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ABSTRACT

Increasing evidence indicated that long non-coding RNAs (lncRNAs) were 
involved in various biological processes and complex diseases by communicating 
with mRNAs/miRNAs each other. Exploiting interactions between lncRNAs and mRNA/
miRNAs to lncRNA functional similarity (LFS) is an effective method to explore function 
of lncRNAs and predict novel lncRNA-disease associations. In this article, we proposed 
an integrative framework, IntNetLncSim, to infer LFS by modeling the information 
flow in an integrated network that comprises both lncRNA-related transcriptional and 
post-transcriptional information. The performance of IntNetLncSim was evaluated 
by investigating the relationship of LFS with the similarity of lncRNA-related mRNA 
sets (LmRSets) and miRNA sets (LmiRSets). As a result, LFS by IntNetLncSim was 
significant positively correlated with the LmRSet (Pearson correlation γ2=0.8424) 
and LmiRSet (Pearson correlation γ2=0.2601). Particularly, the performance of 
IntNetLncSim is superior to several previous methods. In the case of applying the 
LFS to identify novel lncRNA-disease relationships, we achieved an area under the 
ROC curve (0.7300) in experimentally verified lncRNA-disease associations based 
on leave-one-out cross-validation. Furthermore, highly-ranked lncRNA-disease 
associations confirmed by literature mining demonstrated the excellent performance 
of IntNetLncSim. Finally, a web-accessible system was provided for querying LFS and 
potential lncRNA-disease relationships: http://www.bio-bigdata.com/IntNetLncSim.

INTRODUCTION

Recent large-scale genomic and transcriptomic 
analysis has shown that only less than 2% of genome 
sequence can encode protein, and functional non-coding 
transcripts constitute a large portion of the genome 
transcripts [1, 2]. Long non-coding RNAs (lncRNAs), 
a recently discovered class of non-coding RNAs, was 
arbitrarily defined as mRNA-like transcripts longer than 200 
nucleotides that have no or little protein-coding capacity [3].

The accumulating evidence suggested that lncRNAs 
are a novel and crucial layer of gene regulation network, 
and play important roles in various biological processes, 
such as imprinting, developmental regulation, chromatin 
modification, transcriptional regulation, dosage compensation 

and so on [3–7]. The dysregulated lncRNA expression has 
also been observed and implicated in the development 
and progression of complex diseases [8–20]. Although 
tens of thousands of lncRNAs have been discovered and 
recorded in several public databases, such as GENCODE 
[21], NONCODE [22], LNCipedia [23], only a handful of 
lncRNAs were well-studied and characterized functionally. 
For example, only 182 functional lncRNAs were manually 
curated from existing literature in lncRNAdb [24].

It has shown to be an efficient way to infer potential 
function for novel genes by studying the functional 
similarity between genes with known functions or 
associated with specific diseases and that with unknown 
functions. Many methods have been developed to measure 
the functional similarity between protein-coding genes or 
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miRNAs which accelerated functional analysis of protein-
coding genes and miRNAs [25–28]. In consideration of 
the large number and limited knowledge of lncRNAs, it 
is urgent to develop novel methods to measure lncRNA 
functional similarity (LFS) for inferring lncRNA 
function and mining the associations between lncRNAs 
and diseases. Several efforts have been made to meet 
the urgent need in recent studies. For example, Sun and 
colleagues firstly introduced semantic similarity between 
lncRNAs-related diseases to calculate LFS (SemLncSim) 
which was used to predict disease-related lncRNAs [29]. 
SemLncSim was further improved by Chen et al. through 
considering lncRNA-disease associations and semantic 
similarity between diseases [30]. Another method, 
LFSCM, was proposed by Chen et al. to calculate LFS 
based on the lncRNA-related miRNA information [31].

Improved knowledge has suggested that lncRNAs 
were involved in diverse biological processes by 
negatively or positively regulating gene expression at 
both the post-transcriptional and transcriptional level [32]. 
For example, lncRNAs can function as key competing 
endogenous RNAs (ceRNAs) to communicate with 
mRNAs and regulate with each other by competing with 
common miRNAs at the post-transcriptional level [33, 
34]. LncRNA also could negatively or positively regulate 
protein-coding gene expression in cis or trans at the 
transcriptional level. Thus, a more accurate measurement 
should take fully into account both lncRNA-related 
miRNAs/mRNAs and the functional communication 
among them. In this study, we developed an integrative 
framework, called IntNetLncSim, to infer human LFS by 
modeling the information flow in an integrated network 
that comprises both lncRNA-related transcriptional and 
post-transcriptional information. IntNetLncSim is freely 
accessible at (http://www.bio-bigdata.com/IntNetLncSim).

