due to physiological constraints
associated with how sound is produced in these taxa, or perhaps
to other behavioral differences that improve signal detection.
For example, frogs may be more likely to increase call amplitude,
rather than frequency, to enhance signal transmission (Roca et al.,
2016). Consistent with this idea, Oecanthus pellucens tree crickets
did not adjust the frequency of their songs, but instead performed
shorter calls with more pauses in the presence of vehicle traffic
(Orci et al., 2016). In addition, not all noise arising from urbaniza-
tion leads to interference with the perception of acoustic signals.
Many acoustically signaling organisms have finely tuned hear-
ing and sound production apparatuses that are unable to detect
sounds in different frequencies (Dusenbery, 1992). For example,
Eleuthereodactylus coqui is an invasive species of frog on the Big
Island of Hawaii whose extremely loud call has dramatically altered
the island's soundscape (Woolbright et al., 2006). However, there
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FIGURE 2

o - i

(a) Urban areas contain a suite of different environmental conditions relative to rural areas that are undisturbed by humans.

Urban areas are polluted by artificial light, noise from traffic, different compositions of plants and animals, and contain large areas of
impervious surface. Photo credit: Anne Aulsebrook. (b) Satin bowerbirds preferentially incorporate blue plastic waste, such as straws shown
in the photograph, into their displays. (c) House finch at a birdfeeder. Urban and rural birds feed on different types of seeds, which have
been selected for different beak shapes, ultimately causing divergence in song characteristics

is no evidence that their loud calls interfere with an acoustically
communicating cricket species, Teleogryllus oceanicus, that occurs
in similar habitats on the island. There is no interference because
the frequency of the frog call does not overlap with the crickets'
peak range of auditory perception (Zuk et al., 2017). Similarly, fe-
male Gryllus bimaculatus crickets responded less to male songs
played alongside noise, but this is not due to masking because the
experimental noise fell outside the range that crickets are able to
perceive (Schmidt et al., 2014). Such variation in physiology and
sensory ecology makes it difficult to generalize about the effects
of low-frequency traffic or other noise across taxa, since some
forms of anthropogenic noise may have little effect on some spe-
cies and completely interfere with signaling in others.

Noise pollution can also alter traits not involved in acoustic com-
munication by inducing a stress response (Ising & Kruppa, 2004),
making individuals more susceptible to disease and parasitism
(Masud et al., 2020). For example, Troianowski et al. (2017) found
that experimental noise exposure increased stress hormone levels
and induced immunosuppression in Hyla arborea (European tree
frog), which in turn reduced the intensity of coloration involved in
sexual signaling. This is important because it shows that noisy urban
conditions can disrupt non-acoustic animal communication. Birds
reared under noisy conditions have also been shown to reduce in-
vestment in brain regions associated with song learning (Ferriera
et al., 2016; Potvin et al., 2016). In this case, songs did not change
directly in response to noise pollution, but rather due to cascading
physiological changes caused by noise exposure.

Another important issue with research on the masking ef-
fects of anthropogenic noise is that studies often do not include
non-anthropogenic noise treatments as controls (e.g., conspecific
choruses, biological noise from other species, or other natural back-
ground sounds like waterfalls or ocean waves; Bee & Swanson, 2007;
Davidson et al., 2017). Studies designed to isolate specific responses

to anthropogenic noise (i.e., including natural sound controls) are

critical for understanding and potentially mediating the aspects of
urban environments that disrupt acoustic sexual signaling (Gough
et al., 2014). A few studies can serve as models for how to address
this issue. Bee and Swanson (2007) examined whether female Hyla
chrysoscelis treefrogs in Minnesota differentially responded to male
calls in the presence of traffic noise, a conspecific chorus, or no
noise. They found that females responded similarly to the anthro-
pogenic and biological noise by responding to calls more slowly.
Odontophrynus americanus frogs in Argentina adjust their calls in re-
sponse to both traffic and chorus noise, but the particular shifts in
call parameters depended on the type of noise experienced (Grenat
et al., 2019). Understanding the nature and specificity of responses
to different anthropogenic noises will help researchers predict the

potential additive and interactive effects of multiple noise sources.

4.2 | Artificial light pollution

Artificial light at night, or ALAN, from streetlamps and other sources
of anthropogenic illumination, has dramatically increased with the
expansion of urban areas (Bennie et al., 2015), and recent studies
suggest that it poses one of the greatest threats to biodiversity
(Davies & Smyth, 2018; Holker et al., 2010; Lewis et al., 2020).
Illumination plays an important role in regulating physiology and be-
havior of organisms, but the impact of ALAN has only recently begun
to receive significant research attention (Longcore & Rich, 2004;
Swaddle et al., 2015). To date, research on biological impacts of
ALAN has focused on physiological and ecological, rather than evo-
lutionary, considerations (e.g., Desouhant et al., 2019; Jones et al.,
2015; Mclay et al., 2017, 2018). However, ALAN has the potential
to foster widespread and rapid evolutionary change both because
of its intensity and geographic extent and because it creates truly
novel environmental conditions for many taxa (Hopkins et al., 2018;
Swaddle et al., 2015). Regarding mating outcomes, ALAN has the
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potential to both disrupt visual signaling, and affect other behavioral
and physiological aspects of reproduction (Longcore & Rich, 2004).

