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An attainable structural resolution of single particle 
imaging is determined by the characteristics of X-ray  
diffraction intensity, which depend on the incident X-ray 
intensity density and molecule size. To estimate the 
attainable structural resolution even for molecules whose 
coordinates are unknown, this research aimed to clarify 
how these characteristics of X-ray diffraction intensity 
are determined from the structure of a molecule. The 
functional characteristics of X-ray diffraction intensity 
of a single biomolecule were theoretically and compu
tationally evaluated. The wavenumber dependence of  
the average diffraction intensity on a sphere of constant 
wavenumber was observable by small-angle X-ray solu-
tion scattering. An excellent approximation was obtained, 
in which this quantity was expressed by an integral trans-
form of the product of the external molecular shape and 
a universal function related to its atom packing. A stan-
dard model protein was defined by an analytical form of 
the first factor characterized by molecular volume and 
length. It estimated the numerically determined wave-
number dependence with a worst-case error of approxi-
mately a factor of five. The distribution of the diffraction 

intensity on a sphere of constant wavenumber was also 
examined. Finally, the correlation of diffraction intensi-
ties in the wavenumber space was assessed. This analysis 
enabled the estimation of an attainable structural resolu-
tion as a function of the incident X-ray intensity density 
and the volume and length of a target molecule, even in 
the absence of molecular coordinates.
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X-ray free-electron lasers (XFELs) generate intense X-ray 
laser with very short pulses [1,2]. They have ushered in a 
new era of biological sciences in which the structures and 
dynamics of crystalline and single-particle samples are eluci-
dated. In nanocrystal diffraction imaging, three-dimensional 
(3D) structures are built with intense X-ray laser irradiation 
at a ~10 fs pulse width [3–5]. This configuration realizes 
“proof before destruction” [6,7]. Single-particle imaging 
(SPI) is the most challenging but important method for 
revealing biomolecule structures and dynamics [8]. Typi-
cally, a single target molecule of unknown molecular orien-
tation is injected into a vacuum. The X-ray strikes the  
sample and generates a coherent diffraction pattern that is 

X-ray free-electron lasers generate intense X-rays with very short pulses and help elucidate the structures of single-
biomolecule samples. Single-particle imaging (SPI) is important for revealing biomolecule structures; however, 
owing to technical challenges, the SPI resolution is not high. For further progress, it is useful to reasonably know the 
incident X-ray intensity to achieve the desired resolution. This study clarified how the characteristics of X-ray diffrac-
tion are determined from the molecular structure to estimate the attainable resolution even for molecules with 
unknown coordinates.
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were used to derive an attainable structural resolution as a 
function of the incident X-ray intensity density and the vol-
ume and length of a target molecule even if there are no 
atomic coordinates for the molecule.
As a secondary benefit of the characteristics of i(k), the 

high-throughput analysis can be realized to estimate the 
molecular volume and length to evaluate the structure and 
dynamics of protein from the average function ī(k) that can 
be approximately obtained by taking the radial average of 
the noisy two-dimensional diffraction image data. Addition-
ally, the average ī(k) of i(k) on a sphere |k|=k of radius k is 
essentially the quantity measured in small-angle solution 
scattering. Therefore, it is expected that the results for the 
characteristics of the average ī(k) obtained herein are appli-
cable for this widely used experimental method as well as 
for the estimation of molecular shape with a relatively low 
calculation cost.

Methods
Calculation of electron density of ρ(x) and X-ray  
diffraction intensity of i(k)
The focus was the X-ray diffraction intensity of a single 

biomolecule or its complex (hereafter, a molecule) with 
roughly spherical shape. The diffraction intensity of s(k), 
expressed as photons arriving at each pixel on the detector, 
is given by the following expression:

s(k) = Iir2
ceωi(k)	 (1)

where Ii is the X-ray incident intensity density in [photons/
pulse/μm2], rce is the classical electron radius, and ω=(λ/σL)2 
is the solid angle, where λ denotes the X-ray wavelength, L 
is the molecular size, and σ denotes the linear oversampling 
ratio. In the experiment, ω can be derived from the detector 
pixel size and the distance between the sample and detector. 
Molecular 3D structure is described by its electron density 
ρ(x), structure factor F(k), and diffraction intensity density 
i(k):

F(k) = ∫ dx ρ(x) exp (−2πik·x)	 (2)

i(k) = |F(k)|2 

= ∫ dx1dx2 ρ(x1)ρ(x2) exp{−2πik·(x1 − x2)}	 (3)

To perform a computational study, it was first necessary to 
calculate the electron density function ρ(x) on a grid point of 
width 0.1 Å. The atomic coordinates of the molecule were 
acquired from the Protein Data Bank (PDB) [14]. Gaussian 
electron density functions were assumed for each atom listed 
in the International Tables for Crystallography [15] using 
the following equation:

ρ(x) = ∑a ca (
 

1
2πσ2

a

 

)3/2
 

exp ( 

(x−xa)2

2σ2
a

 

)	 (4)

observed with a two-dimensional (2D) Charge-Coupled-
Device (CCD) detector. To construct the average 3D ensem-
ble structure, multiple measurements must be made using 
new, identical samples with nearly the same conformational 
states but in different molecular orientations. A three-step 
strategy for 3D reconstruction from noisy 2D diffraction  
patterns has been proposed [9]. In the first step, similar  
diffraction patterns are grouped and averaged to improve  
the signal-to-noise (S/N) ratio. In the second step, the 3D 
diffraction intensity is constructed by aligning the 2D dif-
fraction patterns in the k-space. In the final step, phases not 
obtained by experimental observation are retrieved by over-
sampling with the phase-retrieval algorithm [10] adapted to 
the 3D diffraction intensity function.

Several SPI trials with XFELs have used large living cells 
or rigid viral samples. Consequently, low-resolution datasets 
with few diffraction patterns and small scattering angles 
were obtained such as the 2D projection of a living cell from 
a diffraction pattern [11] followed by the successful recon-
struction of the 3D structure of a virus [12]. This process  
was accomplished by combining 200 diffraction images, 
constructing a 3D scattering intensity function in the k-space, 
and applying the phase-retrieval algorithm.

