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Abstract: Marine organisms, particularly cyanobacteria, are important resources for the production of
bioactive secondary metabolites for the treatment of human diseases. In this study, a bioassay-guided
approach was used to discover metabolites with lipid-reducing activity. Two chlorophyll derivatives
were successfully isolated, the previously described 132-hydroxy-pheophytin a (1) and the new
compound 132-hydroxy-pheofarnesin a (2). The structure elucidation of the new compound 2
was established based on one- and two-dimensional (1D and 2D) NMR spectroscopy and mass
spectrometry. Compounds 1 and 2 showed significant neutral lipid-reducing activity in the zebrafish
Nile red fat metabolism assay after 48 h of exposure with a half maximal effective concentration
(EC50) of 8.9 ± 0.4 µM for 1 and 15.5 ± 1.3 µM for 2. Both compounds additionally reduced neutral
lipid accumulation in 3T3-L1 multicellular spheroids of murine preadipocytes. Molecular profiling
of mRNA expression of some target genes was evaluated for the higher potent compound 1, which
indicated altered peroxisome proliferator activated receptor gamma (PPARγ) mRNA expression.
Lipolysis was not affected. Different food materials (Spirulina, Chlorella, spinach, and cabbage) were
evaluated for the presence of 1, and the cyanobacterium Spirulina, with GRAS (generally regarded as
safe) status for human consumption, contained high amounts of 1. In summary, known and novel
chlorophyll derivatives were discovered from marine cyanobacteria with relevant lipid-reducing
activities, which in the future may be developed into nutraceuticals.

Keywords: zebrafish Nile red fat metabolism assay; anti-obesity drugs; chlorophyll derivatives;
murine pre-adipocytes; PPARγ

1. Introduction

In recent years, the discovery of natural products was extended to new pharmaceutical targets
in addition to the traditional targets explored in the past decades, for example, in the search of new
anti-obesogenic compounds [1]. Obesity is a complex metabolic disease characterized by an abnormal
fat accumulation in adipocytes which are also important regulators of the whole metabolism and
homeostasis [2]. This disease is an increasing epidemic, since a considerable percentage of the world’s
population is overweight, which is associated with several chronic diseases like diabetes, cardiovascular
diseases, and cancer [2,3].

Mar. Drugs 2019, 17, 229; doi:10.3390/md17040229 www.mdpi.com/journal/marinedrugs

http://www.mdpi.com/journal/marinedrugs
http://www.mdpi.com
https://orcid.org/0000-0001-5064-9164
https://orcid.org/0000-0003-3585-2417
https://orcid.org/0000-0001-7476-9195
http://www.mdpi.com/1660-3397/17/4/229?type=check_update&version=1
http://dx.doi.org/10.3390/md17040229
http://www.mdpi.com/journal/marinedrugs


Mar. Drugs 2019, 17, 229 2 of 18

The ineffective pharmacological treatment of current anti-obesity drugs available on the market
is due to the limitation of long-term success, potentially dangerous side effects, and high costs [4].
Alternatively, some natural products and derived compounds are being used in the clinic to treat
obesity, for example, orlistat, a synthetic derivative of lipostatin isolated from Streptomyces toxytricini [5].
Yoshinone A isolated from the marine cyanobacterium Leptolyngbya sp., and other marine natural
products containing a 7-en-γ-pyrone moiety showed promising anti-obesogenic activity [6].

Although the marine environment is a rich source of new natural products with a high range of
applications [7], this environment is still largely underexploited due to inaccessibility and difficulties
in retrieving these organisms from their habitat into laboratorial cultures. Cyanobacteria, a group
of ancient photoautotrophic microorganisms, are interesting resources for natural product discovery
in marine environments [8]. These organisms are known to produce a wide range of bioactive
secondary metabolites and most often adapt well to laboratorial culture conditions [9,10]. Our in-house
cyanobacterial culture collection (LEGEcc) currently harbors about 500 cyanobacterial strains isolated
from the Portuguese coast and other environments that overall represent a largely untapped source
for discovery of new secondary metabolites [11]. Some natural compounds were already successfully
isolated from this collection, for example, hierridin B [12], bartolosides (A–K) [13,14], and portoamides
(A–D) [15], all with cytotoxic activity on cancer cell lines.

Zebrafish (Danio rerio) is an attractive model organism for biomedical research. In the study of
complex metabolic disorders like obesity, the use of more complex in vivo model systems as small
whole animal models can bring significant advantages. For drug discovery, zebrafish assays can be used
complementary to rodent assays with easier handling, high predictive validity and cost-efficiency, while
compatible with high-throughput screening [16]. Zebrafish possess higher physiological relevance than
cellular in vitro models, more interactions between tissues and have genetic homology to mammals, as
well as significant similarities in lipid metabolism [16,17]. The original procedure of the zebrafish Nile
red fat metabolism assay was published by Jones et al. [18] and analyzed the capacity of compounds to
reduce neutral lipids in zebrafish larvae in vivo. The authors concluded that the zebrafish organism
model can be used for identifying non-toxic molecules for treating clinical obesity due the conservation
of signal transduction pathways that regulate lipid metabolism.

The aim of this study was to uncover new cyanobacterial compounds with lipid-reducing activity
using the zebrafish Nile red fat metabolism assay optimized in our laboratory. We report the isolation
and structural elucidation of a known and a novel chlorophyll derivative from the marine cyanobacteria
Cyanobium sp. LEGE 07175 and Nodosilinea sp. LEGE 06001, respectively. Their lipid-reducing activity
was additionally evaluated in a three-dimensional (3D) cell culture model of murine pre-adipocytes.
Initial molecular profiling was performed for the more potent compound 1. Furthermore, the presence
of 1 was evaluated in different photoautotrophic organisms (Spirulina, Chlorella, spinach, and cabbage),
with GRAS (generally regarded as safe) status for human consumption.