ALAN can directly obstruct sexual communication for nocturnal
animals that use visual signaling. For example, it interferes with bio-
luminescent mating signals by fireflies (Firebaugh & Haynes, 2016,
2019). Two firefly species, Photuris versicolor and Photinus pyralis,
were both lured to artificial LED light, and were less likely to signal
in artificially illuminated areas than unlit outdoor spaces (Firebaugh
& Haynes, 2019). Photinus pyralis also experienced reduced mating
success in lit areas relative to dark habitats, suggesting that light-
polluted areas may act as demographic traps (Firebaugh & Haynes,
2019; Owens & Lewis, 2018). Similarly, female glow-worms (Lampyris
noctiluca) do not move away from artificial light even though it signifi-
cantly reduces mate attraction, suggesting a maladaptive response
(Elgert et al., 2020). Most studies so far suggest that ALAN exerts
negative fitness consequences on nocturnal insects (Mbugua et al.,
2020; Owens & Lewis, 2018). These results and the rapid spread of
ALAN across the landscape indicate that there is a pressing need
for research to determine whether signal expression or detection in
bioluminescent organisms like fireflies can evolve to avoid masking
and allow for adaptation to artificial light. Behavioral responses to
light stimuli may be less flexible than responses to acoustic signals,
reducing the opportunity for adaptation.

Similar to noise pollution, ALAN may affect the strength of
sexual selection in ways other than direct interference with signal
detection, including creating stressful conditions that affect physiol-
ogy and behavior. ALAN disrupts normal day-night cues, which can
cause other cascading shifts in animal physiology, behavior, and re-
productive success (Desouhant et al., 2019; Jones et al., 2015). Such
negative non-communication impacts are illustrated by McLay et al.
(2017), who found that Drosophila melanogaster reared under high
light conditions for several generations show reduced fecundity.
Females exposed to even the lowest level of artificial light exhib-
ited reduced oviposition (McLay et al., 2017), highlighting the sig-
nificant effects that ALAN can have on reproductive success and
population viability through disruption of circadian rhythms. Some
female crickets reared with chronic exposure to ALAN are less dis-
criminating during mating interactions and more likely to mate than
females reared under typical day-night light cues, even though there
was no difference in male song characteristics in association with
ALAN exposure (Botha et al., 2017). Less stringent female mating
preferences will weaken sexual selection in a population, and ne-
gate benefits that females may gain (directly or indirectly) by being
choosey (Zuk & Simmons, 2018). In the same study, male crickets
reared under certain illumination conditions were also rejected more
often by females. The authors speculated that the difference may
be due to the differential expression of cuticular hydrocarbons, a
chemical signal used by insects during mating decisions (Botha et al.,
2017). Similarly, female Physalaemus pustulosus (Tungara frogs) are
less selective about male signal quality (i.e., acoustic call character-
istics) under illuminated conditions (Rand et al., 1997). The authors
suspected that predation risk is greater under higher light levels,

contributing to the behavioral shift. These studies suggest that

ALAN may generally cause a weakening of sexual selection, even in
organisms that do not use visual cues during sexual communication
(though see Underhill & Hobel, 2018).

ALAN likely has diverse, taxon-specific impacts on sexual com-
munication, and thus should provide evolutionary biologists with
opportunities to better understand how signal masking and disrup-
tion generally impact sexual selection. ALAN can affect the behavior
and physiology of both nocturnal and diurnal organisms (Davies &
Smyth, 2018), but the practical implications will depend on the ex-
tent to which organisms are exposed to ALAN. Understanding the
evolutionary impact of ALAN signaling disruption can also guide
urban conservation measures. For example, Aquatica ficta firefly
males emit brighter signals with decreased frequency when exposed
to artificial light at shorter wavelengths (<533 nm) but show no re-
sponse to longer wavelength (2597 nm) ambient light, suggesting
that replacing broad-spectrum lighting with longer wavelength light-
ing could help this species (and maybe other fireflies) thrive in urban
settings (Owens et al., 2018).

4.3 | Metal pollution

Heavy metals, particularly lead, tend to accumulate in urban areas
from air pollution and from historical use in products like gasoline
and house paint (Gulson et al., 1995). Such toxins can induce stress
responses in many organisms (Candolin & Wong, 2019; Isaksson,
2015). Because many sexual signals are condition-dependent, physi-
ological stress tends to negatively affect sexual signal intensity
(Hutton & McGraw, 2016). In general, lead exposure appears to re-
duce the signal intensity in wild individuals across pollution gradi-
ents, and also during experimental exposure in the laboratory. For
example, great tits (Parus major) express reduced carotenoid-based
coloration when living near sources of heavy metal pollution (Grunst
et al., 2020), and pigeons had less colorful plumage when exposed
to lead (Chatelain et al., 2017). Population viability may decrease if
males do not exhibit high-quality signals that are preferred by fe-
males. So far, it is unclear whether female preferences for male color
traits are also impacted by heavy metal exposure.