The structural resolution is low and there are technical 
challenges. However, theoretical investigation of the attain-
able structural resolution may help achieve higher resolu-
tions and enhance the applicability and potential of SPI with 
XFELs. The actual X-ray diffraction intensity of a single 
biological molecule is extremely weak and susceptible to 
severe quantum shot-noise. In other words, the attainable 
structural resolution is determined by X-ray diffraction 
intensity, and the property of X-ray diffraction intensity 
depends on the incident X-ray intensity and the target mole-
cule. Hence, it is useful to construct a theory that helps to 
reasonably and reliably know the necessary incident X-ray 
intensity to achive the desired resolution, even for molecules 
whose coordinates are unknown as a function of molecular 
size.

In an earlier study [13], we reported that the resolutions  
of spheroid globular molecules are determined from the fol-
lowing characteristics of the diffraction intensity function: 
i(k) in the wavenumber k space, (1) average ī(k) of i(k) on a 
sphere |k|=k of radius k, (2) distribution of i(k) on the sphere, 
and (3) correlation length of i(k) on the sphere. The aim of 
this research was to clarify how these characteristics of 
X-ray diffraction intensity are determined from the 3D struc-
ture of a molecule. As to (1), it will be shown that the value 
of the average function ī(k) is determined up to about a fac-
tor of five by specifying molecular 3D structure in terms of 
only two parameters, volume V and length L of the molecule. 
As to (2), the distribution function will be shown to be inde-
pendent of the molecule. As to (3), the correlation length will 
be shown to depend only on length L. The attainable struc-
tural resolution is determined by the characteristics of i(k) 
that can be specified by V and L. The results of this analysis 



432 Biophysics and Physicobiology  Vol. 16

a sphere |k|=k of radius k. Hereafter, we refer to this quantity 
as the radial diffraction intensity density. It is obtained by 
replacing the last factor of the right-hand side of equation (3) 
by its average on the sphere k=|k|:

ī(k) = ∫ dx1dx2 ρ(x1)ρ(x2) sinc (2k|x1 − x2|)	 (6)

where sinc x = 
 

sin πx
πx 	 (7)

From equation (6), we see that

ī(0) = Q2	 (8)

where Q is the total number of electrons in the molecule. 
Equation (6) is transformed as follows:

ī(k) = ∫ drq(r) sinc (2kr)	 (9)

q(r) = ∫ dx1dx2 ρ(x1)ρ(x2) δ (r − |x1 − x2|)	 (10)

Thus, the radial diffraction intensity density is related to 
equation (10) and may be expressed to a very good approx
imation as the product of two factors. One relates to the 
external shape of the target molecule while the other is asso-
ciated with atom packing inside the molecule. To the end, we 
must define the molecule surface. A reasonable choice for 
this purpose is essentially the Connolly molecular surface 
[16]. The region enclosed by the molecular surface is the 
molecular region of Ω. The integrations with respect to x1 
and x2, except for the autocorrelation part (x1=x2) in equ
ation (10), lie within the region of Ω. The following pair  
distribution function relates to the external shape of the  
target molecule:

P(r) = ∫Ω dx1 ∫Ω dx2 δ (r − |x1 − x2|),   x1 ≠ x2	 (11)

This equation expresses the number of pairs of points sep-
arated by distance r that fit in the molecule and is normalized 
as follows:

∫0L dr P(r) = V 2	 (12)

Where the molecular size of L is defined as the maximum 
distance between two points in the molecule and V is the 
volume of the molecular region Ω.

R(r) = 
q(r)
P(r) 	 (13)

Equation (13) defines the expected electron density prod-
uct for a pair of points separated by distance r. This quantity 
should be more or less the same for most biomacromole-
cules of similar atomic composition. Thus, it is henceforth 
referred to as the universal electron density product function.

From equation (13), we have:

It was assumed that the total electron density of a protein 
molecule was the sum of the electron densities of the  
constructed atoms. The electron density of each atom is 
approximated from the sum of several isotropic Gaussian 
distributions centered on the nucleus. The subscript a is a 
serial number for the Gaussian distribution. One atom is  
represented by several Gaussian distributions. F(k) was also 
directly calculated as follows:

F(k) = ∑a ca exp (−2πik·xa) exp (−2(πkσa)2)	 (5)

Seven spheroid globular molecules of various molecule 
sizes were selected from the PDB. The selected codes were 
2C9R, 2LZM, 1TV4, 1E7U, 1EPW, 1DP0, and 1KYI. The 
electron density function ρ(x) and the X-ray diffraction inten-
sity function i(k) were determined for these seven proteins.

Definition of the molecular surface and region of Ω
The average values of the electron density 〈ρ〉 and squared 

electron density 〈ρ2〉 in the molecular region of Ω play 
important roles. Because the electron density rapidly decays 
in the shallow region from the molecular surface, these 
numerical values closely relate to the definition of molecular 
surface. Thus, it was necessary to define the molecular sur-
face of the proteins carefully. For proteins with atomic coor-
dinates cited in the PDB, the space wherein the protein 
atoms existed was divided into the cubic lattice with a lattice 
constant of 0.1 Å and the electron density ρ was calculated 
as described above. A proper cutoff for ρc was selected and 
each cube was designated as real if ρ≥ρc or empty if ρ<ρc. 
Cubes within 1.4 Å (water molecule radius) of any real cube 
were considered to be in the hydrated protein interior. All 
others were regarded as being in the hydrated protein exte-
rior. Cubes within 1.4 Å of any cube in the hydrated protein 
exterior were considered to be in the protein exterior. All 
others were regarded as being in the protein interior. The 
contact surface between the protein interior and protein exte-
rior was defined as the molecular surface. Molecular surface 
is essentially the same as the Connolly contact surface except 
for the following points. Generally, the region around 1.4 Å 
from the van der Waals (VDW) radius of each atom is 
defined as the protein surface. However, in our method, the 
criterion is defined by giving an electron density threshold 
value of ρc to define a proper cutoff that is suitable for pro-
tein molecule instead of the VDW radius. By adding this 
improvement of molecular surface for protein, the universal 
behavior of the electron density product function of the pro-
tein can be elucidated.

