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INTRODUCTION

Hepatocellular carcinoma (HCC) is the sixth most common 
neoplasm with more than 750,000 new cases diagnosed every year 
and is the third leading cause of cancer‑related mortality world‑
wide.[1,2] The normal hepatocytes may transform into liver tumor 
cells by risk factors such as viral hepatitis, alcohol consumption, 
fatty liver disease, dietary exposure to aflatoxin B1, smoking, 
obesity, and diabetes.[3‑5] Viral hepatitis is the major causative 
factor of HCC and approximately 80% of HCC cases are associ‑
ated with persistent infection by either hepatitis B virus (HBV) 
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ABSTRACT

Hepatocellular carcinoma (HCC) has long been one of the most important causes of cancer mortality in the world. Many natural products 
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cinnamon trees, and the herbal prescription Huang‑Lian‑Jie‑Du‑Tang (黃連解毒湯 Huáng Lián Jiě Dú Tang; HLJDT) against human 
hepatoma cells in vitro and in vivo. Implication of their treatment for the development of targeted therapy against HCC is discussed.
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or hepatitis C virus (HCV).[6] Globally, chronic hepatitis B alone 
is responsible for about 50% of the underlying etiologies for the 
development of HCC.[7] With hepatitis C, it is estimated that the 
HCV‑infected individuals are associated with 3‑5% of HCC inci‑
dence worldwide.[8] More than 70% of all newly diagnosed liver 
cancers occur in Asia, a region which accounts for 75% of all 
those chronically infected with HBV in the world.[9] About 55% 
of global HCC cases occur in China.[10]

Surgery, liver transplantation, radiotherapy, chemotherapy, 
immunotherapy, and newer pharmaco/biological treatments are 
currently used for the management of HCC. Chemotherapy is 
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one of the major conventional HCC therapies, but the associated 
strong side effects and the development of drug resistance often 
affect the treatment outcome. Development of safe and effective 
chemopreventive agents is therefore necessary to better improve 
liver cancer morbidity and mortality. Both natural products and 
herbal medicines have also been used to prevent and treat liver 
diseases including hepatitis, liver cirrhosis, and HCC. They are 
still extensively adopted, particularly in Asian countries, due to 
their efficacy, availability/accessibility, lesser side effects, and 
improved quality of life. Ongoing research continues to explore 
their bioactivities against various cancers as well as character‑
ize their underlying mechanism (s), which could lead to novel 
methods of treating cancers. In this review, we summarize the 
anti‑HCC properties and mechanism (s) of action of the natu‑
ral product cinnamaldehyde, as well as the herbal prescription 
Huang‑Lian‑Jie‑Du‑Tang (黃連解毒湯 Huáng Lián Jiě Dú Tāng; 
HLJDT) from recent studies.

CINNAMALDEHYDE

Cinnamaldehyde (CIN) [Figure 1] is an active constituent iso‑
lated from the stem bark of cinnamon trees such as Cinnamomum 
cassia Presl. (肉桂 Ròu Guì) (Lauraceae). This aromatic aldehyde 
has been widely investigated for its biological and pharmacological 
properties, including anticancer, antioxidative, anti‑inflammatory, 
anti‑diabetic, anti‑mutagenic, and immunomodulatory activities.[11‑16] 
CIN is the major component of cinnamon bark essential oil that is 
also widely used as a fragrance ingredient and as an antibacterial 
agent in the food industry.[17,18] Results from our study as well as 
other studies have shown that CIN can exert antiproliferative activity 
against various types of human cancer cells, including those derived 
from HCC such as PLC/PRF/5 and HepG2 cells.[19‑25]

Effect of CIN on apoptosis modulated by the mitochondria 
and the Bcl‑2 family members

Apoptosis is a major physiological process of the cell in‑
volved in the development of multicellular organism and the 
regulation of cellular homeostasis. Deregulation of the apoptotic 
program is linked to the pathogenesis of many diseases includ‑
ing cancer, autoimmune diseases, stroke, and neurodegenerative 
disorders.[26,27] The mitochondria are known to occupy a key posi‑