Effects of metal pollution on sexual signaling are not consistently
negative and appear to depend on the particular compound. A Bufo
raddei frog population in a polluted region of China exhibited higher
reproductive investment (i.e., more complex songs, stronger am-
plexus force, larger breeding glands) relative to conspecifics in less-
polluted areas at the cost of survival (Guo et al., 2018). This may
reflect a shift to investment in reproduction in response to stressful
conditions. If frogs from polluted areas reproduce more than those
from less impacted areas, it should accelerate the rate of adapta-
tion because more individuals that can tolerate such conditions will
comprise a greater portion of the population. In Mimus polyglottos
mockingbirds, song repertoires in lead-polluted urban populations
did not differ from populations experiencing lower levels of lead
contamination (McClelland et al., 2019). Other metals such as copper

and zinc can also show positive, or at least mixed, effects on signal
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expression when experienced in small doses (Chatelain et al., 2017;
Giraudeau et al., 2015). These strong but diverse responses suggest
that more research is needed to identify mechanisms linking specific

contaminants to aspects of sexual signaling across a range of taxa.

4.4 | Fragmented habitats

Construction of roads and buildings in urban areas not only re-
sults in habitat loss, but also creates more edges and smaller habi-
tat patches. Although fragmentation can have diverse impacts on
resource availability (Zanette et al., 2000), smaller fragments have
proportionally more edge habitats that support more nectar, seed,
and fruits resources used by some birds (Green, 1984) and may also
have more human-created food sources (Robb et al., 2008), which
can in turn affect condition-dependent signaling. For example, for
Pipilo maculatus (spotted towhee) in urban parks in Oregon (USA),
females closest to the edges were in the best condition and had the
longest tail length because these areas were closer to anthropogenic
food sources like bird feeders (Bartos Smith et al., 2016). Resource
distribution also appeared to affect the prevalence of multiple mat-
ing. Extra-pair paternity was highest both at the habitat edge where
food is most abundant and in the interior of habitat patches (it was
lowest at intermediate distances from habitat edges). The authors
suggest that females living in the interior of the habitat encounter
more males when searching for food (Bartos Smith et al., 2016).

Habitat fragmentation can also alter mating systems by changing
the distance required to find mates or suitable breeding habitat. In
Coenagrion puella damselflies, urban habitat fragmentation has gen-
erated selection for greater flight performance (Tuizln et al., 2017).
Males in cities need to fly farther to reach the breeding ponds, and
greater flight endurance was also associated with greater mating
success during scramble competition (Tlzlin et al., 2017). In this
case, urbanization is correlated with favorable traits that actually
increase reproductive success. If variation in flight endurance traits
is heritable, this trait should quickly evolve in the population and
facilitate rapid adaptation to cities.

4.5 | Impervious surfaces

Impervious surfaces in cities retain heat, contributing to what
is known as the urban heat island effect (Santamouris, 2015).
Increased temperatures in urban areas can exacerbate warming
that occurs due to climate change, but this urban phenomenon is
distinct because temperatures do not fall as much overnight as they
do in rural areas lacking human structures. Increased temperatures
caused by urban heat islands are particularly likely to affect volatile
pheromone-based sexual signaling, which can have consequences for
mate recognition, mate choice, and population viability (Henneken &
Jones, 2017). Thermal stress influences several aspects of chemical
signaling, including pheromone synthesis, persistence after emis-
sion, and detectability (Groot & Zizzari, 2019). It can also affect the
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perceived quality of the individual producing the chemical signal. For
example, in the beewolf (Philanthus triangulum), higher temperatures
during development are associated with greater pheromone pro-
duction typical of higher quality males (Roeser-Mueller et al., 2010).
Although it is possible that higher temperatures during development
also increase beewolf condition, Roeser-Mueller et al. (2010) sug-
gest that higher temperatures actually disrupt honest signaling rela-
tionships that exist in cooler temperatures for these insects because
even poor-quality males can produce high-quality signals.

The mating systems of insects and other ectothermic animals
may be particularly affected by urban heat islands because their
behavior and physiology are highly sensitive to temperature (Suzaki
et al.,, 2018). For example, female Western black widow spiders
(Latrodectus hesperus) engage in greater web-building behaviors at
higher temperatures (Johnson et al., 2020). Svensson et al. (2020)
show that temperature has dramatic effects on the strength of sex-
ual conflict and maintenance of a reproductive polymorphism in
Ischnura spp. damselflies. A male-mimic female morph that circum-
vents male harassment is sustained at higher frequencies in popula-
tions experiencing cooler temperatures, likely because they develop
faster and are less sensitive to temperature than other morphs
(Svensson et al., 2020; Takahashi et al., 2014). The locus controlling
expression of the female morph is also highly pleiotropic, affecting
various physiological and reproductive traits and appears to inter-
act with other loci that affect thermal adaptation (Svensson et al.,
2020; Willink et al., 2020). The Svensson et al. (2020) study not only
emphasizes that temperature can strongly affect mating system dy-
namics, but also that organisms may exhibit interactions between
environmental conditions and genetics that shape their potential for
adaptation to novel urban conditions.