Results and Discussion
Factors determining wavenumber dependence of  
the X-ray diffraction intensity
To determine the wavenumber dependence of the diffrac-

tion intensity density, we examined an average ̄i(k) of i(k) on 
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molecular shape function. For this reason, we introduced a 
standard model protein molecule characterized in terms of 
the given values of V and f(t):

f(t) = 
105
ξ7  t2(t − ξ)4	 (20)

As before, ξ=L/2a and this function satisfy equation (19). 
Comparisons of this model with real functions are shown in 
Figure 2. The fit between the model and the real function 
was excellent for the T4 lysozyme molecule. In contrast, 
clear deviations between the two curves were observed for 
the HslUV complex. In the case of T4 lysozyme, i.e., glob-
ular proteins, the real function of f(t) has a single peak.  
However, in the case of HslUV complex, the real function of 
f(t) has multiple peaks and shoulders. This behavior in the 
real function of the HsUV complex is thought to be derived 
from the topographical features, which are elongated multi-
domain cylindrical 3D shapes and large hollow interior 
spaces. However, this discrepancy was, in fact, relatively 
small considering the peculiar 3D shape of the HslUV com-
plex. We endeavored to establish how well the real function 
can be replaced by the one-parameter model so that we could 
evaluate various aspects of diffraction. The model resembles 
the real functions in the following ways. (1) The increase  
in the origin is proportional to t2 as theoretically required 
according to equation (24) below. (2) The model decreases 
at a faster rate at the maximum t than that at the origin. (3) 
The maximum value ~2.30/ξ occurs at t=ξ/3. The similarity 
of the standard model protein molecule to real protein mole-
cules suggests that ī(k) for the latter may be approximated 
with reasonable accuracy by a function with only two param-
eters, namely, V and ξ.

Here, we focused on the functional form of P(r) around 
r<2 Å to derive a simplified expression. In this special 
region, the electron density product function R(r) is before 
asymptotic to 〈ρ〉2. The value of 〈ρ〉2 corresponds to the value 
of a sufficiently deep inner molecule where the space cor-
relation of electron density vanishes, as demonstrated in the 

q(r) = R(r) P(r)	 (14)

Therefore, equation (10) is now expressed as a product of 
the pair distribution function P(r) (related to the external 
shape of the molecule) and the universal electron density 
product function R(r) (associated with the atom packing 
within the molecule).

Pair distribution function of P(r)
We start with the simplest idealized external molecular 

shape, namely, a spherical molecule of radius a. A basic  
calculation yields the following result:

P(r) = 
V 2

2a  f(t)	 (15)

V = 
4πa3

3 	 (16)

t = 
r

2a 	 (17)

f(t) = 12t2(t − 1)2(t + 2)	 (18)

where V is the volume of the sphere and t is a dimensionless 
length between two points within the molecule expressed as 
a sphere diameter. The range of this variable is between 0 
and 1. The function f(t) is related to the shape of the mole-
cule but not its size. The molecule size influences P(r) via 
the first factor on the right-hand side of equation (15), 
namely, v2/2a.

For essentially spherical globular molecules, we assume 
that equations (15), (16), and (17) hold for the molecular 
volume V and length a and that these are derived from the 
volume via equation (16). V is reasonably well estimated 
from the 3D molecular structure. Thus, we assume that the 
length a may be determined fairly accurately if there is  
some indication that the molecule is globular. As we are 
focusing on biological macromolecules or their complexes, 
we assume that a ranges from ten to a few hundred ang-
stroms. Here, we designate f(t) as the molecular shape func-
tion. It depends on the shape but not the size of the molecule. 
The variable t ranges from 0 and ξ=L/2a where L is the  
maximum distance between two points in the molecule. 
Therefore, ξ describes the deviation of the external molecu-
lar shape from an ideal sphere and we refer to it as the (first) 
shape parameter. The molecular shape function is normal-
ized as follows:

∫0ξ f(t) dt = 1	 (19)

Figure 1 shows values of this function obtained for sev-
eral molecules listed in the PDB. Here, ξ ranges between 1.5 
and 2.2. This rather narrow range quantitatively represent 
globular molecules with approximately spherical shapes. 
Figure 1 indicates that there is relatively little variation in the 

Figure 1  Molecular shape function calculated for seven roughly 
spherical molecules selected from the PDB. The PDB codes of the  
molecules are shown.
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P(r) = ∫Ω dx1 ∫Ω dx2 δ (r − |x1 − x2|)

= ∫Ω dx1 (∫all dx2 − ∫Ω̄ dx2) δ (r − |x1 − x2|) 

= 4πr2V − πr3S	 (21)

where Ω̄ is the volume outside the molecular region, all=all 
space, and S is the surface area of the molecule. We intro-
duced the approximation that for r in this range, the surface 
is estimated to be flat in the second integration in equation 
(21):

πr3 = ∫Ω dx1 ∫Ω̄ dx2 δ (r − |x1 − x2|)

[where  x1 = (x1, 0, 0) with x1 < 0, and x2 = (x2, y2, z2)  
with x2 > 0, −∞ < y2 < ∞, −∞ < z2 < ∞]	 (22)

We introduced the parameter ς to indicate the deviation of 
the external shape of the molecule from the ideal sphere:

S = 4πa2ς	 (23)

where a is defined by equation (16). We referred to ς as the 
second shape parameter. V, S, ξ, and ς are calculated for the 
molecules listed in Figure 1 based on their atomic coordi-
nates in the PDB. The calculations for each molecule are 
shown in Table 1. The value of ς ranged between 1.5 and 5.0 
and is expected to increase with the molecular size, up to 5.0. 
While ξ describes the deviation of the external molecular 
shape from an ideal sphere, ς pertains to the smoothness of 
the molecular surface. Thus, P(r) can be expressed by:

P(r) = 4πVr2
 (1 − 

3ςr
4a

 

) 
= 

64π2

3

 

a5t2
 (1 − 

3ςt
2

 

) ,   t = 
r

2a

 

	 (24)

The quality of this expression has been numerically vali-
dated for several protein molecules (Fig. 3). Unlike ξ, ς has 
negligible impact on the gross feature of ī(k). By expressing 
the contribution of P(r) using an approximate analytic form, 

following section. This behavior is due to the nature of elec-
tron density distribution function near the molecular surface 
region that directly expresses the electron density distribu-
tion near the nucleus of isolated atoms. As shown later, to 
derive an analytical model form of ī(k) for such a special 
region, P(r) can be transformed as follows by approximating 
the surface of the molecule using a plane:

Figure 2  Comparison of the numerically obtained shape function 
(solid line) with its model molecular shape function (equation (20)) 
(broken line) in which ξ was adjusted for the best fit. (a) Lysozyme 
(Weaver & Matthews, 1987) had ξadjusted =1.60; [17] (b) The HslUV 
complex (Sousa et al., 2000) had ξadjusted =1.84 [18].