2. Results

2.1. Isolation of Compound 1

Compound 1 was obtained as a green dark amorphous solid from the cyanobacterium Cyanobium
sp. LEGE 07175. The isolation required several chromatographic steps and was guided by a strong
reduction of lipid content observed in the zebrafish Nile red fat metabolism assay. An LC-ESI-LRMS
(liquid chromatography-electrospray ionization-low resolution mass spectrometry) analysis revealed
a mass consistent with 132-hydroxy-pheophytin a (data not shown), through comparison with
spectroscopic data reported on the literature [19,20]. An HR-ESI-MS analysis was performed and
showed a monoisotopic m/z 887.5697 value for [M + H]+ consistent with the molecular formula of
C55H74N4O6 of 132-hydroxy-pheophytin a (Figure 1). One- and two-dimensional (1D and 2D) NMR
experiments and HR-ESI-MS/MS analysis also corroborated this assignment, revealing the typical
resonances and correlations of this chlorophyll derivative [19,20].
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Figure 1. Planar structure of compounds 1 and 2.

2.2. Isolation and Sctructure Elucidation of Compound 2

The zebrafish Nile red fat metabolism assay-guided fractionation of the CH2Cl2/MeOH
(dichloromethane/methanol) extract of the cyanobacterium Nodosilinea sp. LEGE 06001 yielded
compound 2 as a brownish green amorphous solid. The molecular formula was determined as
C50H64N4O6 on the basis of HR-ESI-MS data, m/z 817.4522 [M + H]+, which demanded 15 degrees of
unsaturation. The 1H and 13C NMR data for compound 2 showed similarities to what was observed
for 1, indicating that 2 could be a chlorophyll derivative. Comparison of the HR-ESI-MS/MS data
between 1 and 2 suggested that compound 2 bears a farnesyl moiety instead of a phytyl group. The
difference between the mass of the pseudomolecular ion at m/z 817.4522 [M + H]+ and the fragment
at m/z 609.2697 [M + 2H − farnesyl]+ (∆ m/z 208.1825) is consistent with the presence of a farnesyl
substituent as opposed to phytyl (∆ m/z 279.36; m/z 909.55 [M + Na]+ and m/z 607.20 [M − phytol]+) [18].
Therefore, compound 2 was named 132-hydroxy-pheofarnesin a.

The 1H NMR spectrum of 2 (Table 1) showed all the typical resonances of the porphyrin ring:
three singlets and an aromatic methyl multiplet (δH 1.59 m, 3.28 s, 3.44 s, 3.90 s), one methyl triplet (δH

1.72) and two diastereotopic benzylic proton signals (δH 3.64, 3.77) corresponding to an aromatic ethyl
substituent, three olefinic singlets (δH 8.71, 9.56, 9.77), a methyl singlet (δH 3.76) corresponding to a
methoxy group, and a vinyl moiety (δH 6.19, 6.35, 8.03) with the characteristic exomethylene coupling
pattern (J = 18.7 and J = 11.4 Hz). The attached farnesyl moiety was recognized by a large number of
overlapping proton signals of aliphatic methylene and methyl functions. Indicative proton resonances
were the oxymethylene resonances (δH 4.44, 4.5 at F1), the vinylic resonances for H-F2 (δH 5.14), and
H3-F31 (δH 1.61), as well as those for the geminal dimethyl at F111 and F12 (δH 0.85 d).
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Table 1. 1H and 13C (600 MHz) data (δ, ppm) of compound 2 at 600 MHz in CDCl3 (deuterated
chloroform).

Position δH (J in Hz) δC Position δH (J in Hz) δC

1 141.3 15 102.0/100.4 2

2 131.5 16 166.3
2 1 3.44 s 11.5 17 4.07 dd (7.4) 53.1

3 133.4 17 1 2.56 dd (7.7)
1.83 dd (9.1) 30.7

3 1 8.03 dd (11.5, 17.8) 128.3 17 2 2.46 m
2.17 m 31.7

3 2 6.35 d (18.7)
6.19 d (11.4) 122.1 173 173.4

4 135.9 18 4.46 m (7.8) 49.7
5 9.56 s 99.1 18 1 1.59 m 21.7
6 155.7 19 171
7 136.6 20 8.71 s 93.3

7 1 3.28 s 10.8 F1 4.5 m 4.44 m (6.8) 60.8
8 145.6 F2 5.14 t (6.5) 117.1

8 1 3.77 m
3.64 m 19.0 F3

8 2 1.72 t (7.7) 17.0 F3 1 1.61 s 15.8
9 149.9 F4 1.89 m (7.7) 39.9
10 9.77 s 103.4 F5 1.29 m (7.4) 22-24 1

11 128.8 F6 1.01 m 36.6
12 131.5 F7 1.33 m 32.1

12 1 3.90 s 11.9 F7 1 0.8 m 19.2
13 133.2 F8 2.35 t (7.5) 32.6

13 1 1 F9 1.65 m (7.3) 24.3
13 2-OH 6.11 s 110.4/102.0 2 F10 1.11 m 38.9

133 170.8 F11 1.51 m 27.4
134-OCH3 3.76 s 53.4 F11 1 0.85 m (6.6) 22.1

14 140.2 F12 0.85 m (6.6) 22.1
1 13C spectra signal not detected or very-low-intensity signal. 2 Assignment undetermined due lack of
specific correlations.