Impervious surfaces and other urban structures have other, un-
derappreciated effects that may also affect sexual signaling. The
physical structures of cities can interfere with long-distance acous-
tic and visual signaling by obstructing the signal pathway, reduc-
ing the distance that the signal can travel and be received (Phillips
et al., 2020; Slabbekoorn et al., 2018). For example, white-crowned
sparrow (Zonotrichia leucophyrs) songs attenuated faster and rever-
berated more in urban areas (Phillips et al., 2020). However, some
species may actually take advantage of human-made structures to
amplify signals. Anurogryllus muticus, short-tailed crickets in Panama,
produced louder, more intense songs when singing near human
structures than when calling in more natural habitats like grass or
leaf litter because building walls amplify calls (Erregger & Schmidt,
2018). Similarly, male Mientien tree frogs, Kurixalus idiootocus, pre-
fer calling inside rather than outside of storm drains, and calls from
within storm drains have higher amplitude and note duration com-
pared to outside calls (Tan et al., 2014). This use of habitat to am-
plify sound is similar to behaviors in other taxa in natural habitats
(e.g., Metaphrynella sundana tree-hole frogs exploit resonance ef-
fects of tree holes; Lardner & Lakim, 2002). It is not entirely clear if
this amplification is adaptive, though. Louder calls may attract more
mates, but it may also make the caller more vulnerable to exploita-

tion by eavesdropping predators. These examples also illustrate how
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research on responses to natural analogs of urban features (e.g., tree
holes vs. storm drains) may provide insight into adaptation and com-

munity assembly in urban environments.

4.6 | Human refuse

Human materials are used by some species to enhance visual dis-
plays. Bowerbirds (Ptilonorhynchus nuchalis and P. violaceus) use
colorful plastic items like straws, bottle rings, wires, and other
human-associated items in their displays (Doerr, 2010; Wojcieszek
et al., 2006). For example, blue plastic bottle tops were the most
popular environmental adornment, relative to their availability,
on bowers of male P. violaceus (Figure 1b; Wojcieszek et al., 2006,
2007). It is possible that blue items exploit a pre-existing bias in fe-
males, or that blue items are rare in pristine forests and thus their ac-
cumulation may honestly advertise male quality (Umbers, 2013). It is
unclear whether the introduction of blue, and other colored, anthro-
pogenic litter disrupts honest signaling in bowerbirds and negatively
impacts population fitness.

Human refuse can also disrupt sexual communication. One
classic example is Julodimorpha bakeweflli beetles that attempt to
mate with beer bottles (Gwynne & Rentz, 1983). In this study, the
authors speculated that the reflective sheen of bottles provides a
supernormal stimulus for males because it resembles the elytra color
and markings of large female beetles. Discarded bottles might sig-
nificantly disrupt the mating system in this species and reduce popu-
lation fitness due to lack of successful reproduction.

Chemical refuse in cities may broadly disrupt sexual communi-
cation. Human pest control often uses synthetic materials to exploit
chemical or visual mating cues of insects (e.g., Chen et al., 2014), sug-
gesting the potential for human products to disrupt sexual communi-
cation. Endocrine-disrupting chemicals (EDCs), mostly released from
the manufacture and use of anthropogenic materials, are commonly
found in urban sewage effluent (Kumar et al., 2020) and are known
to have widespread impacts on male mating behavior (Bertram et al.,
2020). The potential impacts of EDCs on sexual communication in
urban animals should provide many opportunities for important re-

search in the coming years.

4.7 | Changes in resource quality and availability

Cities often possess dramatically different patterns of biodiversity,
productivity, and nutrient availability relative to areas less impacted
by humans (Grimm et al., 2008; Shochat et al., 2006). For example,
vegetation in urban areas often includes exotic and non-native plant
species used for landscaping and gardening. For many animals, cities
offer greater food and nutrient abundance due to human activities
like bird feeder supplementation, fertilizer use, and discarded food
scraps. This anthropogenic influx of resources can reduce variation
in the quality of territories or nesting areas, as well as the expression

of condition-dependent signals (Chace & Walsh, 2006; Tryjanowski

et al., 2015). Such altered resource availability in cities can create
an unreliable relationship between a sexual signal and its informa-
tion content because individuals can produce a high-quality sig-
nal regardless of their underlying quality (Higgins & Reader, 2009;
Snell-Rood et al., 2015). If most potential mates express high-quality
sexual signals, sexual selection will weaken in a population because
most males meet female preference standards.