Table 1  Calculations of electron density ρ(x) in molecule region Ω for selected seven proteins assuming ρc=0.018 ((#of electrons)/Å3)

Molecules CopC T4lysozyme MtmB PI3K BoNT/B β-galactosidase HslUV

PDB ID 2C9R 2LZM 1TV4 1E7U 1EPW 1DP0 1KYI
Molecular volume V [Å3] 12,160.92 22,629.17 60,544.59 124,989.48 186,496.18 563,562.64 815,665.40
Molecular surface area S [Å2] 3,867.93 6,090.04 12,206.63 31,005.53 43,263.53 113,394.92 195,298.05
Total electrons in Ω 5,336.34 9,947.23 26,621.19 53,496.38 80,121.25 244,714.74 347,022.83
〈ρ〉 0.4388 0.4396 0.4397 0.4280 0.4296 0.4342 0.4254
〈ρ2〉 18.67 18.65 19.39 18.07 17.96 18.48 17.87
〈ρ〉2 0.1926 0.1932 0.1933 0.1832 0.1846 0.1886 0.1810
Molecule size parameter a [Å] 14.27 17.55 24.36 31.02 35.44 51.24 57.96
First shape parameter ξ 1.650 1.718 1.520 1.701 2.178 1.809 1.786
Second shape parameter ς 1.512 1.574 1.637 2.565 2.741 3.437 4.626
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imation in ī(k), real protein molecules may be estimated 
from the standard model protein molecule. Thus, an analyti-
cal expression for ̄i(k) derived for the standard model protein 
may be used to establish the relationships among the (1) 
incident X-ray intensity, (2) molecule volume V and length 
L, and (3) attainable resolution. Furthermore, a standard 
model protein may help clarify how the individual character-
istics of real proteins affect ī(k).

The universal electron density product function R(r) is 
expected to approach an asymptote 〈ρ〉2 when r>rc, where 
〈ρ〉 is the mean electron density within Ω. The mean electron 
density within the deep protein interior is reasonably well 
defined. At the molecule surface, however, the electron den-
sity sharply drops. The molecular region Ω consists of both 
the deep interior and surface regions. The surface must be 
carefully defined so that the mean electron density within  
Ω coincides with that of the deep interior and, therefore, 
assumes a universal value. For numerous proteins, the 
molecular region Ω and the mean electron density 〈ρ〉 within 
it are calculated as functions of the selected ρc. The 〈ρ〉 
increases with ρc and the rate of increase is greater for 
smaller than larger proteins. It is preferable that 〈ρ〉 be as 
universal as possible. It is reasonable to use the value of ρc at 
which the 〈ρ〉 vs. ρc curves for various proteins intersect. 
Here, we took ρc=0.018 (= (#of electrons)/Å3) as the most 
appropriate value. Even at this ρc, 〈ρ〉 is not strictly univer-
sal; rather, 〈ρ〉=0.434±0.006 ((#of electrons)/Å3). As an 
independent verification of our selection of ρc, we calculated 
the standard Connolly contact surface based on van der 
Waals radii and the mean electron density for proteins com-
prising only the standard 20 amino acid residues and good 
structural resolution in the PDB. Thence, we obtained 
〈ρ〉=0.477±0.023 ((#of electrons)/Å3), which almost aligns 
with those determined using the selected ρc.

The 〈ρ2〉 and 〈ρ〉2 determined for several protein mole-
cules were 〈ρ〉2=0.188±0.005 and 〈ρ2〉− 〈ρ〉2=18.22±0.50 
((#of electrons)2/Å6). The narrow distribution of their means 
indicates that they had minimal effect on ī(k). To calculate 
ī(k) for the standard model protein, we took their means as 
the universal values. The functional forms of c(r) calculated 
for several proteins are shown in Figure 5. As the curves are 
almost indistinguishable from each other, collectively they 
almost appear as a single line. The universal function c(r) 
may be approximated from the following expression:

c(r) = cexp (−η1r) + (1 − c) exp (−η2r)	 (26)

where c=0.931, η1=13.4 Å−1, and η2=2.19 Å−1. From Fig-
ure 5, we see that rc~2 Å and equation (26) confirms this 
estimation.

The electron density product functions asymptotically 
decay from the mutually correlated value of 〈r2〉 to the  
uncorrelated value of 〈r〉2. The distance to decay of the 
uncorrelated value of 〈r〉2 is 2 Å, mainly contributed from  
the molecular surface region. The model function of c(r) 

as shown above, we can decompose the original function of 
ī(k) into two components of ī1(k) and ī2(k), with border on 
rc=2 Å.

Universal electron density product function of R(r)
R(r) is defined by equation (13). Consider an asymptotic 

form of this factor for r→0 and r→∞. When distance r 
becomes larger than a certain value rc=2 Å, i.e., where the 
space correlation of electron density vanishes, R(r) rapidly 
approaches the asymptotic value of 〈ρ〉2, with 〈ρ〉=Q/V, 
which is the average electron density within the molecular 
region Ω. Then r→0 should be represented by 〈ρ〉2. The 
behavior between 0 and rc is elucidated by a calculation 
based on protein atomic coordinate data. The functional 
form of R(r) is expressed as:

R(r) = (〈ρ2〉 − 〈ρ〉2)c(r) + 〈ρ〉2	 (25)

where c(r) is the normalized electron density product func-
tion. At r=0 it is unity whereas it vanishes when r>rc.  
The 〈ρ2〉 and 〈ρ〉2 and the functional form of c(r) must be 
determined empirically. Calculations conducted for several 
proteins consisting only of the standard 20 amino acid resi-
dues showed that R(r) of equation (13) is universal and 
highly accurate, as shown in Figure 4.