RESULTS

Performance evaluation of IntNetLncSim

As mentioned above, lncRNA performed 
their function by negatively or positively regulating 
gene expression at both the post-transcriptional and 
transcriptional level. Therefore, it is expected that 
functionally related lncRNAs are often associated with 
functionally similar mRNAs or miRNAs. Therefore, 
we assessed relationships between IntNetLncSim 
functional similarity of lncRNAs and the similarity of the 
lncRNA-related mRNA sets (LmRSets) or miRNA sets 
(LmiRSets). In this study, functional similarity between 
mRNA sets was calculated by GsNetCom [35], which is 
a web-based toolkit to measure the functional association 
between two gene sets. In addition, functional similarity 
between miRNA sets was measured using Sun’s method 
[25]. As a result, IntNetLncSim functional similarity of 
lncRNAs was significant positively correlated with the 

LmRSet (Pearson correlation γ2=0.8424, p=2.2e-16; 
Figure 1A) and LmiRSet (Pearson correlation γ2=0.2601, 
p=2.2e-16; Figure 1C). We further grouped lncRNA pairs 
into different groups according to LFS by a step of 0.1 
and calculated the average LFS and the similarity of the 
LmRSet and LmiRSet. Then, the same correlation analysis 
was performed. As shown in Figure 1B and 1C, positive 
correlation between lncRNA functional similarity by our 
method and functional similarity of the LmRSet (Pearson 
correlation γ2=0.9753, p=3.299e-07; Figure 1B) and 
LmiRSet (Pearson correlation γ2=0.9448, p =1.181e-05; 
Figure 1D) was observed. Taken together, these results 
suggested that IntNetLncSim can reflect the correlations 
between LFS and that of LmRSet or LmiRSet.

To further verify the reliability of IntNetLncSim, 
a random network based on the topology of the 
integrated network was introduced. We first compared 
the relationships between IntNetLncSim functional 
similarity of lncRNAs based on the random network 
with the similarity of the LmRSet and LmiRSet, and 
then compared the LFS based on the random network 
with the similarity based on the integrated network. As 
expected, IntNetLncSim functional similarity of lncRNAs 
based on the random network was uncorrelated with the 
LmRSet (Pearson correlation γ2=8.267477e-05, p=0.717) 
and LmiRSet (Pearson correlation γ2=-0.0003, p=0.2117). 
In addition, the results in Figure 1E indicated that LFS 
based on the integrated network was significant difference 
with the similarity based on the random network (Pearson 
correlation γ2=0.0003, p=0.2117). The average LFS 
score based on the integrated network (0.3017728) was 
significantly higher than that based on the random network 
(8.540267e-07). Taken together, in comparison with 
random network, LFS based on the integrated network 
is more relevant with the similarity of the LmRSet and 
LmiRSet.

In order to assess the effects of mRNA and miRNAs 
in the integrated network, we ignored miRNA and mRNA, 
respectively. The correlation between LFS by ignoring 
miRNA and the similarity of the LmRSet is 0.7590, which 
is higher than that of IntNetLncSim (γ2=0.5385). However, 
the correlation between LFS by ignoring miRNA and the 
similarity of the LmiRSet (γ2=0.0467) is much lower than 
that of IntNetLncSim (γ2=0.2504). The correlation between 
LFS by ignoring mRNA and the similarity of the LmiRSet 
is 0.6735, which is higher than that of IntNetLncSim 
(γ2=0.2504). However, the correlation between LFS by 
ignoring mRNA and the similarity of LmRSet (γ2=0.0192) is 
much lower than that of IntNetLncSim (γ2=0.5385). Overall, 
the performance wasn’t significantly affected after ignoring 
mRNA or miRNA. In comparison, the performance is more 
stable as using the integrated network. Because lncRNAs 
function at both the post-transcriptional and transcriptional 
level, the function of lncRNA could be reflected by both 
miRNA and mRNA. Therefore, the performance of the 
integrated network is more and stable.
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Comparisons with other existing similar methods