The 13C NMR and 2D NMR data (COSY, HSQC, and HMBC) for 2 allowed the assignment of
all carbons on the porphyrin ring and the location of the functional groups, with the exception of
the carboxyl group at C-131 (Figure 2 and Figure S10, Supplementary Materials). The connection
between the four pyrrole rings was established by the long-range HMBC correlations (Figure 2) of the
olefinic protons H-5 to C-4 (ring A), H-10 to C-8 (ring B), C-11, and C-12 (ring C), and H-20 with C-18
(ring D), C-1, and C-2 (ring A). The presence of the methoxycarbonyl group was deduced from the
long-range HMBC correlation of the singlet protons of a methyl group resonating at δH 3.76 H3-134 to
a carbonyl carbon (δC 170.8 C-133). This assignment was corroborated by comparison with reported
data for similar moieties [19,21,22]. A singlet at δH 6.11 without an HSQC correlation, but with HMBC
correlations to C-132, C-133, and C-15 suggested the presence of a hydroxy group in ring E. Its position
at C-132 was deduced by the significant low field shifts of carbons at 132 and 15 (δC 100.4 and 102,
respectively). Moreover, the HMBC data allowed the connection of the farnesyl moiety to the porphyrin
system by a long correlation of the methylene group H2-F1 (δH 4.44/4.5) with the carboxyl group at
C-173. The assignments from F1 to F12 were confirmed through 1H-1H TOCSY and 1H-1H COSY
experiments (Figure 2 and Figure S12, Supplementary Materials).
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The relative stereochemistry of 2 was confirmed by ROESY experiments and comparison with
literature data. Strong ROESY interactions between H-17/H2-172 and H2-172/H3-181 indicated that these
protons lay on the same side of the molecule plane (Figure S13, Supplementary Materials). Moreover,
the alpha (α) orientation of these protons results from the natural biosynthesis of chlorophylls, in
which occurs a stereo-specific reduction of the C-17/C-18 bond of ring D [23]. The stereochemistry
of the hydroxy group at C-132 varies naturally to an alpha or beta position (δOHβ 5.47 to 5.53 in
CDCl3 [19,24]; δOHα 5.35 in CDCl3 [24]). A correlation of the stereochemistry at C-132 was studied in
several pheophytin derivatives comparing the shielding level of the H-17 [25]. It was established that,
when the hydroxy group was located on the same side of the molecular plane as H-17 (H-17α and
OHα-132), the proton was distinctly deshielded, displaying chemical shifts between δH 4.54 and 4.69.
By contrast, when the hydroxy group had β orientation and the H-17 had α orientation, there was a
lack of significant deshielding, and the chemical shift was between δH 4.13 and 4.29. Thus, despite any
strong ROESY signal being observed for this chiral center, the stereochemistry was determined as S
(OHβ-132) in accordance with these findings. Therefore, the structure of compound 2 was identified as
132(S)-hydroxy-pheofarnesin a.

2.3. Lipid-Reducing Activity of 1 and 2, but not of Chlorophyll a and b

To characterize the lipid-reducing activity of the two isolated chlorophyll derivatives, the zebrafish
Nile red fat metabolism assay was used. Exposure of the zebrafish larvae to compounds 1 and 2
resulted in significant neutral lipid-reducing activity in this assay after 48 h (Figure 3A). A significant
decrease in Nile red staining was observed for compound 1 at 10, 5, and 2.5 µg/mL, and for compound
2 at 10 and 5 µg/mL (Figure 3B), with half maximal effective concentration (EC50) values of 8.9 ± 0.4 µM
(7.5 ± 0.3 µg/mL) for 1 and 15.5 ± 1.3 µM (12.7 ± 1.3 µg/mL) for 2. Toxicity and malformations were
evaluated on zebrafish larvae exposed to these two compounds considering general toxicity (death
after 24 h or 48 h) and malformations of larval morphological features. No such adverse effects were
observed for both compounds. REV (resveratrol) was used as a positive control at a final concentration
of 50 µM and significantly reduced the Nile red lipid staining in all bioassays. The solvent control,
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0.1% DMSO (dimethyl sulfoxide), did not cause any observable toxicity or malformations toward the
zebrafish larvae. Chlorophylls a and b were tested for lipid-reducing activity in this same assay, but
neither reduced the fluorescence intensity of Nile red in any of the tested concentrations (156 ng/mL to
10 µg/mL) as shown in Figure 3B.Mar. Drugs 2018, 16, x FOR PEER REVIEW  6 of 19 
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Figure 3. (A) Representation of the zebrafish Nile red fat metabolism assay. Strong fluorescence signal
is present in zebrafish larvae from the solvent control around the yolk sac and stomach/intestine.
Compounds 1 and 2 decreased the Nile red staining, in contrast to chlorophyll a and b. (B) Quantification
of lipid-reducing activity in the zebrafish Nile red fat metabolism assay after exposure over 48 h.
Solvent control was 0.1% dimethyl sulfoxide (DMSO) and positive control was 50 µM resveratrol (REV).
Values are expressed as mean fluorescence intensity (MFI) relative to the DMSO group and are derived
from six to eight individual larvae per treatment group. The data are represented as box-whisker plots
from the fifth to 95th percentiles. Asterisks highlight significant altered fluorescence intensities that
indicate changes of neutral lipid level (**** p < 0.0001; *** p < 0.001; ** p < 0.01; * p < 0.05).
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2.4. Confirmation of Lipid-Reducing Activity in Differentiated 3T3-L1 Spheroids, and Analysis of Lipolysis

The lipid-reducing activity of 1 and 2 was evaluated in 3T3-L1 spheroids, obtained after a seven-day
differentiation period (Figure S16). A significant reduction of lipid accumulation was observed following
48 h of exposure to 1 at 7.5, 15, and 30 µg/mL, and to 2 at 30 µg/mL (Figure 4A). The concentrations were
chosen based on the EC50 values of compound 1 and 2 in the zebrafish fat metabolism assay. The uptake
of this lipids was blocked without affecting cell differentiation, since the impairment of lipid accumulation
did not occur in spheroids at the beginning of adipogenesis. No significant reduction of viability of
spheroids was observed for exposure to 1 and 2 at 7.5 to 30 µg/mL. Lipases hydrolyze triglycerides into
glycerol and free fatty acids making the latter available for cell incorporation [26]. By analysis of the
free glycerol content, we observed that compounds 1 and 2 did not induce lipolysis on spheroids of
differentiated adipocytes.
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Figure 4. Quantification of lipid content (Nile red) and viability (calcein AM) in differentiated 3T3-L1
spheroids after exposure to 1 and 2 over 48 h. (A) Results of quantification of fluorescence by CellProfiler
software (mean ± SD). (B) Representative images from fluorescence microscopy. Statistical differences to
the solvent control were analyzed by one-way ANOVA, followed by a Dunnett’s multiple comparison
post-test (*** p <0.001, ** p < 0.01, * p < 0.05). (C) Quantification of free glycerol on the medium where 3T3-L1
organoids were exposed to 1 and 2 over 48 h. Data represent means ± SD. No significant alterations on free
glycerol content in the medium were observed. Kolmogorov–Smirnov test was used to test normality of
the data, followed by a Dunnett’s multiple comparison post-test (*** p <0.001, ** p < 0.01, * p < 0.05).