As long as R(r) is defined by the right-hand-side of equa-
tion (13), our theory is corroborated. R(r), as defined for 
each molecule by the right-hand-side of equation (13), is 
approximately a universal function. Based on this under-
standing, molecular individuality affects the function q(r) 
which determines ī(k) by equation (9) exclusively through 
P(r). This remarkable property of R(r) may be significant in 
terms of the theory of small angle solution scattering. R(r) 
may be expressed to a certain approximation by a standard 
model protein molecule characterized by only two parame-
ters. By introducing them and allowing for a certain approx-

Figure 3  Numerically obtained pair distribution function (trian-
gles) for small values of r fitted with the analytical function of equation 
(24) (solid line) for the seven molecules listed in Figure 1. The PDB 
codes of these molecules are shown.
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region from 0 to 2 Å. The parameter c represents the contri-
bution rate of each exponential function.
The molecular region Ω is calculated by counting the 

number of surface small cubes (with 0.1 Å sides) in the pro-
tein interior with ≥1 neighboring small cubes in the protein 
exterior. These values are also calculated for the radii of 
spheres of carbon, nitrogen, and oxygen. It was found that 
1.16 multiplied by the number of surface small cubes is the 
theoretical surface area of the spheres due to the discretiza-
tion with 0.1 Å. For protein molecules, then, we multiply the 
same factor to convert the number of surface small cubes 
into the surface area.

represents the decay function provisionally by superimpos-
ing two exponential functions. It can be understood as the 
contribution of the sharp decay term found in the region 
between 0 to 0.3 Å in the original function of R(r) and the 
contribution from the slow decay term found in 2 Å. We esti-
mated three fitting parameters (c, η1, η2) for this model from 
seven proteins. The parameters with dimensions inverse to 
that of the distance [Å−1] η1 and η2 make the 2 Å physical 
scale of the electron density function for standardization at 
different scales. The η1 is a standardization parameter to 
express the contribution of the sharp decay term using the 
exponential function. On the other hand, η2 is a standardiza-
tion parameter to express the remaining contributions in the 

Figure 4  Electron density production function R(r) obtained numerically for the seven molecules listed in Figure 1.
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Figure 6 shows ī(k) for lysozyme and HslUV complex 
obtained by direct calculation using their atomic coordi-
nates. The ī(k), ī1(k), and ī2(k) were derived from equations 
(27), (31), and (32), respectively, and f(t) (Fig. 1) and c(r) 
(Fig. 3) are used. The ī1(k) is calculated from equation (31) 
for an analytical polynomial function fitted to f(t). Figure 6 
shows an approximate analytical form of ī(k).
The minor difference between the two ī(k) arose from the 

values of the universal 〈ρ2〉 and 〈ρ〉2 in equations (31) and 
(32) and the universal function c(r) in equation (32). The 
most conspicuous difference is the “waving” behavior of ̄i(k) 
obtained by direct calculation. The first “waving” behavior 
for the HslUV complex at k≅0.013(Å−1) was reproduced in 
ī(k) of equation (27). It may have been a consequence of the 
shoulder of f(t) at ~t=1.0. The other “waving” behaviors at 
the larger k were not reproduced in ī(k) of equation (27) 
because the behavior of the c(r) function is slightly different 
between the model function and real function in the long-
distance of r>2 Å. In the model function, it is monotonously 
decreasing, but in the real function, it has a slightly waving 
behavior. In our preliminary work, the waving behavior was 
reproduced when the behavior of the c(r) function was 
replaced up to r=2 Å and r=7 Å. However, the accuracy 

Radial diffraction intensity density of ī(k)
By inserting equation (25) into equations (9) and (14), we 

obtain:

ī(k) = ī1(k) + ī2(k)	 (27)

ī1(k) = 〈ρ〉2
 ∫0
∞

 dr P(r) sinc (2kr)	 (28)

ī2(k) = (〈ρ2〉 − 〈ρ〉2) ∫0
rc

 dr c(r) P(r) sinc (2kr)	 (29)

From equation (12), we get:

ī1(0) = 〈ρ2〉V 2 = Q2	 (30)

In equation (28), we express P(r) using equations (15), 
(16), and (17). Thus, we have:

ī1(k) = 〈ρ〉2V 2
 ∫0

ξ
 dt f(t) sinc (4kat)	 (31)

In equation (29), we express P(r) using equation (24). 
Then, we derive:

ī2(k) = 4π(〈ρ2〉 − 〈ρ〉2)V ∫0
rc

 dr c(r)r2
 (1 − 

3ςr
4a

 

) sinc (2kr)

	 (32)

In this equation, the shape of a protein molecule is charac-
terized only by ς/a.

The ī2(k) at k=0 does not vanish but is much smaller  
than 〈ρ2〉V 2=Q2. Therefore, ī(0) is calculated using equa-
tions (27) and (28) (that is, equation (30)) and equation (29) 
does not satisfy equation (8). This deviation is a consequence 
of identifying the mean electron density within the deep  
protein deep interior with 〈ρ〉, namely, the mean electron 
density within Ω. As the electron density is relatively lower 
on the molecule surface, the former should be slightly larger 
than 〈ρ〉. This difference accounts for the aforementioned 
deviation but was neglected as the actual deviation was 
small.

Figure 5  Electron density production function c(r) from equation 
(26) obtained numerically for the seven molecules listed in Figure 1. As 
the curves are nearly identical, they collectively resemble a single line.