Because LFS of diverse lncRNA sets was 
calculated by different methods, the performance of 
IntNetLncSim should be compared with the performance 
of SemLncSim, LNCSIM, and LFCSM, respectively. For 
example, to compare the performance of IntNetLncSim 
and SemLncSim, common lncRNAs based on these two 
methods were extracted first. Then, the Pearson correlation 
between LFS of these common lncRNAs and the similarity 
of the LmRSet and LmiRSet could be calculated as 
following:

X Ycov( , ) ,
x y

X,Yρ
σ σ

=
⋅    

(1)

where X represents LFS using IntNetLncSim or 
SemLncSim, Y is the similarity of the LmRSet or 
LmiRSet, σx and σy are the variance of X and Y, 
respectively, and cov(X,Y) represents covariance between 
X and Y. Finally, the performance of IntNetLncSim and 
SemLncSim can be reflected by this correlation.

SemLncSim was the first method to compute the 
similarity between lncRNAs. The correlations between 

Figure 1: Performance evaluation of IntNetLncSim. A. The distribution of the similarity of the LmRSet. A solid circle denotes 
the functional similarity of a pair of lncRNAs in the horizontal axis and the similarity of the LmRSet in the vertical axis. The dashed line is 
the linear regression line generated by the least squares of the data points. B. The distribution of the similarity of the LmRSet based on the 
grouped lncRNA pairs. C. The distribution of the similarity of the LmiRSet. D. The distribution of the similarity of the LmiRSet based on 
the grouped lncRNA pairs. E. The distribution of IntNetLncSim functional similarity scores of lncRNAs based on the integrated network 
and random network.
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functional similarity of lncRNAs and the similarity of 
the LmRSet and LmiRSet were shown in the Figure 2A. 
Obviously, the correlation between LFS by IntNetLncSim 
and the similarity of the LmRSet (γ2=0.6596, p=2.2e-16) 
is significantly higher than that of SemLncSim (Pearson 
correlation γ2=-0.0293, p=0.259). Although correlation 
(0.0737) seems to be improved slightly between LFS by 
SemLncSim and the similarity of the LmiRSet (Pearson 
correlation γ2=0.0737), the significant level of this 
correlation was also very low (p=0.1364). In comparison 
with SemLncSim, the correlations between LFS by 
IntNetLncSim and the similarity of the LmiRSet were 
much higher (Pearson correlation γ2=0.4064, p=2.2e-16). 
These results showed that LFS by IntNetLncSim is much 
more relevant with the similarity of the LmRSet and 
LmiRSet than LFS by SemLncSim.

LNCSIM was another method to calculate the 
similarity between lncRNAs which utilized the semantic 
similarity between diseases. LNCSIM1 and LNCSIM2 
are two types of LNCSIM based on Resnik’s [36] and 
Wang’s method [37], respectively. After combining with 
IntNetLncSim, 55 common lncRNAs and 29 common 
lncRNAs that can regulate mRNAs and miRNAs 
were obtained, respectively. The correlations between 
functional similarity of these common lncRNAs and the 
similarity of the LmRSet and LmiRSet were shown in 
the Figure 2B. As a result, the performance of LNCSIM1 
and LNCSIM2 appeared to be roughly the same. For 
example, the correlation between LFS by LNCSIM1 and 
the similarity of the LmRSet is -0.0436 (p=0.0931), and 
that of LNCSIM2 is -0.0467 (p=0.0722). In contrast, 
IntNetLncSim achieved a better performance. For 
example, the correlation between LFS by IntNetLncSim 
and the LmRSet is 0.6445 (p=2.2e-16). These results 
showed that the performance of IntNetLncSim is much 
better than LNCSIM.

LFSCM measures LFS between lncRNAs based on 
the miRNA information of lncRNAs. These interactions 
are part of the lncRNA regulatory network. Thus, 
lncRNAs in LFCSM are contained in IntNetLncSim. 
As shown in Figure 2C, the correlations between LFS 
by LFSCM and the similarity of the LmiRSet is 0.6330, 
which is higher than that of IntNetLncSim (γ2=0.2626). 
However, the correlations between LFS by LFSCM and 

the similarity of LmRSet (γ2=0.0244) is significantly lower 
than that of IntNetLncSim (γ2=0.5400) (Figure 2C). If only 
considering the correlation based on the similarity of the 
LmiRSet, the performances of LFSCM and IntNetLncSim 
were both very well. After introducing correlation based 
on the similarity of the LmRSet, the advantage of 
IntNetLncSim was obvious. These results showed that 
IntNetLncSim was more comprehensive and stable.

lncRNA functional similarity network (LFSN)

We calculated similarity scores for all the pairs of 
lncRNAs in our integrated network by IntNetLncSim. 
Then, we got the z-score of these similarity scores. 
As a result, one-sided P-value was accessed for each 
similarity score. These LFS scores with P-values were 
used to construct LFSN (http://www.bio-bigdata.com/
IntNetLncSim), which was utilized to predict novel 
associations between lncRNAs and diseases in the next 
section.