Mar. Drugs 2019, 17, 229 8 of 18

2.5. qPCR Indicates PPARγ for 1

In order to study the effects of 1 in lipid metabolism at the transcriptional level, the messenger
RNA (mRNA) expression of fasn, mtp, pparγ, and sirt1 was analyzed in pools of zebrafish larvae, which
were exposed to 1 at the EC50 concentration for 48h. PparγmRNA was increased two-fold in response
to exposure, while the other genes did not show any significant alteration of their mRNA expression
level (Figure 5).

Mar. Drugs 2018, 16, x FOR PEER REVIEW  9 of 19 

 

2.5. qPCR indicates PPARγ for 1 

In order to study the effects of 1 in lipid metabolism at the transcriptional level, the messenger 
RNA (mRNA) expression of fasn, mtp, pparγ, and sirt1 was analyzed in pools of zebrafish larvae, 
which were exposed to 1 at the EC50 concentration for 48h. Pparγ mRNA was increased two-fold in 
response to exposure, while the other genes did not show any significant alteration of their mRNA 
expression level (Figure 5). 

 

Figure 5. Analysis of messenger RNA (mRNA) expression of fasn, mtp, pparγ, and sirt1 after exposure 
to 1 at the half maximal effective concentration (EC50) for 48 h. Data are presented as box-whisker 
plots (5–95%) from n = 8 replicates, consisting of each replicate from a pool of 10 zebrafish larvae. 
Significant differences are presented as asterisks, * p < 0.05. 

2.6. Quantification in different source material of 1 

To understand whether metabolite 1 could be found in biomass suitable for human 
consumption, the presence of the compound was analyzed by LC-ESI-MS in methanolic extyracts 
derived from various algae- and plant-based materials. When compared to the strain producing 1, 
i.e. Cyanobium sp. LEGE 07175 (100%), Spirulina sp.  biomass contained a slightly higher amount of 
1 (120.4%), while lower values were observed for Chlorella vulgaris (18.0%), spinach (14.7%), and 
cabbage (33.0%), as shown in Figure 6.  
  

Figure 5. Analysis of messenger RNA (mRNA) expression of fasn, mtp, pparγ, and sirt1 after exposure
to 1 at the half maximal effective concentration (EC50) for 48 h. Data are presented as box-whisker plots
(5–95%) from n = 8 replicates, consisting of each replicate from a pool of 10 zebrafish larvae. Significant
differences are presented as asterisks, * p < 0.05.

2.6. Quantification in Different Source Material of 1

To understand whether metabolite 1 could be found in biomass suitable for human consumption,
the presence of the compound was analyzed by LC-ESI-MS in methanolic extyracts derived from
various algae- and plant-based materials. When compared to the strain producing 1, i.e., Cyanobium sp.
LEGE 07175 (100%), Spirulina sp. biomass contained a slightly higher amount of 1 (120.4%), while
lower values were observed for Chlorella vulgaris (18.0%), spinach (14.7%), and cabbage (33.0%), as
shown in Figure 6.
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3. Discussion

Chlorophylls are among the most abundant biological molecules on earth, essential for
photosynthesis and ubiquitous in photoautotrophic organisms including cyanobacteria. Chlorophylls
are porphyrins, which comprise closed and completely conjugated rings, also referred to as tetrapyrroles.
The structure of chlorophyll a, the most widely distributed chlorophyll in nature, features a chelated
magnesium atom in the center of tetrapyrrole macrocycle, a characteristic isocyclic fifth ring (ring
E) conjoined with ring C, a vinyl group at carbon-3, a ketone at carbon-131, a carbomethoxy group
at carbon-132, and a propionic acid moiety at carbon-17 esterified with phytol [27–30]. Numerous
structural alterations occur naturally for chlorophyll a, for example, the formation of magnesium-free
pheophorbides and pheophytins, as well as metallo-chlorophyll derivatives. Pheophytin a and
pheophorbide a possess some biological properties beneficial for human health including antioxidant
properties [31], anti-inflammatory activity [31,32], anti-mutagenic activity [33], cytotoxic effects on
cancer cells [34], antiviral activity against hepatitis C virus [35], antimicrobial activity [36], and
induction of neuro-differentiation [37]. Regarding metabolic diseases, pheophytin a and pheophorbide
a isolated from Laminaria japonica inhibited the formation of AGE (advanced glycation end-products)
(half maximal inhibitory concentration (IC50) 228.71 µM and 49.43 µM, respectively) and of aldose
reductase activity (IC50 >100 µM and 12.31 µM, respectively) [38]. Reduction of lipid content in
differentiated murine 3T3-L1 preadipocytes was shown for a pheophytin (a and b)-rich extract of a
plant at 100 µg/mL [39].

However, for the herein presented chlorophyll derivative 1, only a few bioactivities are known.
For example, 132(S)-hydroxy-pheophytin a (compound 1) was shown to have some cytotoxicity
(9.9–24.8 µM) on different cancer cells [40]. An anti-proliferative effect on LNCaP cells (prostate cancer)
was shown for 1 with an IC50 of 20 µM [41]. A methanolic extract from a red alga containing 1 as
a minor component amongst seven other compounds (major peaks were unidentified compounds)
showed anti-inflammatory activity in vitro at 10 µg/mL [42]. Here, we observed for the first time the
lipid-reducing activity of 1 and of the novel compound 2 in the zebrafish Nile red fat metabolism
assay. Both effectively reduced the fluorescent staining of neutral lipids with EC50 concentrations
of 8.9 and 15.5 µM, respectively. Interestingly, neither chlorophyll a nor chlorophyll b showed any
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activity in that same assay, which highlights the importance of the structural differences found in
compounds 1 and 2 for the observed lipid-reducing activity. The zebrafish Nile red fat metabolism assay
belongs to the category of small whole animal assays, which have a higher physiological relevance
compared to the traditionally used cell assays. Zebrafish larvae were shown to react with known
lipid modulator drugs in a similar manner as humans [18]. The zebrafish Nile red fat metabolism
assay was already successfully used to identify structurally modified polyphenolic compounds with
lipid-reducing activity with EC50 values of 0.07–1.67 µM [43], as well as anthraquinone compounds
from a marine fungus with EC50 values of 0.17–0.95 µM [44]. In comparison to such studies, chlorophyll
derivatives 1 and 2 showed lower potency (micromolar range). However, chlorophyll molecules are
ubiquitous to photoautotrophic organisms, and may be easy to purify from sources with GRAS status
(generally regarded as safe) for human consumption. Here, we quantified the more potent compound
1 by LC–MS/MS in various sources (Spirulina, Chlorella, cabbage, and spinach) in comparison to our
cyanobacterial strain. Compound 1 is produced in a higher quantity in Spirulina, but is also present in
lower quantity in cabbage, spinach, or Chlorella. This result is in line with a study that showed that,
amongst chlorophylls, the hydroxy-pheophytins are present in low quantity in different microalgae
species [45].