A series of studies on Northern cardinals (Cardinalis cardinalis)
provides a compelling case study of how urban-associated resource
shifts can create an evolutionary trap (Schlaepfer et al., 2002), where
formerly adaptive behaviors become maladaptive under new con-
ditions (Borgmann & Rodewald, 2004; Narango & Rodewald, 2018;
Rodewald et al., 2011). Male coloration is used as a sexual signal,
and the intensity of expressed coloration depends on access to
carotenoid-rich foods during the molt. An exotic honeysuckle shrub
(Lonicera spp.) present in rural areas produces carotenoid-rich fruit
that is highly abundant during the molting season. Though this plant
allows males to express high levels of coloration, cardinals that nest
in this shrub experience much higher levels of predation (Borgmann
& Rodewald, 2004). Though brightly colored males typically experi-
ence high fitness, they experience lower reproductive success when
nesting the invasive honeysuckle plants due to increased predation.
Interestingly, this evolutionary trap does not occur in urban areas.
This is not because urban populations are better adapted, but in-
stead because they experience a breakdown of the associations
among coloration, territory quality, breeding phenology, and repro-
ductive success (Rodewald et al., 2011).

Differences in food resources between urban and rural popula-
tions might be particularly likely to favor divergence in such traits
that contribute to reproductive isolation. Evolutionary differences
in traits that are important for both survival and reproduction, or
“magic” traits, are effective at promoting reproductive isolation be-
tween ecologically dissimilar environments because they simultane-
ously facilitate local adaptation and reproductive isolation (Schluter,
2000; Servedio et al., 2011). One of the best examples of such syn-
ergistic divergent selection comes from house finches (Haemorhous
mexicanus). In Arizona, these birds feed on small seeds in the desert,
but have access to large, hard sunflower seeds from bird feeders in
urban areas (Figure 2c). Divergent selection on bite force has driven
evolutionary differences in beak size and shape between urban
and rural environments (Badyaev et al., 2008). As a byproduct of
the divergence in beak morphology, courtship song has also shifted
between urban and rural house finches. Urban birds with longer,
deeper beaks sing songs with a wider frequency range, fewer types
of notes, and slower trills compared to rural birds that have shorter,
shallower beaks (Badyaev et al., 2008). There is evidence of genetic
differentiation among urban and rural populations in this system
despite close geographic proximity, suggesting assortative mating
based on habitat of origin. Over time, the buildup of different sexual
signals and preferences can further contribute to reproductive isola-
tion between urban and rural environments (Halfwerk, 2021).

Pollution and other urban stressors may interact with food re-

sources and other biotic conditions to affect sexual signaling. Such
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interactive effects are illustrated by studies on house finches, a
model system for urban sexual communication research. Male col-
oration is considered an honest indicator of individual quality (e.g.,
health, condition) under natural conditions because carotenoids can-
not be synthesized de novo and instead must be obtained through
the diet (Hill, 1991; Hill & Montgomerie, 1994). House finches in cit-
ies are less colorful and have yellower plumage, while those in rural
areas are more colorful and have redder feathers (Giraudeau et al.,
2015, 2018; Hasegawa et al., 2014). Neither experimentally manip-
ulated carotenoid access nor exposure to oxidative stress could ex-
plain differences in plumage coloration between urban and desert
house finches (Giraudeau et al., 2015). Environmental differences
are most likely driving the differences in coloration between urban
and rural birds (Giraudeau et al., 2015), and may be associated with
the prevalence of certain microorganisms (Giraudeau et al., 2016)
rather than carotenoid content of food. Female preferences appear
to track male color differences between populations, providing
a rare example of flexible female preferences that reflect urban-
associated changes in male signal expression (Giraudeau et al., 2018).
Simultaneous divergence of male signals and female preferences can
facilitate population-level divergence in phenotypes, and can rep-
resent the first steps of speciation (Servedio & Boughman, 2017).
These results illustrate the potential for urban studies to serve as
natural experiments that further the general understanding of sex-
ual communication diversification and the possible establishment of
reproductive barriers.

4.8 | Shiftin predation pressure

To our knowledge, there appear to be no studies that have explic-
itly investigated how changes in predation regimes impact sexual
communication in urban areas. However, these impacts are likely
common. Urbanization alters predator-prey interactions for many
species by reducing the prevalence of specialist species and those at
higher trophic levels (Burkman & Gardiner, 2014; Raupp et al., 2010).
Whether predation risk becomes more or less intense in urban
areas will depend on the particular species and other characteris-
tics of the ecosystem. For example, the desert ecosystem outside
of Phoenix, AZ (USA) is typically characterized by limited resources.
Resources are more abundant in the city which supports greater ar-
thropod communities; this causes predation of arthropods by birds
to become the dominant force in trophic dynamics in this urban area
(Faeth et al., 2005). In general, not just in the desert, birds in urban
areas appear to face reduced predation pressure due to a lack of
top predators, while arthropods likely experience stronger predation
due to increased bird densities (Gering & Blair, 1999; Shochat et al.,
2006).

Predation risk has well-documented effects on the evolution of
sexual communication in natural settings by affecting the conspic-
uousness of signals, strength of female preferences, and general
sexual selection dynamics (Martin et al., 2014; Sarno et al., 2017;
Stanger-Hall & Lloyd, 2015; Tuttle & Ryan, 1981; Zuk & Kolluru,
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1998). Therefore, urban environments should provide excellent op-
portunities for exploring the influence of predation on sexual sig-
naling in a range of taxa because of the relatively recent change in
selection pressures, and different levels of predation risk in urban
and rural environments. Because a large body of work has focused
on how sexual selection responds to predation risk in the wild, we
can use this existing knowledge to generate predictions for how sex-
ual communication changes in urban environments. Such work can
shed light on how quickly and predictably traits involved in sexual

communication can respond to changes in selection pressures.