Case studies

By applying the above constructed LFSN, novel 
candidate disease-related lncRNAs were predicted based 
on random walk with restart (RWR) algorithm (see 
Materials and Methods). To evaluate the performance of 
the LFSN, leave-one-out cross validation of 150 known 
experimentally confirmed lncRNA-disease associations, 
including 40 diseases with at least two lncRNAs, was used 
for this assessment. For a disease d of interest, each known 
lncRNA associated with disease d was left out as the 
testing case, and the remaining known disease d-related 
lncRNAs were used as seed nodes. All the lncRNAs except 
the known disease d-related lncRNAs were considered 
as candidate lncRNAs. We then examined how well the 
testing lncRNA ranked relative to the candidate lncRNAs. 
If the ranking of this testing lncRNA exceeded a given 
cutoff, we regarded this lncRNA-disease association as 
successfully predicted. As a result, an area under the ROC 
curve (AUC) of 0.7300 was achieved (Figure 3), which 
demonstrated that our constructed LFSN was effective 
in recovering known experimentally confirmed disease-
related lncRNAs.

Figure 2: The comparison of IntNetLncSim with previous similar methods. A. The correlation between LFS by IntNetLncSim 
and SemLncSim and the similarity of LmRSet and LmiRSet. B. The correlation between LFS by IntNetLncSim and LNCSIM and the 
similarity of LmRSet and LmiRSet. C. The correlation between LFS by IntNetLncSim and LFSCM and the similarity of LmRSet and 
LmiRSet.



Oncotarget47868www.impactjournals.com/oncotarget

To further indicate the application of our constructed 
LFSN in identifying novel disease-related lncRNAs, case 
studies of liver cancer and breast cancer were examined. For 
a given disease, the known disease-related lncRNAs were 
served as seed lncRNAs, and all the non-seed lncRNAs 
were ranked based on RWR algorithm. The top 20 lncRNAs 
in the ranked list were investigated. We manually checked 
these lncRNA-disease associations in the published literature 
and the results were shown in Table 1. Two and three of the 
top 20 predicted lncRNAs were validated in liver cancer 
and breast cancer, respectively, and most of them had high 
ranks in the predicted lncRNA lists. For example, expression 
quantitative trait loci in ZNRD1-AS1 were recently found to 
affect both HBV infection and liver cancer development [38]. 
High expression of NEAT1 in patients with breast cancer was 
reported to be correlated with poor survival [39]. All these 
results indicated that our constructed LFSN was effective 
in identifying novel disease-related lncRNAs, and the LFS 
method we proposed was reliable.

System design and implementation

In order to facilitate querying lncRNA functional 
similarities and potential associations between lncRNAs 
and diseases, a web-based system was designed and 
implemented. The system was implemented on a JavaEE 
framework and run on our web server (http://www.bio-
bigdata.com/IntNetLncSim). The three-layer architecture 
involving DATABASE, WEB INTERFACE, and VIEW 
layer is shown in Figure 4.

DISCUSSION

The importance of the function of non-coding RNA 
had been reflected in the previous research. Unfortunately, 
functional inferring of non-coding RNA is not easy in 
comparison with those of coding RNA. LncRNA is a new 
type of non-coding RNA that contribute to the largest 
number of RNAs in human, so it is urgent to develop novel 
methods for infering function of lncRNA. Recently, the 
function similarity of lncRNAs was proved that can be used 
to find potential function of lncRNAs [29]. In this study, 
we devised a new method, IntNetLncSim, for improving 
the performance of calculating the LFS by the integrated 
network. And then, the method was utilized to construct 
LFSN for predicting novel associations between lncRNAs 
and diseases. Furthermore, a web interface (http://www.bio-
bigdata.com/IntNetLncSim) has been designed for accessing 
LFS and associations between lncRNAs and diseases.