The differentiation of murine 3T3-L1 preadipocytes is one of the most used bioassays to identify
compounds that interfere with adipogenesis or that act on differentiated adipocytes. In a comparative
study utilizing 3T3-L1 adipocytes, zebrafish staining of neutral lipids and the diet-induced obese mice,
an effect of chrysophanic acid was detected consistently in all three model systems [46]. Here, we
intended to confirm the lipid-reducing activity of 1 and 2 observed for zebrafish larvae in another model
system and selected 3T3-L1 preadipocytes. Since 3D cell culture systems present a physiologically
relevant alternative to monolayer cell culture, we analyzed the possibility to grow multicellular
spheroids (MCS) with 3T3-L1 cells and to induce their differentiation. A similar approach was chosen
for immortalized preadipocytes, as well as primary cells from the stromal vascular fractions isolated
from adipose tissue from human and mice [47]. Previously, spheroids of 3T3-L1 cells were formed
by surface coatings of ELP-PEI (elastin-like polypeptide conjugated to polyethyleneimine), and such
spheroids showed higher TG (triglycerides) content and uptake of FA (fatty acids) compared to
monolayer cells [48]. The lipid-reducing activity of 1 and 2 was confirmed in MCS from 3T3-L1, as well
as the higher potency of 1 that was chosen for the following analyses regarding its molecular mode of
action. Toxicity and malformations were evaluated in the same zebrafish whole small animal assay,
and, for both 1 and 2, no general toxicity or malformations were observed. Accordingly, exposure of
MCS of differentiated 3T3-L1 did not show any significant viability reduction for both compounds.

In order to get initial insights into the mechanism of action of 1, lipolysis was analyzed in the MCS of
differentiated 3T3-L1 cells, but such activity was not confirmed. The qPCR analysis of some target genes
in zebrafish showed a two-fold induction of pparγ in response to 1. Peroxisome proliferator activated
receptors are involved in the regulation of lipid and carbohydrate metabolism, and PPARγ plays a key
role in adipocyte differentiation, lipid storage, and lipogenesis [49]. The yolk cells in zebrafish were
shown to process lipids during development, and the exposure of zebrafish with a PPARγ antagonist
changed the composition of the lipid profile of 5DPF larvae with increasing/decreasing effects on
different lipid species, mainly phospholipids [50]. Studies in mice and clinical trials of PPARγ agonists
as thiazolidinediones showed that PPARγ had a role on the distribution of body fat [51]. As a response
to TZD (thiazolidinedione) treatment, the metabolically more harmful adipose tissue (the visceral
adipose tissue) decreased, while subcutaneous adipose tissue increased, which in part explained the
beneficial effects of TZD. Hypothetically, the observed pparγ induction in zebrafish in response to 1
may be responsible, to some degree, for the regulation of lipid distribution or alteration of lipid profiles,
but our data are not conclusive in this regard. Future studies are needed to identify the mechanism of
action of 1.

Recent studies indicated the existence of absorption and metabolization of oxidized chlorophyll
derivatives in both in vitro and in vivo models, establishing a good indication for the future success
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of compound 1 as a nutraceutical. On the one hand, Chen and Roca demonstrated that oxidized
derivatives have a preferential absorption in Caco-2 human intestinal cells (heterogeneous human
epithelial colorectal adenocarcinoma cells) over phytylated and other chlorophylls [52]. On the other
hand, Vieira et al. highlighted that derivatives with phytyl chains are available for absorption from
dietary sources and accumulate to be further metabolized in mice liver [53].

4. Materials and Methods

4.1. General Experimental Procedures

One- and two-dimensional (1D and 2D) NMR spectra were acquired with a 400-MHz Bruker
Avance III (Bruker, Karlsruhe, Germany) for samples in DMSO-d6 and with a 600-MHz Bruker Avance
III HD frequency for samples in CDCl3 and DMSO-d6 (deuterated dimethyl sulfoxide). Both chemical
shifts (1H and 13C) are expressed in δ (ppm), referenced to the solvent used, and the proton coupling
constants J are given in hertz (Hz). Spectra were assigned using appropriate COSY, HSQC, HMBC,
TOCSY, and ROESY sequences.

LC-ESI-HRMS analysis was performed on an UltiMate 3000 HPLC (Thermo Fisher Scientific,
Waltham, MA, USA) using an ACE Ultracore 2.5 SuperC18 (ACE, United Kingdom), 75 × 2.1 mm
inner diameter (id) and the column oven was set to 40 ◦C. The samples were eluted at 0.35 mL/min
over a gradient of 99.5% solvent A (95% H2O, 5% MeOH, 0.1% v/v HCOOH) to reach 10% solvent B
(95% isopropanol, 5% MeOH, 0.1% v/v HCOOH) for 0.5 min, followed by an increase to 60% solvent B
for 8 min and by another increase to 90% for 1 min, maintaining those isocratic conditions for over
6 min and returning to the initial conditions for over 1.5 min, before equilibrating for a final 2 min.
Analyses were done on a Q Exactive Focus Hybrid Quadrupole Orbitrap Mass Spectrometer (Thermo
Fisher Scientific) in the negative and positive ion mode (switching) and controlled by Xcalibur 4.1.
The capillary voltage of the heated electrospray ionization (HESI) was set to 3.8 kV. The capillary
temperature was 300 ◦C. The sheath gas and auxiliary gas flow rates were at 35 and 10 (arbitrary units
as provided by the software settings).