Figure 6  Diffraction intensity density ī(k) obtained by three differ-
ent methods. Line 1 (black solid line): ī(k) obtained numerically from 
the atomic coordinates. Line 2 (blue solid line): ī(k) obtained from 
equations (27), (31), and (32); ī1(k)= (blue dotted line), ī2(k)= (purple 
dotted line). Line 3 (red solid line): ī(k) approximated by the analytical 
form of equation (37).
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In view of the aforementioned ranges for the variables and 
parameters in this equation, this expression is approximated 
with an error of a few percentage points as follows:

ī2(k) = 3(〈ρ2〉 − 〈ρ〉2)V 2 

[  
2cη1a

((η1a)2+(2πka)2)2 + 
2(1−c)η2a

((η2a)2+(2πka)2)2

 

]	 (36)

The contribution of the term proportional to the surface 
area S in equation (21) to ī2(k) can be neglected if an error of 
a few percentage points is acceptable. Summarizing the 
above, we obtain:

ī(k)
Q2  = 

840(15 sin u − 3u cos u − 12u + u3)
u7

 

+ 3( 〈ρ2〉
〈ρ〉2  − 1)[ 

2cη1a
((η1a)2 + v2)2  + 

2(1 − c)η2a
((η2a)2 + v2)2 ]

u = 2ξv, v = 2πka	 (37)

Figure 6 shows ī(k) derived from this analysis.
Here, to evaluate the functional form of ī(k), the evalua-

tion function is defined using the following equation as a 
function of k between the analytical model function and 
numerical original function.

diff(k) = īmodel(k)/ īoriginal(k)	 (38)

The statistics of the evaluation function are presented in 
Table 2 for case of lysozyme and HslUV complex. In the 
case of lysozyme, the average value of the evaluation func-
tion for k is 〈diff(k)〉k=0.789±0.199. In the case of HslUV 
complex, 〈diff(k)〉k=0.753±0.269. It is evident that the value 
of ī(k) obtained from the model function is approximately 
25% smaller on average than the original function. In the 
case of T4 lysozyme, the largest difference is that the evalu-
ation function is 0.53 when k is 0.899. In the case of HslUV 
complex, the worst case is that the evaluation function is 
6.46 when k is 0.012. Although different in the case of 
HslUV complex than in the case of lysozyme, they are 
derived from the fine structure of waving behavior found in 
the small angle region of the i (k) function in the case of the 
HslUV complex. When the distribution of the evaluation 
function of the HslUV complex was examined, a total of 38 

obtained by truncating the c(r) function at r=2 Å suffices for 
the purposes of this analysis.

Figure 6 shows that the contributions of ī1(k) and ī2(k) to 
ī(k) become negligible at wide and narrow k ranges, respec-
tively. Here, we used P(r) in the range of 0<r<rc in equa-
tions (31) and (32). This leeway was permissible because of 
the observed behaviors of ī1(k) and ī2(k). The analytically 
fitted f(t) function may differ from equation (24) in a small 
range of t and, by extension, r, as the fitting is usually per-
formed to obtain an overall uniform overall best fit in the full 
range of t. The behavior of f(t) in a narrow t range affects the 
behavior of ī1(k) in the wide k range. As long as the analyti-
cally fitted f(t) retains reasonable function in the narrow t 
range, it will be reflected by negligibly small ̄i1(k) in the wide 
k range. Therefore, we can use f(t), which is slightly sloppy 
at the lower end of the t range.

Here, we clarify the limit of structural resolution due to 
quantum noise as a function of the incident X-ray intensity 
and target molecule size and shape. To this end, we intro-
duced the standard model protein defined by equation (20). 
By substituting equations (15) and (20) into equation (28), 
we have:

ī1(k) = 〈ρ〉2V 2
 
840(15 sin u − 3u cos u − 12u + u3)

u7

 

,

u = 4πξka	 (33)

As k (and, by extension, u) approach zero, the right- 
hand-side of this equation approaches 〈ρ〉2V 2 as required by 
equation (30). The ka in equation (33) is the wavenumber 
scaled by the radius of an equivalent sphere a. When k is  
the wavenumber of the structural resolution kR, kRa is the 
number of independent descriptive structural elements along 
the radius of the equivalent sphere a. In order for the single  
molecule imaging method to be informative, this number 
must be ≥10 and preferably 100. Therefore, the upper bound 
of u in equation (33) must be 150–1,500. For large u, equa-
tion (33) is approximated by:

ī1(k) = 〈ρ〉2V 2
 
840
u4

 

,   u = 4πξka	 (34)

Thus, ī1(k) decreases with increasing u.
We consider the functional form of ī2(k) when equation 

(26) is substituted into equation (32). The integration gives 
the following:

ī2(k) = 3(〈ρ2〉 − 〈ρ〉2)V 2

[c(2η1a+
3ς
2 ) 

1
((η1a)2+(2πka)2)2 − 

6ςc(η1a)2

((η1a)2+(2πka)2)3

+ (1−c)(2η2a+
3ς
2 ) 

1
((η2a)2+(2πka)2)2 − 

6ς(1−c)(η2a)2

((η2a)2+(2πka)2)3 

]
	 (35)

Table 2  Statistics of the evaluation function of diff(k)

T4  
lysozyme

HslUV  
complex

Maximum of diff(k) 1.548 6.46
k [Å] at the maximum 0.046 0.012
Minimum of diff(k) 0.532 0.346
k [Å] at the minimum 0.899 0.044
Average of diff(k) for k 0.789 0.753
Variance of diff(k) for k 0.0396 0.0724
Standard deviation of diff(k) for k 0.199 0.269
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nential. This subsection succeeded in showing that the dis
tribution on the sphere of i(k) is exponential distribution. 
Wilson (1949) reported that the irregular 3D structures of 
biopolymers at the atomic level are the origin of this distri-
bution [19].

Correlation of i(k) on a sphere |k|=k of radius k
For the purpose of this analysis, we used the same set  

of data on each sphere as in the previous section. We calcu-
lated 〈i(k1)i(k2)〉δ and the average was taken over all pairs  
of k vectors. The angle between them was δ. As shown in 
Figure 8, except at very low k, the distribution was Gaussian:

cN(δ) ≡ 
〈i(k1)i(k2)〉δ − 〈i〉2

〈i2〉 − 〈i〉2
 = exp (− (kδ

kc
)2) 	 (39)

The correlation length kc was approximated by:

kc = 
1
L

 

	 (40)

Thus, the correlation length was associated with the length 
of the molecule under investigation and was independent  
of k.

An attainable resolution as a function of the incident 
X-ray intensity and the size of a target molecule

For further development of SPI using XFEL, it is useful to 
construct a theory, which helps to reasonably and reliably 
know the necessary incident X-ray intensity density needed 
to achieve the desired resolution, even for molecules whose 
coordinates are unknown. If the functional form of ī(k) can 
be predicted with a reasonable reliability only from the  
minimum amount of information about the molecule, it is 
possible to estimate an attainable resolution by the described 
method in an earlier study [13].

points of k at which the difference is doubled or less than 
half were found, and all were in the small-angle region 
where k was less than 0.1. This indicates that the global 
shape is deviated from the spherical model from the rough 
approximation of spherical model in the case of HslUV  
complex.