IntNetLncSim is based on an integrated network 
involving lncRNA regulatory network, miRNA-mRNA 
interaction network, and mRNA-mRNA interaction 
network. In comparison with several previous methods, 
the integrated network covered much more lncRNAs 
(Table 2). Moreover, the performance of IntNetLncSim 
was proven to be very reliable and stable in the correlation 
with the similarity of the LmRSet and LmiRSet.

LFSN was constructed based on the functional 
similarity between lncRNAs by IntNetLncSim. The 
performance of LFSN was proven to be reliable for 

Figure 3: ROC curve and AUC value of our method based on leave-one-out cross validation on 150 known experimentally 
verified lncRNA-disease associations.
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Table 1: The novel lncRNA-disease associations confirmed by literature mining

lncRNA name Ranking References

Liver cancer

ZNRD1-AS1 10 [38]

ZNF718 20 [52]

Breast cancer

SNHG1 8 [53]

NEAT1 9 [39]

SEC22B 12 [54]

Figure 4: System overview.

Table 2: The number of lncRNAs in SemLncSim, LNCSIM, LFCSM and IntNetLncSim, respectively

Method The number of lncRNAs Data Source

SemLncSim 129 LncRNADisease

LNCSIM 104 LncRNADisease

(LNCSIM1, LNCSIM2)

LFCSM 1114 starBase

IntNetLncSim 6314 starBase
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recovering experimentally verified lncRNA-disease 
associations from LncRNADisease by leave-one-out cross 
validation. Then, the LFSN was applied to predict novel 
lncRNA-disease associations not in LncRNADisease. Five 
predicted associations between lncRNAs and two kinds 
of important cancer (liver cancer and breast cancer) were 
validated from the latest researches. This means that the 
LFSN could be exploited to predict novel relationships 
between lncRNAs and diseases.

It should be noted that IntNetLncSim relied on our 
integrated network. According to Figure 1E, the result 
of random work could be affected by a large amount 
of missing interactions among mRNAs, miRNAs, and 
lncRNAs. Therefore, the performance of IntNetLncSim 
may be improved by the exposal of newly interactions 
among mRNAs, miRNAs, and lncRNAs.

MATERIALS AND METHODS

Data source

Human mRNA-lncRNA and miRNA-lncRNA interaction 
data sets

The mRNA-lncRNA interaction and miRNA-
lncRNA interaction data sets were downloaded from 
starBase v2.0 database [40] in October 2015, which 
provided experimentally confirmed mRNA-lncRNA and 
miRNA-lncRNA interactions based on large scale CLIP-
Seq data. Currently, a total of 17,609 mRNA-lncRNA 
interactions between 33 mRNAs and 6,238 lncRNAs 
and 10,212 interactions between 277 miRNAs and 1,127 
lncRNAs were included in this study. These miRNA-
lncRNA interaction and miRNA-lncRNA interaction 
data sets were integrated to form a lncRNA regulatory 
network.
Human mRNA-mRNA interaction data

The mRNA-mRNA interaction dataset was 
downloaded from Human Protein Reference Database 
(HPRD) [41]. The HPRD is a resource for experimentally 
derived information about the human protein–protein 
interactions, and proteins in HPRD were mapped to 
mRNAs. After getting rid of duplicate interactions, 39,239 
interactions between 9,616 mRNAs were obtained and 
formed an mRNA-mRNA interaction network.
Human miRNA-mRNA interaction data

The miRNA-mRNA interaction dataset was 
retrieved from three widely used and experimentally 
confirmed miRNA-target databases: TarBase (version 
6.0) [42], miRTarBase (version 4.5) [43] and miRecords 
(version 4) [44]. These three databases were merged and 
the name of mature miRNAs were unified using miRBase 
(Release 21) [45]. Finally, 37,832 targeting pairs involving 
558 miRNAs and 12,370 target genes were obtained to 
form a miRNA-mRNA interaction network.

Human lncRNA-disease association data

The human lncRNA-disease association data 
was incorporated into the LFSN to predict disease-
related lncRNA. These associations were accessed from 
LncRNADisease [46], which is a resource that curated 
the experimentally supported disease-lncRNA association 
data. After discarding disease terminologies not in 
Disease Ontology (DO) [47] and getting rid of duplicate 
associations, 189 associations between 79 diseases and 60 
lncRNAs were obtained.