LC-ESI-HRMS/MS analysis was performed using the same equipment and conditions mentioned
previously but with the following gradient: 99.5% solvent A to reach 10% solvent B for 0.5 min, followed
by an increase to 60% solvent B for 8 min and by another increase to 90% for 1 min, maintaining those
isocratic conditions for over 9 min and returning to the initial conditions for 2 min, before equilibrating
for a final 2 min. The UV absorbance of the eluate was monitored at 254 nm, 410 nm, and 665 nm and a
full MS scan at the resolution of 70,000 FWHM (full width at half maximum; range of 150–2000 m/z),
and data-dependent MS2 (ddMS2, Discovery mode) at the resolution of 17,500 FWHM (isolation
window used was 3.0 amu and normalized collision energy was 35).

Reverse-phase HPLC data were obtained with a Waters Alliance e2695 instrument coupled with
a PDA (photodiode array) detector (Mildford, MA, USA) for compound 2 and a Waters 1525 binary
pump, coupled to a Waters 2487 detector (monitored wavelengths: 230 and 254 nm) for compound 1.
The software Empower 2 was used for data interpretation.

Precoated silica gel plates (Merck, KGaA, 60 F-254, 0.5 mm) were used for preparative TLC with
visualization under UV light (λ 254 nm).

The phase contrast and red fluorescence images of zebrafish bioassays were obtained with a Leica
DM6000B microscope.

4.2. Cyanobacterial Growth, Extraction and Fractionation

Initial screening assays led to the selection of two cyanobacterial strains, Cyanobium sp. LEGE
07175 and Nodosilinea sp. LEGE 06001 isolated from the Portuguese coast [11] and maintained in the
LEGEcc in CIIMAR, Matosinhos, Portugal. Strains were cultured in Z8 medium supplemented with
marine tropical salt (25 g/L), at 25 ◦C, with a photoperiod of 14 h/10 h light and dark, respectively,
and at a light intensity of 10–30 µmol photons·m−2

·s−1. Cyanobium sp. LEGE 07175 cultures were
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grown in 20-L flasks with constant aeration and, at the exponential phase, cells were harvested through
centrifugation, before being frozen and freeze-dried. For the Nodosilinea sp. LEGE 06001 strain,
available freeze-dried biomass was used, which followed the same growth conditions. The biomass
of LEGE 07175 (13 g) and LEGE 06001 (56.5 g) was extracted by repeated percolation with a warm
mixture of CH2Cl2/MeOH (2:1, v/v), yielding a crude extract of 1.9 g and 8.74 g, respectively. Both
crude extracts were fractionated by normal-phase (Si gel 60, 0.015–0.040 mm, Merck KGaA, Darmstadt,
Germany) VLC (vacuum liquid chromatography) with an increasing polarity grade, from 90% n-hex to
100% EtOAc and 100% MeOH [12], giving a total of nine fractions each.

4.3. Compound 1 Isolation and Structure Elucidation

VLC fractions E and F (3:2 and 4:1 EtOAc/n-Hex, v/v; ethyl acetate/hexane) showed a lipid-reducing
activity with the zebrafish assay; thus, they were pooled and further sub-fractionated by gravity column
chromatography using Si gel 60 (0.040–0.063 mm, Merck KGaA, Darmstadt, Germany) as a stationary
phase and a gradient of increasing polarity from 1:3 EtOAc/n-hex (v/v) to MeOH producing 12 fractions.
The sub-fractions E4 to E6, eluted in 1:3 to 2:3 EtOAc/n-hex (v/v) demonstrated the previous bioactivity,
so they were joined. Then, a SPE (solid-phase extraction) separation was performed, using an Si 5g
cartridge (Strata SI-1, Phenomenex) and a gradient of 3:2 EtOAc/n-hex (v/v) to MeOH, yielding 14
fractions. Sub-fractions E4E and E4F eluted in 3:2 EtOAc/n-hex (v/v) demonstrated bioactivity and,
thus, were submitted to HPLC using a Synergi 4u Fusion (250 × 10 mm 80 Å RP, Phenomenex, Torrance,
California, USA) column and using a linear gradient from 7:3 MeCN (aq; acetonitrile) to MeCN for
30 min, before being maintained for 30 min at MeCN (3 mL/min flow). Compound 1 was isolated
as the major component at 60 min RT (real-time), yielding 17 mg of pure compound. It was then
subjected to LRMS analysis, with a chromatographic column Luna-C18 (250 mm × 4.6 mm, 5 µm, 100 Å,
Phenomenex). Samples were eluted at 0.8 mL/min with a gradient starting with 80% H2O/MeCN and
passing to 100% MeCN in 20 min before maintaining in isocratic conditions for 10 min and returning to
the initial conditions for 3 min, followed by 5 min of stabilizing. The monoisotopic mass value 887.33 m/z
appeared to be the major compound. Through a search of this mass, a hit was found, corresponding to
132-hydroxy-pheophytin a. Then, 1D and 2D NMR analysis, together with HR-ESI-MS and MS/MS
analysis, was performed to confirm the hit (Figures S1–S7, Supplementary Materials).

132-hydroxy-pheophytin a (1): green dark powder, HR-ESI-MS m/z 887.5697 [M + H] +, m/z 909.5493
[M + Na] +, C55H74N4O6. HR-ESI-MS/MS m/z 869.5542 [M − OH] +, m/z 609.2696 [M − phytol] +, m/z
591.2602 [M − OH − phytol]+. 13C NMR (101 MHz, DMSO-d6) δ 192.53 (C-131), 172.88 (C-173), 172.46
(C-133), 168.67 (C-19), 160.59 (C-14), 156.19 (C-16), 153.93 (C-1), 151.07 (C-6), 147.35 (C-3), 147.29 (C-11),
146.71 (C-13), 145.42 (C-9), 143.79 (C-8), 141.79 (C-P3), 138.47 (C-4), 135.18 (C-2), 133.78 (C-7), 130.34
(C-31), 128.08 (C-12), 120.01 (C-32), 118.05 (C-P2), 109.61 (C-15), 106.97 (C-10), 99.65 (C-5), 93.24 (C-20),
89.88 (C-132), 60.40 (C-P1), 52.19 (C-134), 48.81 (C-17), 48.66 (C-18), 36.65-23.65 (C-P4-P14), 29.93 (C-171),
29.90 (C-172), 22.76 (C-181), 22.54 (C-P151), 22.45 (C-P16), 19.58 (C-P71), 19.50 (C-P111), 18.88 (C-81)
17.72 (C-82), 15.84 (C-P31), 12.53 (C-121), 12.25 (C-21), 10.87 (C-71) ppm.