5 | ADAPTIVE VERSUS MALADAPTIVE
TRAIT CHANGE

Overall, we found relatively few unambiguous cases of sexual com-
munication traits adaptively responding to urban environments.
Perhaps the best-documented example is Tungara frogs (Physalaemus
pustulosus) in Panama (Halfwerk et al., 2019). In urban areas—where
there is pollution from noise and light, lower risk of predation, and
stronger competition for mates—male calls are faster and more
elaborate than those in rural areas (Figure 3; Halfwerk et al., 2019).
Females from both urban and rural populations preferred the calls of
urban males, showing that this change is advantageous during sexual
selection. Because frog predation risk is much lower in urban areas,
this more conspicuous call does not generate the same costs as in
forested areas. This adaptive shift in sexual signaling reflects pheno-
typic flexibility—urban males, when translocated to the forest, shift
their calls in accordance to local predation conditions and produce
songs more like rural males (Halfwerk et al., 2019). This is likely the
first study to characterize trait divergence between rural and urban
populations, and also assess how sexual and natural selection re-
spond to urban-associated traits.

The field needs more studies that take a comprehensive ap-
proach to understand whether differences in trait expression be-
tween urban and rural populations positively or negatively affect
reproductive fitness. Many studies document a “not sexy in the city”
effect where signal expression is reduced (e.g., Batabyal & Thaker,
2017; Hasegawa et al., 2014; Horak et al., 2001, 2004; Potvin et al.,
2016), or the relationship between signal expression and information
content is disrupted (Tringali & Bowman, 2015). However, studies
often characterize trait expression, but do not also investigate fe-
male preferences for modified signals (though see des Aunay et al.,
2014; Botha et al., 2017; Giraudeau et al., 2018; Swaddle & Page,
2007) or how natural selection acts on these modified traits (e.g.,
through signal exploitation by natural enemies, Erregger & Schmidt,
2018; Zuk & Kolluru, 1998). For instance, despite an abundance of
studies showing frequency shifts in bird songs in response to anthro-
pogenic noise, in most cases it remains unclear whether such shifts
actually improve signal transmission (Nemeth & Brumm, 2010),
how females respond to these higher frequency songs, or whether
changes in signal transmission affect reproductive success (Narango

& Rodewald, 2018). Though singing at a higher frequency should
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ameliorate signal masking, it does not guarantee greater reproduc-
tive success. Understanding whether signaling changes are adaptive
or not will be important for predicting whether populations are resil-

ient and able to adapt to new conditions.

6 | PLASTIC VERSUS EVOLUTIONARY
CHANGES IN RESPONSE TO URBAN
ENVIRONMENTS

Understanding the mechanism underlying responses to urbaniza-
tion represents an important priority for research focused on sexual
communication in urban settings. Though many studies document
differences in sexually selected traits between urban and rural habi-
tats, it is rarely tested whether the observed shifts reflect evolution-
ary changes or phenotypic plasticity (Table 1). The first logical step is
to understand whether traits indeed differ between urban and rural
environments, and the field has established a solid baseline in this re-
gard. Particularly in regard to noise, light, and metal pollution, we are
beginning to gain a fairly robust understanding of plastic responses
to these urban stressors because they can be experimentally manip-
ulated in laboratory or field studies (e.g., Chatelain et al., 2017; des
Aunay et al., 2014; Halfwerk et al., 2011; Owens et al., 2018). In gen-
eral, few studies have attempted to determine whether observed
population differences in sexual trait expression between urban and
rural environments are heritable. Urban evolution research is rela-

tively young, and there are logistical challenges to understanding the

urban male call
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mechanism underlying trait divergence. In addition, urbanization is a
relatively new phenomenon in evolutionary history and these selec-
tion pressures are largely novel. In many cases, the organisms are
difficult to breed in captivity under common garden conditions, or
there simply has not been sufficient time to investigate evolutionary
questions in wild animals with long generation times. However, it is
critical to understand the extent to which novel selection pressures
in urban environments lead to heritable changes, as this affects the
potential for adaptation.

Plastic trait changes can have important ecological and evolu-
tionary effects on populations (Miner et al., 2005), and phenotypic
plasticity may often represent a precursor to, and possibly even
facilitate, evolutionary change via genetic accommodation (Levis &
Pfennig, 2016). In particular, behavioral flexibility may serve as an
important early mechanism of adaptation to novel conditions and
pave the way to evolutionary change (Gordon & Uetz, 2011; Snell-
Rood, 2013; Zuk et al., 2014). Compared to other traits, behavior is
extremely responsive to the environment and able to change over
very short timescales. As such, facultative shifts in sexual behavior
can be a powerful way for animals to successfully cope with novel
conditions associated with urbanization because they do not nec-
essarily require genetic changes (Zuk et al., 2014). For instance,
Teleogryllus oceanicus (Pacific field crickets) represents one of the
few documented examples of the rapid evolution of a sexual signal
(Svensson, 2019; Svensson & Gosden, 2007). These crickets have
lost the ability to sing in response to a parasitoid fly due to a mutation

that affects wing morphology (Zuk et al., 2006). Plasticity in male
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alternative mating behaviors and strength of female preferences
appears to have been critical in allowing population persistence in
the face of a novel environmental perturbation (Bailey & Zuk, 2008;
Heinen-Kay & Zuk, 2019; Tinghitella et al., 2009). Distinguishing
flexible trait expression from genetic changes in a population can
provide more insight into the potential for adaptive evolution in the
face of urbanization and the extent to which such changes may lead
to speciation events.