Methods

Method for calculating lncRNA functional similarity

In this study, we presented an integrative framework, 
IntNetLncSim, to measure the functional similarity 
of lncRNAs by modelling the information flow in an 
integrated network that comprises both lncRNA-related 
transcriptional and post-transcriptional information. A 
schematic representation of the IntNetLncSim method is 
shown in Figure 5. Initially, lnc1 and lnc2 are two lncRNAs. 
First, an integrative network was constructed based on 
lncRNA-regulatory network, mRNA-mRNA interaction 
network, and miRNA-mRNA interaction network. Then, 
ITM Probe [48] was applied for assigning a weight to 
each mRNA and miRNA for lncRNA by the integrative 
network. As a result, each lncRNA could be represented 
as a vector of these weights whose dimension equals the 
number of mRNAs and miRNAs in the network. Finally, 
the cosine similarity between vectors after using ITM 
Probe, which was implemented for calculating disease 
similarity in recent research [49], was exploited to 
calculate similarity of lncRNAs.

ITM Probe [48] is a tool for analyzing information 
flow in the network based on random walk with 
damping. Three models including absorbing, emitting, 
and channel were implemented in ITM Probe. Given 
a set of information sinks, the absorbing mode returns 
for any network node the likelihood of a random walk 
starting at that node to terminate at sinks. The emitting 
mode returns for each network node the expected 
number of visits to that node by a random walk starting 
at information sources. However, the directed flow 
from origins to destinations was induced via a potential 
function that was heuristic. Fortunately, channel model 
extends the absorbing model and emitting mode for 
directed information flow. According to these three 
models, all the nodes in the network were classified 
as boundary nodes and transient nodes. The boundary 
nodes contain source nodes that the random walk starts 
from and sink nodes that the random walk dissipates 
or ends at. And the transient nodes are neither source 
nodes nor sink nodes. After assigning boundary nodes 
and transient nodes, weights between these nodes could 
be outputted by the ITM Probe.
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Figure 5: Overview of IntNetLncSim demonstrating the basic ideas of measuring lncRNAs functional similarity.
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In this study, channel model in ITM Probe was 
applied to the integrative network. In this network, 
lncRNAs are not connected to each other, but they are 
linked to the mRNAs or miRNAs that are associated with 
them. The mRNAs and miRNAs are connected based 
on their curated interactions. Therefore, lncRNAs in the 
network were specified as boundary nodes, and all the 
mRNAs and miRNAs were specified as transient nodes, 
and with a damping factor of 0.85 according to previous 
research [50]. To assign a weight to each transient node for 
lncRNA, we consider a given lncRNA as source node and 
sink node in the information flow. Assuming N mRNAs and 
M miRNAs exist in the integrative network, each lncRNA 
can be represented as (N+M)-dimension vector based on the 
ITM Probe. For a given lncRNA lnc1, the weight vector can 
be described as

= +WV w w w w{ , ,..., ,..., },c i N Mln 1,1 1,2 1, 1,1    (2)

where WVlncl
 means a weight vector of lncl, and wl,i 

represents the weight score of lnc1 on the ith dimension. 
Then, we modeled the functional similarity between 
lncRNA lnc1 and lnc2 by the cosine of their vectors as 
following:
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Method for predicting disease-related lncRNAs

Disease-related lncRNAs were predicted using RWR 
analysis [51]. RWR is a global network ranking algorithm. 
The random walker starts on one or several seed nodes and 
then randomly transits to neighboring nodes considering 
the probabilities of the edges between the two nodes. The 
random walker can also return to the seed node, whose 
probability is supposed as γ, and then RWR algorithm can 
be defined as follows:

γ γ= − ++P (1 )AP P .t t1 0     (4)

Here, P0 denotes the initial probability vector. Pt is a 
vector in which the ith element indicates the probability 
of finding the walker at node i at step t. A is the column-
normalized adjacency matrix of the LFSN. The algorithm 
was performed until the probability of all the nodes 
become stable, and was defined as P∞. This can be 
measured by the difference between Pt and Pt+1 (measured 
by the L1 norm) falling below 10-10.

In this study, we predicted disease-related 
lncRNAs based on the constructed LFSN. The workflow 
was shown in Figure 6. For a given disease, the known 
disease-related lncRNAs were considered as seed nodes, 
while the rest lncRNAs were regarded as candidate 
lncRNAs. The seed nodes were mapped to the LFSN 
and a lncRNA rank list was then obtained using RWR 
algorithm. Each lncRNA was assigned a probability 
value in the above ranked list. The top ranked lncRNAs 
would have higher probability to be associated with a 
given disease.
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