1H NMR (400 MHz, DMSO-d6) δ 9.70 (1H, s, H-10), 9.35 (1H, s, H-5), 8.53 (1H, s, H-20), 8.14 (1H, dd, J =

17.7, 11.5 Hz, H-31), 7.24 (1H, s, H-132-OH), 6.23 (1H, dd, J = 17.8, 1.8 Hz, H-32E), 6.02 (1H, dd, J = 11.6,
1.7 Hz, H-32Z), 5.06 (1H, m, H-P2), 4.53 (1H, m, H-17), 4.47 (1H, m, H-18), 4.37 (2H, d, J = 7.1 Hz, H-P1),
3.79 (2H, q, J = 7.6 Hz, H-81), 3.61 (3H, s, H-121), 3.50 (3H, s, H-134), 3.30 (3H, s, H-21), 3.27 (1H, s,
H-71), 2.68–1.75 (H-P4-P14), 2.3–1.8 (H-171-H-172), 1.68 (3H, t, J = 7.6 Hz, H-82), 1.55 (3H, d, J = 7.2 Hz,
H-181), 0.82 (6H, d, J = 6.6 Hz, H-P151, H-P16), 0.77 (3H, d, J = 6.6 Hz, H-P71), 0.72 (3H, d, J = 6.6 Hz,
H-P111) ppm.

4.4. Compound 2 Isolation and Structure Elucidation

Fraction E (35.27 mg), resulting from the VLC separation and eluted with n-hex/EtOAc (2:3, v/v),
had the most interesting activity in the zebrafish bioassay, and was, thus, further fractionated over
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prepacked normal-phase SPE SiO2 cartridges (55 µm, 70 Å, 2 g, Phenomenex) using CH2Cl2/MeOH
(from 1:0 to 0:1, v/v), resulting in seven sub-fractions (E1 to E7). Subsequently, sub-fraction E4 eluted
with a mixture of CH2Cl2/MeOH (1:0 and 99:1, v/v) had the desirable bioactivity level. This sub-fraction
was subjected to another round of SPE chromatography using n-hex/CH2Cl2 (from 7:3 to 0:1, v/v) and
CH2Cl2/MeOH (from 1:0 to 0:1, v/v), to provide an additional six sub-fractions (E4A to E4F). The active
fraction E4C was submitted to further fractionation through reverse-phase HPLC using a Luna-C18
column (250 mm × 10 mm, 10 µm, 100 Å, Phenomenex, Torrance, CA, USA). The elution was done
with a mixture of MeCN/CH2Cl2 (1:1, v/v) in a flow of 3 mL/min for 25 min with a continuously
polar gradient MeCN/CH2Cl2 (from 3:2 to 1:1, v/v). This separation afforded three sub-fractions and,
according to the result of zebrafish bioassay, fraction E4C11 was further purified by preparative TLC
using precoated silica gel plates with a mixture of MeOH/CH2Cl2 (0:1, v/v). The final purification
yielded 0.3 mg of compound 2.

132-hydroxy-pheofarnesin a (2): brownish green amorphous solid, HR-ESI-MS m/z 817.4522 [M + H]+,
calculated for C50H64N4O6 (816.4825), HR-ESI-MS/MS m/z 840.4339 [M + H + Na]+, 609.2697 [M + 2H –
farnesyl]+, 591.2604 [M − OH − farnesyl]+, 13C and 1H NMR (600 MHz, CDCl3) data (see Table 1); for
NMR and ESI-MS spectra, see Figures S8–S15 (Supplementary Materials).

4.5. Determination of 132-hydroxy-pheophytin a by LC–MS

For quantification and confirmation of 1, HRMS and HRMS/MS data of the extracts were acquired
on an Accela HPLC fitted with a Synergi C18 column (4 µm, 80 A, 4.6 mm id × 250 mm, Phenomenex,
Torrance, CA, USA), coupled to an Accela PDA detector, Accela autosampler, and Accela 600 pump,
and to an LTQ OrbitrapTM XL hybrid spectrometer, controlled by LTQ Tune Plus 2.5.5 and Xcalibur 2.1
(Thermo Scientific). Firstly, 20 µL of each sample was injected and samples were eluted over a gradient
of 10% solvent H2O (0.1% v/v HCOOH) to reach 100% solvent MeCN (0.1% HCOOH) for 20 min at
a flow rate of 0.8 mL/min. The wavelengths were 235, 285, and 650 nm. The LTQ spectrometer was
operated in positive ion mode, and the capillary voltage of the electrospray ionization source (ESI) was
set to 3.1 kV. The capillary temperature was 300 ◦C. The sheath gas and auxiliary gas flow rates were at
40 and 10 (arbitrary unit as provided by the software settings). The capillary voltage was 36 V and the
tube lens voltage was 85 V. MS data handling software (Xcalibur 2.1.0 QualBrowser software, Thermo
Fischer Scientific) was used.

Five different samples were used to assess the production of 1: Cyanobium sp. LEGE07175
was obtained from the LEGEcc (as previously described); Spirulina sp. and Chlorella Vulgaris were
commercially available; leaves of spinach and cabbage were bought from local supermarkets.

Approximately 1.0 g of powder from each sample was dissolved in 70 mL of MeOH (100%) by
stirring for 2h twice at room temperature [54]. The supernatants were collected and dried by a rotatory
evaporator to obtain crude extracts. Each extract was then prepared at a concentration of 1 mg/mL for
LC–MS, and 0.2 mg/mL for MS/MS in MeOH (100%). A standard of 1 at 16 µg/mL (MeOH 100%) was
also prepared for comparison with the samples prior to publication.

Xcalibur 2.1.0 software was used to search for 1 using a reference value interval of 887.50–888.50 m/z.
The PDA chromatogram was analyzed at a wavelength of 428 nm, as it was the maximum of absorption
of 1. Additionally, this software was used to confirm the presence of 1 in the five different samples
through comparison of the mass fragmentation pattern (Figure S17, Supplementary Materials).