A few studies have discovered likely instances of evolution in re-
sponse to urbanization. The most unambiguous case of sexual signal
evolution is the dark-eyed junco (Junco hyemalis). These birds have
historically lived in rural mountain habitats, but recently found a
population in the suburban region of San Diego (Yeh & Price, 2004).
Males in the new, urban population exhibit reduced coloration rela-
tive to the rural population; this difference in coloration is genetically
based and unlikely to be explained by drift or founder effects (Atwell
et al.,, 2014; Yeh, 2004). However, for these junco populations, there
are major differences in the climate, as well as urbanization, so it
is not entirely clear which selective forces are responsible for di-
vergence in male coloration. There are several suggestive cases of
urban evolution of sexually selected traits. For example, in a recipro-
cal transplant study, grasshoppers (Chorthippus biguttulus) captured
from roadsides as nymphs and reared under common conditions
produced higher frequency songs compared to those captured from
quieter habitats (Lampe et al., 2012, 2014). A few studies in birds
have also identified trait differences that likely have a genetic basis.
The beak shape, and consequently song characteristics, of house
finches in Arizona, also represents a likely case of evolution in re-
sponse to urban-associated differences in food resources (Badyaev
et al., 2008). These birds show distinct beak development quite early
during embryonic development, and urban and rural populations are
genetically distinct (Badyaev et al., 2008). There are also a few color
traits in birds caused by a genetic mutation that differs in its repre-
sentation in urban versus rural areas (Izquierdo et al., 2018; Senar
etal., 2014). However, the role of these bird color traits during sexual
selection is not well understood.

Sexual traits that are adaptive in urban environments should
evolve quickly if they are associated with reproductive success—the
trait should spread quickly in the population because individuals
bearing the trait should experience greater reproductive success. Yet
surprisingly, there are few documented examples of sexual evolution
in a contemporary timeframe (Svensson, 2019; Svensson & Gosden,
2007; Zuk & Tinghitella, 2008). Many studies have shown differences
in signal expression and mating behaviors between urban and rural
environments, but it is often unclear, or untested, whether observed
differences have a genetic basis or result from phenotypic plasticity.
More research is needed to determine if the rapid evolution of sex-
ual signals, as opposed to plastic shifts, is indeed rare or whether the
topic has not yet been adequately investigated. Many of the studies
we reviewed test for differences in signal expression and behavior
between wild-caught individuals experiencing different environ-
mental conditions, and thus were not designed to assess whether

differences exist because of evolution or plasticity. To make this
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distinction, we need more reciprocal transplant and common garden
experiments aimed at understanding mechanisms connecting envi-
ronmental changes to phenotypic differences between urban and
non-urban residents. Long-term studies in rapidly developing areas
would also provide excellent opportunities for better understanding
adaptation to urbanization. The issue of reporting phenotypic differ-
ences but not testing whether they are due to evolution or plasticity
is not unique to sexual traits, but is broadly a limitation in the new
field of urban evolution (Alberti et al., 2017). It is logistically much
easier and indeed represents an important first step, to determine
whether differences in trait expression exist between populations
in urban versus rural environments. Elucidating whether and under
what circumstances signal responses to urbanization reflect rapid
evolution will be critical for determining the potential for species to

adapt to increasingly human-dominated environments.

7 | CONCLUDING REMARKS—THE FUTURE
OF URBAN SEXUAL COMMUNICATION
RESEARCH

7.1 | Natural experiments to test and update
evolutionary theory

Urbanization, considered the most irreversible form of human-
driven land-use change, continues to expand rapidly around the
globe. Researchers increasingly recognize the value of studying how
urbanization impacts evolution, both because understanding urban
evolution may help researchers predict and mitigate its effects and
because urbanization provides a natural experiment that creates ex-
citing opportunities for generalizing theory in the field (Thompson
et al., 2018). Researchers should take advantage of these ongoing,
replicated natural experiments to address basic questions about
how the environment interacts with sexual communication (see
below). The field of urban ecology has grown tremendously over the
last several decades because ecologists have recognized the util-
ity of natural experiments caused by human impacts (McDonnell
& Pickett, 1990; Tanner et al., 2014), and recent calls suggest the
field of evolutionary biology should also capitalize on these natu-
ral experiments (Santangelo et al., 2018). While growing attention
has been paid to understanding evolution by natural selection in
urban areas, there has so far been too little focus on sexual selection
(though see Senar et al., 2014; Sepp et al., 2020).