From the above analysis, the analytical form approxi-
mates the calculated ī(k) within the worst-case errors of  
factors <2 for lysozyme and ~5 for the HslUV complex.  
In this expression, only the molecule size a and molecule 
shape ξ can be considered as parameters. Nevertheless, the 
equation reproduces the calculated “exact” ī(k) within a 
worst-case error of a factor of ~5. Thus, for the purpose of 
discussing the incident X-ray intensity as a function of 
molecular size and shape and the attainable resolution, this 
analytical expression is reliable.

These results indicated that molecular 3D shape may be 
relatively simply calculated and generated in an analytical 
form such that the X-ray diffraction intensity is accurately 
approximated using as few as two parameters i.e. molecular 
length and volume. The structures and dynamics of even 
roughly spherical single-particle protein molecules may be 
reliably estimated based on their external morphology and 
atomic packing.

Distribution of i(k) on a sphere of radius k
The purpose of this and the next subsections is to numeri-

cally clarify the shape of the distribution functions in protein 
that is important to derive the theoretical equations for the 
variance value of the diffraction intensity function of σ2

c.  
This distribution was calculated for several k of the proteins 
lysozyme and HslUV complex. For this purpose, ~1.5×105 
points were randomly sampled with uniform probability on 
each sphere and i(k) calculated at each point was normalized 
with its mean value. The distributions of these normalized 
values on each sphere are shown for the HslUV complex in 
Figure 7. Except at very low k, the distribution was expo

Figure 8  Normalized correlation function cN(δ) of equation (39) 
for the space correlation of i(k) on a sphere |k|=k of radius k for the 
HslUV complex. δ in the abscissa is a product with k. For k≥0.2 Å−1, 
the distribution was Gaussian. Data up to and including 0.2 Å−1 are 
shown. Deviations from the Gaussian function slightly increased with 
decreasing k.

Figure 7  Probability density distribution of the i(k) on a sphere 
|k|=k of radius k for the HslUV complex. For k≥0.16 Å−1, the distri
bution was exponential. Data up to and including 0.16 Å−1 are shown. 
Deviation from the exponential distribution increased with decreasing k.
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theoretically given by the following equation as a function 
of s̄(k)=Iirce

2 ωī(k) with equation (1), which is the average 
value of the diffraction intensity.

σ2
c = 

ɡ(s̄(k))
Nξ

	 (41)

Here,

ɡ(x) = 
5x2 + 6x + 1

x2 	 (42)

Nξ = 2πkL [1 − ( kλ
2 )2]1/2

	 (43)

From the above equations, the diffraction intensity can be 
expressed using the following equation as an inverse func-
tion of g (x).

s̄(k) = ɡ−1 (Nξ σ2
c )	 (44)

From equation (1) and equation (44), the formula for esti-
mating the attainable resolution can be obtained.

Ii = 
ɡ−1(Nξ σ2

c )
r2

ce ωī(k) 	 (45)

By constructing the theory of ī(k) and proposing a  
“standard protein model” in this study, it can be applied to 
even a molecule of unknown structure as a parameter of 
molecular size of a.

The necessary incident X-ray intensity density estima-
tion program constructed here can flexibly cope with the 
experimental conditions by changing the incident X-ray 
wavelength (or energy), oversampling ratio, molecular size, 
and the first shape parameter. As the first example, parame-
ters giving a standard protein model were set as follows: 
c=0.931, η1=13.4, η2=2.19, 〈ρ〉2=0.188, and 〈ρ2〉=18.41.  
In addition, assuming that the size of the effective pixel is 
Shannon pixel as a standard estimation according to our 

previous paper, ω= ( λ
σL )2

, λ = 1 Å, L = 2aξ , ξ = 1.7, and σ = 1. 

If it is needed to estimate under other experimental condi-
tions, it can be responded flexibly by changing these hyper-
parameters. In addition, the degree of freedom of the linear 
oversampling ratio can be easily estimated by multiplying 
the constant factors of σ2 to the result of the standard estima-
tion shown here. Figure 9 shows the estimated incident 
X-ray intensity density as a function of molecular size and 
resolution by numerically solving the g−1 using the Newton-
Raphson method. The dependence of the result on the value 
of the parameter ξ is not large. The result in Figure 9 is a good 
estimation by the verification, as shown in the next section, 
and therefore, can be used in designing experimental param-
eters of instruments and targets. The results indicated that if 
sufficient experimental data can be obtained, high resolution 
can be achieved by X-ray SPI.

In the above sections, it was shown that an analytic model 
function ī(k) using a standard model protein, which captures 
the characteristics of real globular proteins in terms of only 
two parameters, a and ξ, or equivalently in terms of volume 
V and length L, can reproduce the behaviour of the real func-
tion with the accuracy of a factor of approximately 5. By 
using this approximate but analytic expression, an attain-
able structural resolution for the three-step strategy of 3D 
reconstruction from many noisy 2D diffraction patterns was 
estimated for a ‘molecule’, which is characterized by the 
radius of equivalent sphere a.