4.6. Zebrafish Nile Red Fat Metabolism Assay

The lipid-reducing activity of compounds was analyzed with the zebrafish Nile red assay as
previously described [43,44]. An approval by an ethics committee was not necessary for the presented
work, since chosen procedures are not considered animal experimentation according to the EC Directive
86/609/EEC for animal experiments. In brief, zebrafish embryos were raised from one DPF (days post
fertilization) in egg water (60 µg/mL marine sea salt dissolved in distilled H2O) with 200 µM PTU
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(1-phenyl-2-thiourea) to inhibit pigmentation. From three DPF to five DPF, zebrafish larvae were
exposed to cyanobacterial fractions at a final concentration of 10 µg/mL with daily renewal of water
and fractions in a 48-well plate with a density of 6–8 larvae/well (n = 6–8). A solvent control (0.1%
DMSO) and positive control (REV, resveratrol, final concentration 50 µM) were included in the assay.
Neutral lipids were stained with Nile red overnight at the final concentration of 10 ng/mL. For imaging,
the larvae were anesthetized with tricaine (MS-222, 0.03%) for 5 min and fluorescence analyzed with a
fluorescence microscope (Olympus, BX-41, Hamburg, Germany). Fluorescence intensity was quantified
in individual zebrafish larvae by ImageJ (http://rsb.info.nih.gov/ij/index.html). EC50 values of purified
compounds and of chlorophyll a (chl a) and b (chl b) analytical standards (Sigma-Aldrich) were
determined by dose–response curves in further assays by using a dilution series from 156 ng/mL to
10 µg/mL in seven dilution steps.

4.7. Differentiated Murine Preadipocytes Grown as Spheroids

Murine preadipocytes 3T3-L1 cell line (ATCC, USA) at 50,000 cells/mL were seeded in an Ultra-Low
attachment 96-well plate in Dulbecco’s modified Eagle medium (DMEM, Invitrogen, Carlsbad, CA)
supplemented with 10% fetal bovine serum (FBS), 1% penicillin/streptomycin, and 0.1% amphothericin
B, and kept under 37 ◦C at 5% CO2 for five days. Differentiation was then induced on the newly formed
spheroids of 3T3-L1 with DMEM supplemented with 10 µg/mL insulin (Sigma-Aldrich, St. Louis, USA),
250 nM dexamethasone (Sigma-Aldrich, St. Louis, MO, USA), and 500 µM isobutylmethylxanthine
(Sigma-Aldrich) for three days. The differentiation medium was changed to a maintenance medium
containing only insulin (10 µg/mL) on DMEM culture medium, for five days. Spheroids were then
exposed to 1 and 2 at three different concentrations, 30 µg/mL, 15 µg/mL, and 7.5 µg/mL, over 48 h
in two independent assays with six replicates each (n = 6). After exposure, spheroids were stained
with Calcein AM (Life Technologies, Carlsbad, CA, USA ) 3 µM and Nile red 4 µM (Sigma-Aldrich,
St. Louis, USA) for 1h, and then fluorescence was quantified in an Olympus BX41 coupled with
an Olympus DP47 camera, and images were analyzed with Cell Profiller software [55] followed by
statistical analysis.

4.8. Lipolysis

Lipolysis was evaluated by quantifying the free glycerol content present in 50 µL of the medium
where 3T3-L1 organoids were exposed to 1 and 2 over 48 h. Then, 80 µL of free glycerol reagent
was added (Sigma-Aldrich, St. Louis, USA), and the mixture was incubated at 37 ◦C for 5 min.
Absorbance was recorded at 540 nm. A calibration curve with glycerol standard (0.052 mg/mL) and
blank (deionized water) was performed in order to calculate glycerol content (mg/mL) according to the
following equation:

(A sample − A blank)/(A standard − A blank) × standard concentration. (1)

4.9. Real-Time PCR

Zebrafish larvae were exposed to 1 and 2 at EC50 concentration and to a solvent control group
(DMSO 0.1%) for 48 h between 3DPF and 5DPF as described above. Eight biological replicates
consisting of a pool of 10 zebrafish larvae each were sampled per group. The protocol for RNA
extraction, quantification, and further processing for real-time PCR analysis followed the one described
in Reference [43]. Target gene expression (fatty-acid synthase (FASN), sirtuin 1 (SIRT1), peroxisome
proliferator activated receptor gamma (PPARγ), microsomal triglyceride transfer protein (MTP) was
normalized to the combination of reference genes (beta-2 microglobulin, B2M/ elongation factor 1-alpha,
EF1A). A multiple reference gene approach was chosen for normalization of mRNA expression in
order to avoid quantification bias [56]. Real-time PCR was performed using the iQ5 real-time PCR
machine (Bio-Rad) and samples were run as described in Reference [57].

http://rsb.info.nih.gov/ij/index.html
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4.10. Statistics

The data from bioactivity quantifications and mRNA expression are represented as box-whisker
plots with values in 5–95 percentiles. The Gaussian distribution was tested by a Kolmogorov–Smirnov
normality test (p value < 0.05), and homogeneity of variance was determined by Bartlett’s test. One-way
ANOVA followed by Dunnett post hoc test (parametric distribution) and Kruskal–Wallis followed by
Dunn’s post hoc test (non-parametric distribution) were used to compare the solvent control group
(DMSO) and the fractions. Statistically significant differences were considered with p-values <0.05.

The data from dose–response curves were used to determine EC50 values for bioactivity level.
Mean intensity fluorescence data were normalized to the mean values of the solvent control (100%)
and to mean values of the 50 µM resveratrol positive control (0%), and concentrations of the compound
were log-transformed. A non-linear regression was applied with a variable slope and least square
fitting to obtain the dose–response curves.

5. Conclusions

A known and a novel chlorophyll derivative were discovered from marine cyanobacteria with
significant lipid-reducing activities in the zebrafish Nile red fat metabolism assay and in MCS of
differentiated 3T3-L1 adipocytes. The more potent compound 1 is produced in large quantities in
Spirulina, which has the GRAS status for human consumption. Lipolysis is not involved in the
lipid-reducing activity, but pparγmRNA expression was altered. Regarding its biological properties
and sources for production, 1 could be developed as a nutraceutical with lipid reduction activity in
the future.
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