tion in the induction of apoptosis mediated by various apoptotic 
stimuli, including chemotherapeutic drugs, DNA damage, UV 
irradiation, reactive oxygen species (ROS), and other cellular stress 
factors.[28,29] Mitochondrial apoptosis is triggered by the collapse 
of mitochondrial membrane potential (∆ψm) and generation of 
ROS, which are modulated by Bcl‑2 family of proteins including 
pro‑apoptotic (Bax, Bak, Bid, and Bad) and anti‑apoptotic (Bcl‑2, 
Bcl‑xL, Bcl‑w, and Mcl‑1) molecules.[30] In cancer treatment, 
apoptosis induced by many chemotherapeutic agents involves the 
cleavage of Bid to its truncated form (t‑Bid) by caspase (CASP)‑8. 
This event, in conjunction with a favorable ratio of pro‑apoptotic 
to anti‑apoptotic Bcl‑2 family members, causes the release of 
cytochrome c from the mitochondria into the cytosol; cytochrome 
c, upon forming a complex with the apoptotic protease activating 
factor 1 (Apaf‑1), leads to the activation of CASP‑9 and the down‑
stream CASP‑3, eventually resulting in cell death.[31] The second 
mitochondria‑derived activator of caspase (Smac/DIABLO) and/or 
Omi/HtrA2 are the factors released from the mitochondria, along 
with cytochrome c during apoptosis. These molecules function 
to promote caspase activation by eliminating the negative effect 
mediated by the inhibitor of apoptosis (IAP) family of proteins.[32,33]

Apoptosis due to CIN treatment has been shown to involve the 
mitochondria and Bcl‑2 family of proteins in HCC cells. Specifi‑
cally, treatment with CIN induces the PLC/PRF/5 hepatoma cells 
to accumulate in S phase, which is associated with loss of ∆ψm 
and up‑regulation of ROS formation and Bax expression.[21,25] 
An increased cytochrome c leakage from the mitochondria to 
the cytosol is also observed with the activation of CASP‑8 and 
CASP‑3, and with the resulting cleavage of targets such as Bid 
and poly (ADP‑ribose) polymerase (PARP), respectively. Levels of 
Bcl‑2, Mcl‑1, and X‑linked inhibitor of apoptosis protein (XIAP) 
expression are also down‑regulated in hepatoma cells treated with 
CIN [Figure 2].[21,25] Furthermore, these mitochondria‑related 
apoptotic effects triggered by CIN can be blocked by pretreat‑
ment with the mitochondrial permeability transition (MPT) pore 
inhibitor, cyclosporin A (CsA), and the general caspase inhibitor 
z‑VAD‑fmk, suggesting the involvement of the mitochondria in 
CIN‑induced apoptosis.[22] It is also noteworthy that CIN treat‑
ment in conjunction with an antioxidant such as vitamin E has 
been observed to suppress the release of apoptotic factors from 
the mitochondria in the hepatoma cells.[25]

Effect of CIN on the MAPK‑mediated apoptosis
In mammalian cells, the mitogen‑activated protein kinas‑

es (MAPKs) are a superfamily of proline‑directed serine/threonine 
protein kinases that include the c‑Jun N‑terminal kinases (JNKs), 
extracellular signal‑regulated kinases (ERKs), and p38.[34] Down‑
stream targets of MAPKs can include mitogenic/pro‑inflammatory 
enzymes and nuclear transcription factors, and thus, the MAPKs 
play a pivotal role in inflammation, cell proliferation, cell dif‑
ferentiation, and cell death. The activation of JNK and p38 has 
been associated with apoptosis, whereas ERK activation has been 
observed to enhance cell growth and differentiation.[35‑37]

The apoptosis‑inducing effect of many natural products in‑
volves MAPKs. It has been reported that the RRR‑a‑tocopheryl 
succinate induces cell death in human breast cancer cells through Figure 1. Chemical structure of cinnamaldehyde
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ERK activation.[38] JNK, p38, and ERK have also been shown to 
be activated via phosphorylation by natural anticancer agents such 
as caffeic acid phenethyl ester, epigallocatechin‑3‑gallate, and 
phenyethyl isothiocyanate in many cancer cell types.[39‑41]

Treatment with CIN has been demonstrated to significantly 
induce apoptosis by activating JNK, p38, and ERK kinases, as 
observed with their phosphorylated status in the human hepatoma 
PLC/PRF/5 cells [Figure 2].[21] In addition, the use of MAPK 
inhibitors such as the JNK inhibitor (SP600125) and the p38 
inhibitor (SB203580) remarkably protects the PLC/PRF/5 cells 
against CIN‑induced apoptosis, whereas treatment with ERK 
inhibitor (PD98059) has a less profound impact in rescuing the 
CIN‑induced hepatoma cell death.[21]

Effect of CIN on the death receptor‑mediated apoptosis
The CD95 (APO‑1/Fas) receptor/ligand system is an important 

signaling pathway involved in the regulation of apoptosis in differ‑
ent cell types, particularly those of the immune system and in the 
liver.[42,43] Belonging to the tumor necrosis factor receptor (TNF‑R) 
superfamily, CD95 is a type I transmembrane receptor expressed 
on activated lymphocytes and in a variety of tissues of lymphoid or 
non‑lymphoid origin, as well as on tumor cells. The death receptor 
pathway is initiated by the cross‑linking of CD95 to its mature ligand, 
CD95L, followed by the formation of the death‑inducing signaling 
complex (DISC), which then induces the orderly triggering of activa‑
tor caspases (CASP‑8 and ‑10), executioner caspases (CASP‑3, ‑6, 
and ‑7), and the production of death substrates (cleavage of PARP), 
thereby ultimately leading to cell death.[44] The CD95/CD95L–
CASP‑8 signaling pathway has been shown to be involved in apop‑
tosis induced by several naturally occurring anticancer agents.[45‑47]