Here, the outline of an estimating attainable structural  
resolution is described briefly as following. Please refer to 
the article for details. The attainable structural resolution for 
SPI depends on the 3D structure reconstruction strategy. As 
it is under development, there are various type of algorithm 
for 3D reconstruction currently. Here, as an example, the 
attainable resolution is estimated for the conventional three-
step algorithm, i.e., the classifying step, the assembling step, 
and the phase retrieval step, in brief. In the three-step algo-
rithm, the classification accuracy determines the attainable 
structural resolution. In the classifying step, the similarity 
between an arbitrary pair of diffraction images is found by 
using a correlation function, and the signal to noise (S/N) 
ratio of the diffraction image is improved by averaging the 
diffraction images into similar group. In the wide-angle 
region in the diffraction pattern, the signal is buried in the 
quantum-shot noise effect because the diffraction intensity is 
significantly reduced in this region. When a pair of diffrac-
tion images are similar, the correlation line appears in the 
correlation pattern, demonstrating the correlation function of 
a pair of diffraction images. However, the correlation line  
is valid in the quantum shot-noise effect in the wide-angle 
region and cannot be recognized. The wave number at which 
the quantum shot-noise effect becomes noticeable is denoted 
as kN. When the diffraction patterns are averaged within a 
similar group, the S/N ratio of the averaged diffraction image 
is improved in the wavenumber region at an angle lower 
than kN. In contrast, in the wide-angle wavenumber region 
outside of kN, the signal is lost because it is no longer guar-
anteed that the speckle patterns are similar in the group. 
Considering the above reasons, the limit wave number of  
kN, whose S/N ratio is improved in the diffraction averaging 
process, is defined as the resolution wave number of kR.  
The limit wave number of kN at which the noise becomes 
noticeable can be estimated from the degree of noise in the 
diffraction pattern. The standard deviation of σc of the dif-
fraction intensity is used as an index of the degree of noise. 
In a conservative way, the quantum-shot noise becomes 
noticeable at a wave number of σc=exp(−1/2)≅0.6 and the 
correlation line disappears in the correlation pattern. Thus, 
the attainable resolution can be estimated by the expected 
mean value and the variance value (or the standard deviation 
value) of the number of photons observed at the effective 
pixel. The variance value of the diffraction intensity can be 
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incident X-ray intensity density is 8.65×1011 [photons/pulse/
μm2]. Under the conditions, the resolution estimated from 
the experimental data was 42.5 Å. Our estimated incident 
X-ray intensity density required to achieve 42.5 Å resolu-
tion using the model function of ī(k) built with λ=2.25 Å, 
a=216 Å, and ξ=1.0 was 1.3×1011 [photons/pulse/μm2].

The second example was the rice dwarf virus [21] and  
the experimental conditions described in the paper were as 
follows: the molecular size is 70.8 nm, the incident X-ray 
intensity density was not described, but the resolution esti-
mated from the experimental data was 5.9 Å, λ=1.77 Å, and 
a=354 Å. Using the model with ξ=1.0, i.e., the spherical 
model, the estimate of the incident X-ray intensity density 
required to achieve 5.9 Å resolution was 3.9×1012 [photons/
pulse/μm2].

In the case of Omono River virus, we succeeded in mak-
ing estimations with 1/6 times error. In the case of rice dwarf 
virus, the incident X-ray intensity is not estimated but a 
0.1 μm KB mirror is used in experiment. It is inferred that 
the maximum value of the incident X-ray intensity observed 
in the experiment of the Omono River virus is not largely 
different. The maximum value under this condition is 
1.9×1012 [photons/pulse/μm2] and if it were this incident 
X-ray intensity, our model would be estimated about twice 
as high.

There is a concern that our model does not reproduce the 
characteristic curves observed in the function of ī(k) derived 
from the spherical shape. However, we have generally suc-
ceeded in providing a good model because we can estimate 
the necessary incident X-ray intensity density in the correct 
order even for spherical objects such as viruses.
A one-dimensional radial diffraction intensity function, 

which can be approximately considered as an s̄(k) function, 
can be easily calculated using a noisy experimental two-
dimensional diffraction data by calculating the radial aver-
age. From the function, it is expected that one can estimate 
the molecular size parameter using the analytical model of 
ī(k) described in equation (37) constructed herein. In addi-
tion, once the one-dimensional radial diffraction intensity 
function from experiment and molecular size is obtained, the 
attainable spatial resolution can be directly estimated. Our 
theory provides a method to estimate the attainable struc-
tural resolution from the radial diffraction intensity of s̄(k) 
and molecular size via equation (41).

Conclusions/Summary
1.	 The average (ī(k)) of the diffraction intensity density 

function i(k) on a sphere |k|=k of radius k is given by 
equation (9). The value q(r) is given as shown in equation 
(14). It is the product of the pair distribution function P(r) 
defined by equation (11) and the electron density product 
function R(r) defined by equation (13). P(r) is related 
only to the external shape of the molecule and is the 
expected electron density product for a given pair of 

Verification of estimation accuracy
We verified the estimation accuracy using a standard 

model protein. In our previous paper [13], the attainable  
resolution is listed using the numerical real function of ī(k) 
instead of the model function of ī(k) using the standard 
model protein for Lysozyme and HslUV complex. First,  
the case of Lysozyme with L=60 Å is examined. When  
the incident X-ray intensity density was 1.0×1016 [photons/
pulse/μm2], the attainable structural resolution was 1.01 Å, 
and when it was 5×1015 [photons/pulse/μm2], the attainable 
structural resolution was 2.08 Å in the previous work. When 
a standard model protein is used, such as ξ=1.7, the lyso-
zyme molecules correspond approximately to a=18 Å. Under 
this assumption, the incident X-ray intensity density required 
to achieve the resolution of 1.01 Å is 2.2×1016 [photons/
pulse/μm2], and that required to achieve the resolution of 
2.08 Å was estimated to be 8.4×1015 [photons/pulse/μm2] 
from Figure 9.

The case of HslUV complex with L=200 Å was also  
estimated. When the X-ray intensity density is 1.0×1015 
[photons/pulse/μm2], the attainable structural resolution is 
1.82 Å, and when it is 5×1014 [photons/pulse/μm2], the 
attainable structural resolution is 3.57 Å. When a standard 
model protein is used, such as ξ=1.7, the HslUV complex 
corresponds approximately to a=58 Å. Under this assump-
tion, the incident X-ray intensity density required to achieve 
the resolution of 1.82 Å is 1.4×1015 [photons/pulse/μm2] and 
that required to achieve the resolution of 3.57 Å was esti-
mated to be 6.1×1014 [photons/pulse/μm2] from Figure 9. In 
each case, we have succeeded in making estimations for 
Lysozyme and HslUV complex with high accuracy.
In addition, we verified the estimation accuracy using the 

actual experimental data.
Here, we verified the estimation accuracy of the con-

structed model under two SPI experimental conditions. The 
first was Omono River virus [20] and the experimental con-
ditions described in the paper were as follows: the molecular 
size is 43.2 nm, the incident X-ray energy is 5.5 kev, and the 

Figure 9  Incident x-ray intensity density [photons/pulse/μm2] to 
be used to attain a given structural resolution for a ‘molecule’ which is 
characterized by the radius of equivalent sphere a.
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