Moreover, most research that has been done on urban sexual
selection has focused on single components of the urban environ-
ment (e.g., noise pollution). However, much of the novelty of urban
environments likely comes from complex interactions among multi-
ple anthropogenic influences. A recent study (Dominoni et al., 2020)
suggests that understanding these interactions can help reveal the
presence of ‘sensory danger zones’ for organisms and in turn foster
strategic interventions for conservation.

Sexual selection research can be at the forefront of the de-

velopment of urban evolution, as the multiple biological and
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landscape effects of urbanization provide unique opportunities
for field testing hypotheses regarding multimodal signaling, trait
compensation, the role of sexual selection during adaptation, and
the evolution of signal honesty. Urban studies can provide natural
experiments to test big, unresolved questions in sexual communi-
cation and evolution research. For example, urban studies have so
far shown mixed evidence for trait compensation, when the rela-
tive importance of different sexual signals shift in response to al-
tered environments (de Jong et al., 2018; Rios-Chelen et al., 2015;
Troianowski et al., 2014). Additional work in urban systems can
help us understand whether the particular attributes of a study
system (e.g., taxonomy, mating system characteristics, and eco-
logical conditions) influence whether or not trait compensation
occurs, and if it can help populations weather urban-caused envi-
ronmental change. Furthermore, understanding how sexual com-
munication responds to urbanization can complement research on
urban speciation (Halfwerk, 2021; Thompson et al., 2018) to help
deepen our understanding of which environmental factors are the
most potent drivers of diversification and how quickly changes can
occur. Urban research may help shed light on the relative roles of
natural and sexual selection during population differentiation, and

possibly speciation.

7.2 | Helping cities become refugia

Successful reproduction is crucial for population viability, and a
more comprehensive understanding of how sexual communica-
tion responds to urbanization will yield more effective conserva-
tion insights. An important step for better understanding how to
design cities that harbor biodiversity is to conduct more research
that is able to disentangle causal agents driving trait differentia-
tion (McDonnell & Hahs, 2015). Urbanization encompasses a com-
plex suite of environmental changes like increased noise and light
pollution, and shifts in community structure and resource quality.
Clarifying the mechanisms underlying signaling differences be-
tween populations in rural and urban environments will be critical
for developing conservation recommendations for how to mitigate
the negative effects of urbanization. Given the vast heterogeneity
in urban design features (e.g., variation in noise and light pollu-
tion across urban landscapes) there should be opportunities for
observational studies that simultaneously examine how multiple
aspects of the environment are associated with traits related to
sexual communication. Studies like Narango and Rodewald (2016)
serve as a model for teasing apart the relative importance of dif-
ferent ecological agents in promoting diversification and therefore
provide insight into urban design changes that will create the big-
gest impact on wildlife. Understanding the aspects of urbaniza-
tion that are the strongest drivers of trait changes will help urban
designers and conservation managers better focus their efforts on
mitigation.

Many of the changes in sexual communication that occur in

response to urbanization are due to phenotypic plasticity. This is

encouraging from a mitigation standpoint because in many cases,
populations should be resilient and responsive to changes in city
structures designed to interfere less with animal communication.
For example, Derryberry et al. (2020) showed that bird singing be-
haviors can quickly respond to changes in urban noise pollution.
During the COVID-19 shutdown in San Francisco, CA, noise pollu-
tion from traffic plummeted to levels comparable to the 1950s. In
this temporarily quieter soundscape, birds sang higher quality songs.
Reducing noise pollution has a fairly straightforward solution that
is demonstrated to positively affect sexual communication—reduce
the number of vehicles on the roads. Cities may accomplish this by
investing in infrastructure for residents to safely walk and ride bikes
for transportation, or by scaling up public transportation options.
An added bonus of greater reliance on walking and bicycles is less
carbon emissions from gasoline use.

Fireflies may serve as a useful model for understanding how to
better design urban areas to accommodate wildlife. Many firefly
species are vulnerable to extinction, and masking of sexual signals by
artificial light at night was highlighted as a major threat (Lewis et al.,
2020). Due to public safety concerns and general livability of cit-
ies, prohibiting ALAN is generally not a feasible solution, though it is
the most biologically effective at minimizing the negative effects of
ALAN (Gaston et al., 2012). However, recent work has demonstrated
that fireflies are less sensitive to longer wavelengths of light (Owens
et al., 2018). Therefore, one implementable solution that emerges
from this research on fireflies is to replace low-frequency street-
lights with ones that emit longer frequencies. The island of Hawaii
(“Big Island”), home to the W. M. Keck Observatory telescopes, has
successfully overhauled their streetlight infrastructure to help miti-
gate light pollution. The new lights are more directional and use LED
so emit yellow-toned, rather than broad-spectrum light that does
not interfere with the astronomy research occurring on the island.
There may be other technical advances for light sources that can
strike a balance between human needs in urban areas and biodiver-
sity conservation (Gaston et al., 2012). Research on the impacts of
urbanization on sexual communication and its consequences will be
crucial for clarifying how to create urban design and policies that
support rather than degrade diverse biological communities.
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