The tumor suppressor protein p53 directly targets the promoter 
of the CD95 gene in response to DNA damage by anticancer 
agents. The up‑regulation of the CD95 death receptor is observed 
in cells with wild‑type p53 (HepG2), but not in cells with mu‑
tant (PLC/PRF/5) or null p53 (Hep3B).[48,49] The activation of p53 
is known to alter the transcription of a variety of genes includ‑
ing those involved in cellular metabolism, cell cycle regulation, 
and apoptosis. Pifithrin‑alpha (PFTa), a p53 inhibitor, is able to 
suppress p53‑mediated transactivation[50] and can significantly 
decrease p53 expression in wild‑type p53 cells, but not in mutant 
p53 or p53‑deficient cells.[51]

CIN inhibits the proliferation of HepG2 cells in a dose‑ and 
time‑dependent fashion.[23] Treatment with CIN results in 
down‑regulated expression of Bcl‑XL and up‑regulated levels of 
CD95, p53, and Bax proteins, with downstream cleavage of PARP 
in a time‑dependent pattern [Figure 2]. These effects are reversed 
upon treatment with PFTa, which protects against CIN‑induced 
apoptosis of HepG2 cells and results in decreased levels of p53, 
CD95, Bax, and PARP cleavage.[23]

HUANG‑LIAN‑JIE‑DU‑TANG

Huang‑Lian‑Jie‑Du‑Tang (黃連解毒湯 Huáng Lián Jiě Dú 
Tāng; HLJDT) is a traditional Chinese medicine with anti‑inflam‑
matory functions. This herbal prescription is widely used for the 
treatment of dermatitis, gastritis, and liver injuries, and also to 
stop bleeding of the intestines and uterus. HLJDT is prepared from 
boiled water extracts of four medicinal herbs in equal ratio, namely, 
Coptis chinensis Franch (黃連 Huáng Lián), Scutellaria baicalen-
sis Georgi (黃芩 Huáng Qín), Phellodendron amurense Ruprecht 

Figure 2. Model for the molecular mechanisms of CIN‑induced apoptosis in hepatoma cells. Red arrows indicate the effects of CIN
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(黃柏 Huáng Bǎi), and Gardenia jasminoides Ellis (山黃槴 Shān 
Huáng Huā) [Table 1]. Molecular constituents of HLJDT have been 
shown to possess antitumor properties, and bioactive compounds 
such as berberine, genipin, baicalein, and wogonin have been as‑
sociated with inhibition of cancer cell growth, regulation of cell 
cycle, as well as induction of apoptosis.[52‑58] Our previous study 
has shown that HLJDT can inhibit the human hepatoma HepG2 
and PLC/PRF/5 cell proliferation in vitro and restrict the hepatoma 
cell‑induced tumor growth in nude mice.[59]

Effect of HLJDT on cell cycle distribution
In mammalian cells, the cell cycle progression includes 

the sequential activation of cyclin‑dependent kinases (CDKs), 
whose activation is reliant on their binding of regulatory subunits 
called cyclins.[60] CDK1 (also called CDC2), a major kinase 
for driving the cell cycle, associates with cyclin B1 to form a 
complex, the mitosis‑promoting factor (MPF), that regulates 
cell entry into mitosis. The phosphorylation of Thr14/Tyr15 
on CDK1 by WEE1 and myelin transcription factor 1 (MYT1) 
kinases inhibits the activity of CDK1/cyclin B1 kinase complex, 
whereas dephosphorylation of these residues by CDC25 phos‑
phatases promotes activation.[60,61] Phosphorylation of CDC25 
by checkpoint kinases renders it inactive and initiates cell cycle 
checkpoints.[62] Cyclin A, which associates with CDK1 or CDK2 
kinases, promotes activation and stabilization of CDK1/cyclin 
B1 complex; down‑regulation of cyclin B1, cyclin A, and CDK1 
hinders G2/M transition.[62‑64]

Treatment with HLJDT causes cycle arrest of HepG2 and PLC/
PRF/5 cells in S–G2/M phase [Figure 3].[59] This event is accom‑
panied by decreased expression of cyclin B1, cyclin A, CDK1, 
and CDC25C, and an increased level of inactive phospho‑CDK1 
and phospho‑CDC25C.

Effect of HLJDT on mitochondria‑mediated apoptosis
As described earlier, the mitochondrial apoptotic pathway is 

regulated through Bcl‑2 family proteins such as the anti‑apoptotic 
molecules Bcl‑2 and Bcl‑XL, as well as pro‑apoptotic members 
including Bax and Bak, leading to destabilization of the mito‑
chondrial membrane and activation of caspases. Treatment with 
HLJDT triggers the loss of mitochondrial membrane potential in 
both HepG2 and PLC/PRF/5 cells with concomitant up‑regulation 
of Bax and Bak expression, down‑regulation of Bcl‑2 and Bcl‑XL 
levels, and activation of CASP‑9 [Figure 3].[59]

Effect of HLJDT on the NF‑κB pathway
The pro‑inflammatory microenvironment preset by continu‑

ously elevated expression of nuclear factor kappa B (NF‑κB) in 
the liver tissue due to HBV and HCV infections, bacterial infec‑
tions, and exposure to hepatotoxic chemicals can promote the 
development of HCC.[65] NF‑κB is associated with a wide array 
of pro‑inflammatory and regulatory gene expression, including 
those involved in cell survival/death such as the Bcl‑2 family 
of proteins. Upon degradation of the inhibitor of NF‑κB (IκB) 
proteins, the freed NF‑κB translocates to the nucleus and initi‑
ates gene transcription. Activation of NF‑κB in hepatocytes can 
lead to secretion of pro‑inflammatory cytokines including inter‑
leukin (IL)‑1β, tumor necrosis factor alpha (TNF‑a), IL‑6, and 
vascular endothelial growth factor (VEGF), increase of cyclin D 
and cell cycle progression, as well as maintenance of adequate JNK 
activation for stimulation of hepatocyte proliferation.[66‑69] Many 
studies have revealed NF‑κB as an important target for anticancer 
treatment, whereby inhibition of NF‑κB can be used as a targeted 

Table 1. Components of the herbal prescription Huang‑Lian‑Jie‑Du‑Tang

Herb component Ratio
Coptis chinensis Franch 1
Scutellaria baicalensis Georgi 1
Phellodendron amurense Ruprecht 1
Gardenia jasminoides Ellis 1

Figure 3. Model for the molecular mechanisms of HLJDT‑induced apoptosis in hepatoma cells. Red arrows indicate the effects of HLJDT
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approach in combination with chemotherapy or radiotherapy for 
treating a variety of carcinomas.[70‑72]

We have previously identified that HLJDT treatment of 
HepG2 and PLC/PRF/5 cells inhibits NF‑κB translocation to 
the nucleus and, therefore, its subsequent activity.[59] This is 
observed with a concomitant increase in IκBa expression in 
the cytoplasm, suggesting that HLJDT’s apoptotic function 
against HepG2 and PLC/PRF/5 cells may be linked to its effect 
on NF‑κB.

DISCUSSION

Based on the studies presented, it is clear that both CIN and 
HLJDT may induce apoptotic cell death in HCC cells through 
multiple mechanisms. Depending on the inducible level of 
CD95, CIN appears to be capable of engaging both intrin‑
sic (mitochondria‑mediated) and extrinsic (death receptor–medi‑
ated) apoptosis, as shown in the CD95‑inducible (HepG2) and 
non‑inducible (PLC/PRF/5) hepatoma cells.[23] Stimulation of the 
CD95 substrate CASP‑8 is, however, still observed in apoptosis 
of the PLC/PRF/5 cells under CIN treatment.[21] This observation 
suggests that additional mechanism (s) may be involved in the ac‑
tivation of CASP‑8/t‑Bid pathway by CIN in a CD95‑independent 
manner, an event which has been similarly noted in response to 
certain apoptotic stimuli and treatment with anticancer agents.[73‑76] 
More importantly, targeting of the MAPK signaling, induction of 
ROS production, and disruption of the ∆ψm appear to play a pivotal 
role in CIN‑induced apoptosis of the liver cancer cells.[21,22,24,25] 
These findings suggest that CIN could be further explored as a 
specific inhibitor alone or in combination with other anticancer 
therapies for targeting these individual pathways to induce apop‑
totic cell death in the hepatoma.

With regards to HLJDT, the herbal prescription effectively 
causes hepatoma cell cycle arrest and stimulates mitochon‑
dria‑mediated apoptosis while dampening the activity of NF‑κB. 
Some of these anticancer effects have been recapitulated with its 
bioactive constituents including berberine, genipin, baicalein, 
and wogonin.[53,54,56,77,78] The multi‑specific anti‑hepatoma effect of 
HLJDT could therefore provide insight to combinatorial strategies 
in inhibiting several specific pathways concurrently to suppress 
hepatoma cell growth.

CONCLUSION

Given their anticancer efficacy, both CIN and HLJDT have 
the potential to be developed into promising anticancer treat‑
ments against HCC. Further studies are encouraged for exploring 
the anti‑hepatoma effect of CIN in vivo and for evaluating the 
treatment effect of HLJDT against liver cancer in clinical setting.
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